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1 Partially observed Gaussian processes
� Classical case: OU process (Lipster-Shiryaev 78)

* dX (t) = ��X (t) dt+dV (t) ; t 2 [0; T ]; increas, horiz. T !1
* explicit non-stationary or stationary solutionR t
0 e
��(t�s)dV (s) or

R t
�1 e

��(t�s)dV (s) no matter what V is.

� QUESTION: estimate � > 0 .

� ANSWERS: when V is Brownian motion, since d hV i = dt
* using Girsanov, get MAXIMUM LIKELIHOOD ESTIMATOR

�̂T = �
R T
0 X (s) dX (s)R T
0 jX (s)j2 ds

:

* another interpretation: (ORDINARY) LEAST SQUARES ESTIM

indeed, interpret Itô integral
R T
0 X (s) dX (s) =

R T
0 X (s) _X (s) ds

then minimize L2 (ds)-norm of the regression error

� 7!
Z T
0

��� _X (s) + �X (s)
���2 ds:



� OU process driven by an OU process :

* Replace V with another OU process:

* dV (t) = ��X (t) dt+ dB (t)

* DIFFICULTY: ONLY OBSERVE X BUT ESTIMATE (�; �).

* Bravely and na��vely assume �̂T still works

* Observed version of V : V̂ (t) = X (t) + �̂T
R t
0X (s) ds

* Bravely and na��vely try

�̂T =

R T
0 V̂ (s) dV̂ (s)R T
0

���V̂ (s)���2 ds :
* Bercu Proia and Savy SPL 2014 proved this intuition is incorrect:

lim
T!1

�
�̂T ; �̂T

�
=

 
� + �;

�� (� + �)

(� + �)2 + ��

!
:



� OU process driven by a fractional OU process (H > 1=2):

* Same situation as above, but B is fractional Brownian motion.

* First look at fully observed case: MLE and LSE do not coincide

{ MLE (Kleptsyna and Le Breton SISP 2002)

{ LSE (Nualart and Hu SPL 2010)

they propose �̂ but stoch. integ. is of Skorohod type

they propose an unrelated method of moments

* We adapt method of Bercu Proia and Savy:

{ need the Malliavin calculus to recompute all needed asymptotics;

{ evaluate Skorohod integs by converting to Young integs;

{ invoke the Nualart-Peccati criterion to prove asymp. normality

lim
T!1

�
�̂T ; �̂T

�
=

0BB@� + �; �� (� + �)

(� + �)2 + �2�2H��2�2H
��2H���2H

1CCA =: (��; ��) a.s.;
lim
T!1

p
T
�
�̂T � ��; �̂T � ��

�
= N (0;�) with � explicit, H < 3=4:



� Same problem, now assume data is discrete: timestep �n,
* Generic quadratic variation Qn (Z) :=

1
n

Pn
k=1Z (k�n).

* Replace
R T
0 jX (s)j2 ds by Qn (X).

* Also need to discretize �t :=
R t
0X (s) ds with �̂k�n = �n

Pk
i=1X (i�n).

* Replace
R T
0

���V̂ (s)���2 ds by Qn (X) + �����T ���2Qn ��̂�
* to de�ne

�
��; ��

�
as solution to F

�
��; ��

�
=
�
Qn (X) ; Qn

�
�̂
��
where

F (x; y) = H�(2H)�

8<:
1

y2�x2
�
y2�2H � x2�2H ; x�2H � y�2H

�
if x 6= y�

(1�H)x�2H ; Hx�2H�2
�

if x = y:

* We prove a.s. cvce via control of errors from continuous case;

need intermediate estimator based on Qn (�);

need sampling rate �n � n�
1

1+H�":

* We prove CLT based on a.s. control of errors, and our continuous

CLT

but need a stronger sampling rate �n = o

 
n
� 1
1+2H=3

!
:



2 Discretey observed Gaussian processes (in progr.)
� Work directly with the discrete observations from stationary continuous-
time process, and exploit 4th or 3rd moment theorem

* For quadratic estimators with stationary processes, setup is equiv-

alent to

Qn (Z) :=
1

n

nX
k=1

jZ (k)j2

where Z is stationary Gaussian sequence with auto-covariance �

* Let 
 = � (0) = V ar (Z (k)); let Vn (Z) :=
p
n (Qn (Z)� 
)

* By 3rd moment theorem

dTV

0B@ Vn (Z)q
V ar (Vn (Z))

; N (0; 1)

1CA �
�Pn

k=1 � (k)
3=2
�2

�Pn
k=1 � (k)

2
�3=2

and in fact V ar (Vn (Z)) � n�1
Pn
k=1 � (k)

2 and need not converge.

* More powerful strategy: no sampling restriction: �n = 1 is OK.



