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1 Partially observed Gaussian processes
e Classical case: OU process (Lipster-Shiryaev 78)
*dX (t) = —0X (t)dt+dV (t), t €[0,T], increas, horiz. T — c©
* explicit non-stationary or stationary solution

Il e~ 0=35)qv (s) or [t __ e ?(t=5)dV (s) no matter what V is.
e QUESTION: estimate 6 > 0 .

e ANSWERS: when V' is Brownian motion, since d (V) = dt
* using Girsanov, get MAXIMUM LIKELIHOOD ESTIMATOR
G Jo X (s)dX (s)
Jo 1X (s)Pds
* another interpretation: (ORDINARY) LEAST SQUARES ESTIM
indeed, interpret It6 integral foTX (s)dX (s) = fOTX (s) X (s)ds

then minimize L2 (ds)-norm of the regression error

0 /OT X (s)+0X (s)\zds.



e OU process driven by an OU process :
* Replace V' with another OU process:
*¥dV (t) = —pX (t)dt + dB (t)
* DIFFICULTY: ONLY OBSERVE X BUT ESTIMATE (0, p).
* Bravely and naively assume 7 still works
* Observed version of V : V (t) = X (t) + 07 [ X (s) ds

* Bravely and naively try

N\

_JEV (s)av (s)
S RALLIAD)
IE |V (s)|" ds

* Bercu Proia and Savy SPL 2014 proved this intuition is incorrect:

. A 0p (0 + p)
lim HTapT — <9+p7 .
jlm ) (0 + p)° + pb




e OU process driven by a fractional OU process (H > 1/2):
* Same situation as above, but B is fractional Brownian motion.
* First look at fully observed case: MLE and LSE do not coincide
— MLE (Kleptsyna and Le Breton SISP 2002)
— LSE (Nualart and Hu SPL 2010)
they propose 6 but stoch. integ. is of Skorohod type
they propose an unrelated method of moments
* We adapt method of Bercu Proia and Savy:
— need the Malliavin calculus to recompute all needed asymptotics;
— evaluate Skorohod integs by converting to Young integs;

— invoke the Nualart-Peccati criterion to prove asymp. normality

0p (0 + p)
2, p?22H_p2-2H —- (9*70*) a.s.;
0+ p)° + Lo —om

lim VT (07 — 0%, pp — p*) = N (0,Z) with = explicit, H < 3/4.

T—o0

im (0r,p7) = [0+ 0,

T—o00




e Same problem, now assume data is discrete: timestep Aj,
* Generic quadratic variation Qn (Z2) := %22’21 Z (kAp).
* Replace fOT X (s)|?ds by Qn (X).
* Also need to discretize ¥; := [§ X (s) ds with kan = Ap Z,’le X (iAnp).
* Replace J§ |V (s)| ds by Qn (X) + |0r]" Qn (£)
* to define (GV, ﬁ) as solution to F' (HV, ﬁ) — (Qn (X),Qn (f)) where

) 1952 (y2—2H _ 5172_2H, r—2H _ y—ZH) if ©#£vy

2
((1 — H)z—2H, H:I;_2H_2) if z=uy.

F(x,y) = HF(ZH)X{

* We prove a.s. cvce via control of errors from continuous case;
need intermediate estimator based on Qn, (X);

need sampling rate A, < n_ﬁ_g.

* We prove CLT based on a.s. control of errors, and our continuous
CLT

1
but need a stronger sampling rate A, = o (n 1+2H/3> :



2 Discretey observed Gaussian processes (in progr.)
e Work directly with the discrete observations from stationary continuous-
time process, and exploit 4th or 3rd moment theorem
* For quadratic estimators with stationary processes, setup is equiv-

alent to
1 mn
Qn(2) ==Y |Z (k)|?
=1

where Z is stationary Gaussian sequence with auto-covariance p

*Let v=p(0)=Var(Z(k)); let Vi, (Z) :=+v/n(Qn(Z) —7)

* By 3rd moment theorem

dry

2
Vi (2) (Zhoip (0)*2)
,N(0,1) | < 3/
JVar (Vo (2)) (7 (k)?)
and in fact Var (Vi (Z2)) < n 1 1P (k)? and need not converge.

* More powerful strategy: no sampling restriction: A, = 1 is OK.



e Other powers (Hermite variations): 3rd moment theorem not valid;
* optimal 4th moment theorem still holds, repeat detailed analysis;

* or just use non-optimal result of Nourdin & Peccati (PTRF, 2008):

Vi (2)
VVar (Vo (2))

Vi (2)
K4 .
\ VVar (Vo (2))

dry , N (07 1) <C

e The actual speeds depend on how quicky Var (V, (Z)) stabilizes.
* Ease of extension to non-stationary data.

* Have strategy to avoid H < 3/4 condition for fGn

e Application to fractional OU and OUfOU:
* fOU: lim Qp (X) = HT (2H) 0% is a method of moments;
* OUfOU: conjec : a.s. & CLT for our previous (é, ,5) with A, = 1.

e When p (k) = k2L (k) with L slowly varying and H > 3/4,
* fluctuations have H-Rosenblatt-distributed limit ;

* open problem to find optimal TV or Wasserstein speed.



3 Malliavin calculus tools
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Theorem 3.1 [Sharp 4th moment thm in total variation: [NuP], [NP]].

e Assumptions:

(1) (Fn)n>0 sequence in a fixed Wiener chaos;
(2) Var[Fp] =1

e Conclusions:

(1) [NuP] The following two statements are equivalent:

(a) (Fn)n>0 converges in law towards N'(0,1) ;
(b) E[F,] — 3 = E[N(0,1)4].

(2) [NP] Let M, := max(E[F?] — 3,

E[F3]). If (1a) holds, then

HC, C > 0 . CMn S dTV(Fn, N) S CMn.



Where does such a result come from?

Nourdin-Peccati Analysis on Malliavin calculus with Stein’s lemma.

Stein's lemma = bound on dpy, (uniform dist. of probab. measures):

Let Fry = {f ]l oo < \/7/2 1 o < 2}. Then for X w/ density,
dry (X, N(0,1)) < sup [E[f(X)] —E[Xf(X)]].
feFrv
* Assume L2 (Q) is w.r.t a fixed BM on [0, 1], say.
* For X € D12 with B[X] =0, Var [X] =1, let Gx := [§ DsX Ds (—~L7!) X ds.
* Then

E[Xf(X)]=E|Gxf (X)].

* Hence

* Moreover if X € D14 then

E[l1 - Gx|] < 2\/E 11— Gx*| =2vVar[Gx].



Special case: X € ¢! chaos.

* Then by def, (—L_l) X = ¢ 1X and thus Gx = ¢~ 1 ||DX|%.
* Then work a little hard to estimate vVVar [Gx] <X E [Xﬂ — 3. Thus

drv(Fn, N) < Oq\/E X4 3.

How did [NP] get better estimate?

* NOTATION: cumulants r4 (X) := E | X% — 3 and k3(X) := E | X3|

* Iterate a polarization and iteration of G x up to order 4, to get

dry(Fn, N) < Cy (|m3| + g+ %4 (15 + 3 2)) < cqmax (|r3|, ka)

* use f = sin and f = cos to find lower bounds with |k3| and kg4

respectively.



e Stationary centered Gaussian sequence: (Xy), 7
X is jointly Gaussian and E [X,] = 0;
dpon Z:Vk,n € Z, E [ XnX,, 1] = p(k);
p(0) = Var[Xn] = 1 without loss of generality;

e Only technical assumptions:
p is of constant sign;

|p| decreases near +o0.

e Normalized centered quadratic variation

Therefore F), is a sequence in second Wiener chaos with [F%} = 0.



e Breuer-Major theorem (special case):

if 02 := Zkezp(k)2 = limp—o0o vn, < 00 then V,, — N (0,02).

law

e Beyond this theorem, there are cases where I, — N (O,&z) even
if 02 = oo and law(V},) diverges. In that case, we say that normal

convergence holds without a Breuer-Major theorem.

e Speed of Breuer-Major convergence in total variation:
* Classical Berry-Esséen (iid case): d7y (Vin,N(0,1)) < c/v/n
* the case of fGn (increments of fBm): p (k) ~ H (2H — 1) k%12

— Before [BBNP], it was believed that classical Berry-Esséen rate

holds for fGn only if H < 3/5;
— thanks to [BBNP], and [NP], we know Berry-Esséen rate holds

if and only if H < 2/3, and other rates can be computed,
for example:

*if H=2/3, then dpy (Fn, N(0,1)) < n=1/210g?n ;
*if H € (2/3,3/4) then dpy (Fp, N(0,1)) < nbH—9/2



4 Third moment theorem

IDEA: use [NP]'s Theorem 3.1;