� Other powers (Hermite variations): 3rd moment theorem not valid;

* optimal 4th moment theorem still holds, repeat detailed analysis;

* or just use non-optimal result of Nourdin & Peccati (PTRF, 2008):

dTV

0B@ Vn (Z)q
V ar (Vn (Z))

; N (0; 1)

1CA � C
vuuuut�4

0B@ Vn (Z)q
V ar (Vn (Z))

1CA:

� The actual speeds depend on how quicky V ar (Vn (Z)) stabilizes.
* Ease of extension to non-stationary data.

* Have strategy to avoid H < 3=4 condition for fGn

� Application to fractional OU and OUfOU:
* fOU: limQn (X) = H� (2H) �2H is a method of moments;

* OUfOU: conjec : a.s. & CLT for our previous
�
��; ��

�
with �n = 1.

� When � (k) = k2H�2L (k) with L slowly varying and H > 3=4,

* 
uctuations have H-Rosenblatt-distributed limit ;

* open problem to �nd optimal TV or Wasserstein speed.



3 Malliavin calculus tools
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Theorem 3.1 [Sharp 4th moment thm in total variation: [NuP], [NP]].

� Assumptions:

(1) (Fn)n�0 sequence in a �xed Wiener chaos;

(2) V ar [Fn] = 1

� Conclusions:

(1) [NuP] The following two statements are equivalent:

(a) (Fn)n�0 converges in law towards N (0; 1) ;
(b) E[F 4n]! 3 = E[N (0; 1)4]:

(2) [NP] Let Mn := max(E[F 4n]� 3;
���E[F 3n]���): If (1a) holds, then

9c; C > 0 : cMn � dTV (Fn; N) � CMn:



Where does such a result come from?

Nourdin-Peccati Analysis on Malliavin calculus with Stein's lemma.

Stein's lemma =) bound on dTV (uniform dist. of probab. measures):

Let FTV =
n
f : kfk1 �

q
�=2 ;



f 0

1 � 2
o
: Then for X w/ density,

dTV (X;N (0; 1)) � sup
f2FTV

���E hf 0 (X)i� E [Xf (X)]��� :
* Assume L2 (
) is w.r.t a �xed BM on [0; 1], say.

* ForX 2 D1;2 with E [X] = 0, V ar [X] = 1, letGX :=
R 1
0 DsX Ds

�
�L�1

�
X ds.

* Then

E [Xf (X)] = E
h
GXf

0 (X)
i
:

* Hence

dTV (X;N (0; 1)) � 2E [j1�GX j] :

* Moreover if X 2 D1;4, then

E [j1�GX j] � 2
r
E
h
j1�GX j2

i
= 2

p
V ar [GX] :



Special case: X 2 qth chaos.

* Then by def,
�
�L�1

�
X = q�1X and thus GX = q�1 kDXk2.

* Then work a little hard to estimate
p
V ar [GX] � E

h
X4

i
� 3. Thus

dTV (Fn; N) � Cq
r
E
h
X4

i
� 3:

How did [NP] get better estimate?

* NOTATION: cumulants �4 (X) := E
h
X4

i
� 3 and �3 (X) := E

h
X3

i
* Iterate a polarization and iteration of GX up to order 4, to get

dTV (Fn; N) � Cq
 
j�3j+ �4 +

s
�4

�
�23 + �

3=2
4

�!
� cqmax (j�3j ; �4)

* use f = sin and f = cos to �nd lower bounds with j�3j and �4
respectively.



� Stationary centered Gaussian sequence: (Xn)n2Z
X is jointly Gaussian and E [Xn] = 0;

9� on Z : 8k; n 2 Z, E
�
XnXn+k

�
= � (k);

� (0) = V ar [Xn] = 1 without loss of generality;

� Only technical assumptions:
� is of constant sign;

j�j decreases near +1.

� Normalized centered quadratic variation

Vn :=
1
p
n

n�1X
k=0

�
X2k � 1

�
;

vn := E
h
V 2n
i
= V ar [Vn] ;

Fn :=
Vnp
vn
:

Therefore Fn is a sequence in second Wiener chaos with E
h
F 2n
i
= 0.



� Breuer-Major theorem (special case):

if �2 :=
P
k2Z � (k)

2 = limn!1 vn <1 then Vn !
law

N
�
0; �2

�
.

� Beyond this theorem, there are cases where Fn ! N
�
0; ~�2

�
even

if �2 = 1 and law(Vn) diverges. In that case, we say that normal

convergence holds without a Breuer-Major theorem.

� Speed of Breuer-Major convergence in total variation:
* Classical Berry-Ess�een (iid case): dTV (Vn;N (0; 1)) � c=

p
n

* the case of fGn (increments of fBm): � (k) � H (2H � 1) k2H�2

{ Before [BBNP], it was believed that classical Berry-Ess�een rate

holds for fGn only if H < 3=5;

{ thanks to [BBNP], and [NP], we know Berry-Ess�een rate holds

if and only if H < 2=3, and other rates can be computed,

for example:

* if H = 2=3, then dTV (Fn;N (0; 1)) � n�1=2 log2 n ;
* if H 2 (2=3; 3=4) then dTV (Fn;N (0; 1)) � n6H�9=2 .