NOTATION: k4 (Fp) :=E|F| — 3 and k3 (Fn) :=E |F3]
REQUIREMENT: compute k4 (Fy) and k3 (Fy) as sharply as possible.
LUCKY BREAK: don't need k4 (Fp) as sharply as k3 (Fp) )

Proposition 4.1 [Sharp cumulants estimates]

? 2
° 8
o/ ﬁ< > |p(k>|3/2> < Iss(Fo)l < 5 ﬁ( > |P(k)|3/2) ,

k[<n |k|<n
(1)
) 3

ka(Fn) = Cozns ( > |P(’f)4/3) : (2)

Un M\ |k|<n

n—1 5 n—1 5
> po (k) <wop <23 pf (k). (3)

k=0 k=0

By Holder’s inequality for 31, |p(lc)|2/3+2/3 with p = %,q = % in-
equalities (1) and (2) imply:



Corollary 4.2 [Lucky shortcut] nl/4k4(F)3/* = O (|r3(Fp)l).
Consequently, by 4th moment theorem of [NuP],
k3(Fn) 5 0 = ka(Fn) —3 —- 0 = limp—oolaw(Fy) = N(0,1).

And by sharp 4th moment theorem of [NP], the convergence is in total
variation, and all the converses also holds. More precisely, k4(Fn) =

o (|x3(Fn)|) and we have the following.

Theorem 4.3 [Sharp third moment theorem in TV]
(i) limn—oolaw( Fn) = N(0, 1).
= (ii) limp—oo K3 (Fp) = O;
< (iii) limp—oo k4 (Fn) = 0;
= () en 1= (Sppgen loB)P2) 022012 = 0 (1),

In this case, k3 (Fy) <X en, , and ey, is the exact TV convergence rate:

dTv(Fn,N(O, 1)) = R3 (Fn) = &En.



5 Non-normal convergence
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Theorem 5.1 [Dobrushin-Major / Taqqu 79 (special case)]
Assumption: p (k) = k2L (k) where L is slowly varying at co and
H € (3/4,1).

Conclusion [DM79]: F}, converges in law to the law of a Rosenblatt r.v.

|3§‘y|H 1/2 z(CE—I—y)
Foo_//R2 R it LW (dz) W (dy) .

Here W is a C-valued white noise: on Ry, W (dz) = By (dz)+iB> (dz)
for By, By iid BMs; W (—dz) = W (dz), W (dz)? = 0, |W (dz)|? = dz.

[BN] find TV speed of convergence by using a classical result [DM]:
*if Fy, and Fix are on in the same Wiener chaos, and Var [F},] bounded
* then for large n, dry (F, Fo) < cp (E [(F — FOO)2D1/4.

Case L = 0 : using self-similarity of fBm [BN] prove

dry (F, Fo) < cpp n3/4 1

Unfortunately, we find this good speed only works for fGn...



Log-modulated power spectral density:

— let H € (3/4,1) and 8 > 0, let L (y) = log?” (|y|) (or asymp).
Let

¢(z):=Cpglel" 2L (”)

||

— This ¢ € L} (Sl,daz), q is C°° except at 0; thus ¢ = Fourier

series of its Fourier inverse p.

— l.e. let X with covariance function

p(k) = % /_7; q(x) cos (kx) dx

then X has spectral density g and def of p is Fourier inversion.

— Recompute p by changing variables:

C km
p(k) = L’Bsz_zf 2|12 cos (z) L Bl
21 —km | |



Theorem 5.2 Using above X, with a ¢ depending only on H and (3,

c
d Fro. Fo) < ——
TV( Uz OO) = |og1/2n
2
where, with K' = (Zr(2(42[f)2c)°(3§g(13)1{))) F~o is Rosenblatt law
H=1/2 gi(z+y) _ 1
Foo_// |"’”y| W (dz) W (dy) .
R2 }{ i(z+vy)

e Technical proof:
* Typically: p has long memory, thus p ¢ ¢1(Z), cannot invoke
classical Fourier inversion; prove it or assume it by working with q
directly.
* To apply a meta-theorem: use a trade off between a speed of cvce
to limiting kernel and speed of integrability of cutoff kernel at oco.

* need precise estimates of p and nvy, :



with K := 1 [§°|z|' 72" cos (z) dz = 2T (2 — 2H) cos (7 (1 — H)),
p(k) = Cr gKyL (k) k22 (1 +0 (L %))

2 1
ton = (CH’B) Ky 7% L2 (n) (1 o (Iog n)) |