4 Third moment theorem

IDEA: use [NP]'s Theorem 3.1;

NOTATION: �4 (Fn) := E
h
F 4n
i
� 3 and �3 (Fn) := E

h
F 3n
i

REQUIREMENT: compute �4 (Fn) and �3 (Fn) as sharply as possible.

LUCKY BREAK: don't need �4 (Fn) as sharply as �3 (Fn) :)

Proposition 4.1 [Sharp cumulants estimates]

2

v
3=2
n
p
n

0@ P
jkj<n

j�(k)j3=2
1A2 � j�3(Fn)j � 8

v
3=2
n
p
n

0@ P
jkj<n

j�(k)j3=2
1A2 ;
(1)

�4(Fn) =
const

v2n n

0@ P
jkj<n

j�(k)j4=3
1A3 ; (2)

n�1P
k=0

�2 (k) � vn � 2
n�1P
k=0

�2 (k) : (3)

By Holder's inequality for
P
jkj<n j�(k)j2=3+2=3 with p = 9

4; q =
9
5, in-

equalities (1) and (2) imply:



Corollary 4.2 [Lucky shortcut] n1=4�4(Fn)
3=4 = O (j�3(Fn)j).

Consequently, by 4th moment theorem of [NuP],

�3(Fn)! 0 =) �4(Fn)� 3! 0 =) limn!1law(Fn) = N (0; 1).

And by sharp 4th moment theorem of [NP], the convergence is in total

variation, and all the converses also holds. More precisely, �4(Fn) =

o (j�3(Fn)j) and we have the following.

Theorem 4.3 [Sharp third moment theorem in TV]

(i) limn!1law(Fn) = N (0; 1).
() (ii) limn!1 �3 (Fn) = 0;

() (iii) limn!1 �4 (Fn) = 0;

() (iv) "n :=
�P

jkj<n j�(k)j3=2
�2
v
�3=2
n n�1=2 = o (1) :

In this case, �3 (Fn) � "n , and "n is the exact TV convergence rate:

dTV (Fn;N (0; 1)) � �3 (Fn) � "n:



5 Non-normal convergence
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Theorem 5.1 [Dobrushin-Major / Taqqu 79 (special case)]

Assumption: � (k) = k2H�2L (k) where L is slowly varying at 1 and

H 2 (3=4; 1).
Conclusion [DM79]: Fn converges in law to the law of a Rosenblatt r.v.

F1 =
ZZ
R2

jxyjH�1=2
p
KH

ei(x+y) � 1
i (x+ y)

W (dx)W (dy) :

HereW is a C-valued white noise: on R+, W (dx) = B1 (dx)+iB2 (dx)

for B1; B2 iid BMs; W (�dx) =W (dx), W (dx)2 = 0, jW (dx)j2 = dx.

[BN] �nd TV speed of convergence by using a classical result [DM]:

* if Fn and F1 are on in the same Wiener chaos, and V ar [Fn] bounded

* then for large n, dTV (F; F1) � cF1
�
Ê
h
(F � F1)2

i�1=4
.

Case L = 0 : using self-similarity of fBm [BN] prove

dTV (F; F1) � cF1n
3=4�H :

Unfortunately, we �nd this good speed only works for fGn...



� Log-modulated power spectral density:

{ let H 2 (3=4; 1) and � � 0, let L (y) = log2� (jyj) (or asymp).
Let

q (x) := CH;� jxj1�2H L
 
e�

jxj

!
:

{ This q 2 L1
�
S1; dx

�
, q is C1 except at 0; thus q � Fourier

series of its Fourier inverse �.

{ I.e. let X with covariance function

� (k) :=
1

2�

Z �
��
q (x) cos (kx) dx

then X has spectral density q and def of � is Fourier inversion.

{ Recompute � by changing variables:

� (k) =
CH;�

2�
k2H�2

Z k�
�k�

jxj1�2H cos (x)L
 
k
e�

jxj

!
dx:



Theorem 5.2 Using above X, with a c depending only on H and �,

dTV (Fn; F1) �
c

log1=2 n

where, with K0 = (2�(2�2H) cos(�(1�H)))2
(4H�2)(4H�3) , F1 is Rosenblatt law

F1 =
ZZ
R2

jxyjH�1=2q
K0H

ei(x+y) � 1
i (x+ y)

W (dx)W (dy) :

� Technical proof:
* Typically: � has long memory, thus � =2 `1 (Z), cannot invoke
classical Fourier inversion; prove it or assume it by working with q

directly.

* To apply a meta-theorem: use a trade o� between a speed of cvce

to limiting kernel and speed of integrability of cuto� kernel at 1.
* need precise estimates of � and nvn :



withKH := 1
�

R1
0 jxj1�2H cos (x) dx = 2� (2� 2H) cos (� (1�H)) ;

� (k) = CH;�KHL (k) k
2H�2

 
1 +O

 
1

L (k)

!!
;

nvn =
�
CH;�

�2
K0H n4H�2 L2 (n)

 
1 +O

 
1

logn

!!
:


