Prob. Sem. / Math Finance Colloq. Parameter estimation for Gaussian sequences: long memory motivations in finance, sharp asymptotic normality and non-normality.

Frederi G. Viens, Dept. Statistics, Purdue University;

Division of Mathematical Sciences, National Science Foundation

Los Angeles, Sep 18, 2015

Plan of the talk

- 0. [Blackboard] Motivation from long memory stochastic volatility
- 1. Partially observed fractional Ornstein-Uhlenbeck processes: from continuous to discrete observations
- 2. Scale parameter estimators for discretely observed general stationary Gaussian processes
- 3. Optimal fourth and third moment theorems (Malliavin)
- 4. Speed of normal convergence in total variation for stationary Gaussian power variations
- 5. Non-normal convergence

Joint work with

- Léo Neufcourt, Columbia University,
- Khalifa Es-Sebaiy, B. El Onsy, Cadi Ayyad University (Morocco)
- Luis Barboza, Universidad de Costa Rica (Costa Rica)
- Work partially funded by
 - CIMFAV Universidad de Valparaíso (Chile)
 - Ecole Polytechnique, Palaiseau (France)
 - NSF
 - Fulbright Commission

1 Partially observed Gaussian processes

- Classical case: OU process (Lipster-Shiryaev 78)
 - * $dX(t) = -\theta X(t) dt + dV(t), t \in [0, T]$, increas, horiz. $T \to \infty$
 - * explicit non-stationary or stationary solution $\int_0^t e^{-\theta(t-s)} dV(s) \text{ or } \int_{-\infty}^t e^{-\theta(t-s)} dV(s) \text{ no matter what } V \text{ is.}$
- **QUESTION:** estimate $\theta > 0$.
- **ANSWERS:** when V is Brownian motion, since $d\langle V \rangle = dt$
 - * using Girsanov, get MAXIMUM LIKELIHOOD ESTIMATOR

$$\hat{\theta}_T = -\frac{\int_0^T X(s) \, dX(s)}{\int_0^T |X(s)|^2 \, ds}.$$

* another interpretation: (ORDINARY) LEAST SQUARES ESTIM indeed, interpret Itô integral $\int_0^T X(s) dX(s) = \int_0^T X(s) \dot{X}(s) ds$ then minimize $L^2(ds)$ -norm of the regression error

$$\theta \mapsto \int_{0}^{T} \left| \dot{X}(s) + \theta X(s) \right|^{2} ds.$$

- OU process driven by an OU process :
 - * Replace V with another OU process:

*
$$dV(t) = -\rho X(t) dt + dB(t)$$

- * DIFFICULTY: ONLY OBSERVE X BUT ESTIMATE (θ, ρ) .
- * Bravely and naïvely assume $\hat{\theta}_T$ still works
- * Observed version of V : $\hat{V}(t) = X(t) + \hat{\theta}_T \int_0^t X(s) ds$
- * Bravely and naïvely try

$$\hat{
ho}_T = rac{\int_0^T \hat{V}\left(s
ight) d\hat{V}\left(s
ight)}{\int_0^T \left|\hat{V}\left(s
ight)\right|^2 ds}.$$

* Bercu Proia and Savy SPL 2014 proved this intuition is incorrect:

$$\lim_{T \to \infty} \left(\hat{\theta}_T, \hat{\rho}_T \right) = \left(\theta + \rho, \frac{\theta \rho \left(\theta + \rho \right)}{\left(\theta + \rho \right)^2 + \rho \theta} \right)$$

- OU process driven by a fractional OU process (H > 1/2):
 - * Same situation as above, but B is fractional Brownian motion.
 - * First look at fully observed case: MLE and LSE do not coincide
 - MLE (Kleptsyna and Le Breton SISP 2002)
 - LSE (Nualart and Hu SPL 2010)

they propose $\hat{\theta}$ but stoch. integ. is of Skorohod type

they propose an unrelated method of moments

- * We adapt method of Bercu Proia and Savy:
- need the Malliavin calculus to recompute all needed asymptotics;
- evaluate Skorohod integs by converting to Young integs;
- invoke the Nualart-Peccati criterion to prove asymp. normality

$$\lim_{T \to \infty} \left(\hat{\theta}_T, \hat{\rho}_T \right) = \left(\theta + \rho, \frac{\theta \rho \left(\theta + \rho \right)}{\left(\theta + \rho \right)^2 + \frac{\rho^{2-2H} - \theta^{2-2H}}{\theta^{-2H} - \rho^{-2H}}} \right) =: (\theta^*, \rho^*) \text{ a.s.};$$
$$\lim_{T \to \infty} \sqrt{T} \left(\hat{\theta}_T - \theta^*, \hat{\rho}_T - \rho^* \right) = N \left(0, \Xi \right) \text{ with } \Xi \text{ explicit, } H < 3/4.$$

- Same problem, now assume data is discrete: timestep Δ_n ,
 - * Generic quadratic variation $Q_n(Z) := \frac{1}{n} \sum_{k=1}^n Z(k\Delta_n)$. * Replace $\int_0^T |X(s)|^2 ds$ by $Q_n(X)$.
 - * Also need to discretize $\Sigma_t := \int_0^t X(s) \, ds$ with $\hat{\Sigma}_{k\Delta_n} = \Delta_n \sum_{i=1}^k X(i\Delta_n)$. * Replace $\int_0^T |\hat{V}(s)|^2 \, ds$ by $Q_n(X) + |\check{\theta}_T|^2 Q_n(\hat{\Sigma})$

* to define $(\check{\theta},\check{\rho})$ as solution to $F(\check{\theta},\check{\rho}) = (Q_n(X),Q_n(\hat{\Sigma}))$ where

$$F(x,y) = H\Gamma(2H) \times \begin{cases} \frac{1}{y^2 - x^2} \left(y^{2-2H} - x^{2-2H}, x^{-2H} - y^{-2H} \right) & \text{if } x \neq y \\ \left((1-H)x^{-2H}, Hx^{-2H-2} \right) & \text{if } x = y. \end{cases}$$

* We prove a.s. cvce via control of errors from continuous case; need intermediate estimator based on $Q_n(\Sigma)$; need sampling rate $\Delta_n \leq n^{-\frac{1}{1+H}-\varepsilon}$.

* We prove CLT based on a.s. control of errors, and our continuous CLT

but need a stronger sampling rate $\Delta_n = o\left(n^{-\frac{1}{1+2H/3}}\right)$.

2 Discretey observed Gaussian processes (in progr.)

• Work directly with the discrete observations from stationary continuoustime process, and exploit 4th or 3rd moment theorem

* For quadratic estimators with stationary processes, setup is equivalent to

$$Q_n(Z) := \frac{1}{n} \sum_{k=1}^n |Z(k)|^2$$

where Z is stationary Gaussian sequence with auto-covariance ρ

* Let
$$\gamma = \rho(\mathbf{0}) = Var(Z(k));$$
 let $V_n(Z) := \sqrt{n}(Q_n(Z) - \gamma)$

* By 3rd moment theorem

$$d_{TV}\left(\frac{V_{n}(Z)}{\sqrt{Var\left(V_{n}(Z)\right)}}, N\left(0,1\right)\right) \asymp \frac{\left(\sum_{k=1}^{n} \rho\left(k\right)^{3/2}\right)^{2}}{\left(\sum_{k=1}^{n} \rho\left(k\right)^{2}\right)^{3/2}}$$

and in fact $Var(V_n(Z)) \simeq n^{-1} \sum_{k=1}^n \rho(k)^2$ and need not converge. * More powerful strategy: no sampling restriction: $\Delta_n = 1$ is OK.

- Other powers (Hermite variations): 3rd moment theorem not valid;
 - * optimal 4th moment theorem still holds, repeat detailed analysis;
 - * or just use non-optimal result of Nourdin & Peccati (PTRF, 2008):

$$d_{TV}\left(\frac{V_{n}\left(Z\right)}{\sqrt{Var\left(V_{n}\left(Z\right)
ight)}}, N\left(0,1
ight)
ight) \leq C_{\sqrt{\kappa_{4}}}\left(\frac{V_{n}\left(Z\right)}{\sqrt{Var\left(V_{n}\left(Z\right)
ight)}}
ight).$$

- The actual speeds depend on how quicky $Var(V_n(Z))$ stabilizes.
 - * Ease of extension to non-stationary data.
 - * Have strategy to avoid H < 3/4 condition for fGn
- Application to fractional OU and OUfOU:
 * fOU: lim Q_n (X) = HΓ (2H) θ^{2H} is a method of moments;
 * OUfOU: conjec : a.s. & CLT for our previous (Å, č) with Δ_n = 1.
- When $\rho(k) = k^{2H-2}L(k)$ with L slowly varying and H > 3/4,
 - * fluctuations have H-Rosenblatt-distributed limit ;
 - * open problem to find optimal TV or Wasserstein speed.

3 Malliavin calculus tools

References

- [NuP] Nualart, D.; Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. *Ann. Probab.* **33** (1), 177-193.
- [BBL] Biermé, H.; Bonami, A.; León, J.R. (2011). Central limit theorems and quadratic variations in terms of spectral density. *Electron. J. Probab.* 16 (13), 362-395.
- [BBNP] Biermé, H.; Bonami, A.; Nourdin, I.; Peccati, G. (2013), Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA 9 (2), 473-500.
- [NP] Nourdin, I.; Peccati, G. (2013). The optimal fourth moment theorem. In *Proceedings of the Amer. Math. Soc*, 2014.

Theorem 3.1 [Sharp 4th moment thm in total variation: [NuP], [NP]].

• Assumptions:

(1) (F_n)_{n≥0} sequence in a fixed Wiener chaos;
(2) Var [F_n] = 1

• Conclusions:

(1) [NuP] The following two statements are equivalent:
(a) (F_n)_{n≥0} converges in law towards N(0,1);
(b) E[F_n⁴] → 3 = E[N(0,1)⁴].
(2) [NP] Let M_n := max(E[F_n⁴] - 3, |E[F_n³]|). If (1a) holds, then

 $\exists c, C > \mathbf{0} : cM_n \leq d_{TV}(F_n, N) \leq CM_n.$

Where does such a result come from?

Nourdin-Peccati Analysis on Malliavin calculus with Stein's lemma.

Stein's lemma \implies bound on d_{TV} (uniform dist. of probab. measures): Let $\mathcal{F}_{TV} = \left\{ f : \|f\|_{\infty} \leq \sqrt{\pi/2} ; \|f'\|_{\infty} \leq 2 \right\}$. Then for $X \le d$ density, $d_{TV}(X, \mathcal{N}(0, 1)) \leq \sup_{f \in \mathcal{F}_{TV}} \left| \mathbf{E} \left[f'(X) \right] - \mathbf{E} \left[Xf(X) \right] \right|.$

* Assume $L^{2}(\Omega)$ is w.r.t a fixed BM on [0, 1], say.

* For $X \in \mathbf{D}^{1,2}$ with $\mathbf{E}[X] = 0$, Var[X] = 1, let $G_X := \int_0^1 D_s X D_s (-L^{-1}) X ds$. * Then

$$\mathbf{E}\left[Xf\left(X\right)\right] = \mathbf{E}\left[G_Xf'\left(X\right)\right].$$

* Hence

$$d_{TV}(X, \mathcal{N}(0, 1)) \leq 2\mathbf{E}[|1 - G_X|].$$

* Moreover if $X \in \mathbf{D}^{1,4}$, then

$$\mathbf{E}\left[|\mathbf{1} - G_X|\right] \le 2\sqrt{\mathbf{E}\left[|\mathbf{1} - G_X|^2\right]} = 2\sqrt{Var}\left[G_X\right].$$

Special case: $X \in q^{th}$ chaos.

- * Then by def, $(-L^{-1})X = q^{-1}X$ and thus $G_X = q^{-1} \|DX\|^2$.
- * Then work a little hard to estimate $\sqrt{Var} [G_X] \simeq \mathbf{E} [X^4] 3$. Thus

$$d_{TV}(F_n, N) \leq C_q \sqrt{\mathbf{E}\left[X^4\right] - 3}.$$

How did [NP] get better estimate?

- * NOTATION: cumulants $\kappa_4(X) := \mathbf{E}[X^4] 3$ and $\kappa_3(X) := \mathbf{E}[X^3]$
- * Iterate a polarization and iteration of G_X up to order 4, to get

$$d_{TV}(F_n, N) \leq C_q \left(|\kappa_3| + \kappa_4 + \sqrt{\kappa_4 \left(\kappa_3^2 + \kappa_4^{3/2} \right)} \right) \leq c_q \max(|\kappa_3|, \kappa_4)$$

* use $f = \sin$ and $f = \cos$ to find lower bounds with $|\kappa_3|$ and κ_4 respectively.

• Stationary centered Gaussian sequence: $(X_n)_{n \in \mathbb{Z}}$

X is jointly Gaussian and
$$\mathbf{E}[X_n] = 0$$
;
 $\exists \rho \text{ on } \mathbb{Z} : \forall k, n \in \mathbb{Z}, \mathbf{E}[X_n X_{n+k}] = \rho(k)$;
 $\rho(0) = Var[X_n] = 1$ without loss of generality;

• Only technical assumptions:

 ρ is of constant sign;

 $|\rho|$ decreases near $+\infty$.

• Normalized centered quadratic variation

$$V_n := \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(X_k^2 - 1 \right),$$
$$v_n := \mathbf{E} \left[V_n^2 \right] = Var \left[V_n \right],$$
$$F_n := \frac{V_n}{\sqrt{v_n}}.$$

Therefore F_n is a sequence in second Wiener chaos with $\mathbf{E}\left[F_n^2\right] = \mathbf{0}$.

• Breuer-Major theorem (special case):

if
$$\sigma^2 := \sum_{k \in \mathbb{Z}} \rho(k)^2 = \lim_{n \to \infty} v_n < \infty$$
 then $V_n \xrightarrow{}_{law} \mathcal{N}(\mathbf{0}, \sigma^2)$

- Beyond this theorem, there are cases where F_n → N (0, σ̃²) even if σ² = ∞ and law(V_n) diverges. In that case, we say that normal convergence holds without a Breuer-Major theorem.
- Speed of Breuer-Major convergence in total variation:
 - * Classical Berry-Esséen (iid case): $d_{TV}(V_n, \mathcal{N}(0, 1)) \leq c/\sqrt{n}$
 - * the case of fGn (increments of fBm): $ho\left(k
 ight)\sim H\left(2H-1
 ight)k^{2H-2}$
 - Before [BBNP], it was believed that classical *Berry-Esséen rate* holds for fGn only if H < 3/5;
 - thanks to [BBNP], and [NP], we know Berry-Esséen rate holds if and only if H < 2/3, and other rates can be computed, for example:

* if H = 2/3, then $d_{TV}(F_n, \mathcal{N}(0, 1)) \simeq n^{-1/2} \log^2 n$; * if $H \in (2/3, 3/4)$ then $d_{TV}(F_n, \mathcal{N}(0, 1)) \simeq n^{6H-9/2}$.

4 Third moment theorem

IDEA: use [NP]'s Theorem 3.1; NOTATION: $\kappa_4(F_n) := \mathbf{E} \left[F_n^4 \right] - 3$ and $\kappa_3(F_n) := \mathbf{E} \left[F_n^3 \right]$ REQUIREMENT: compute $\kappa_4(F_n)$ and $\kappa_3(F_n)$ as sharply as possible. LUCKY BREAK: don't need $\kappa_4(F_n)$ as sharply as $\kappa_3(F_n)$:)

Proposition 4.1 [Sharp cumulants estimates]

$$\frac{2}{v_n^{3/2}\sqrt{n}} \left(\sum_{|k| < n} |\rho(k)|^{3/2} \right)^2 \le |\kappa_3(F_n)| \le \frac{8}{v_n^{3/2}\sqrt{n}} \left(\sum_{|k| < n} |\rho(k)|^{3/2} \right)^2,$$
(1)

$$\kappa_4(F_n) = \frac{const}{v_n^2 n} \left(\sum_{|k| < n} |\rho(k)|^{4/3} \right)^3, \tag{2}$$

$$\sum_{k=0}^{n-1} \rho^2(k) \le v_n \le 2 \sum_{k=0}^{n-1} \rho^2(k).$$
(3)

By Holder's inequality for $\sum_{|k| < n} |\rho(k)|^{2/3+2/3}$ with $p = \frac{9}{4}, q = \frac{9}{5}$, inequalities (1) and (2) imply:

Corollary 4.2 [Lucky shortcut] $n^{1/4}\kappa_4(F_n)^{3/4} = \mathcal{O}(|\kappa_3(F_n)|).$ Consequently, by 4th moment theorem of [NuP], $\kappa_3(F_n) \to 0 \implies \kappa_4(F_n) - 3 \to 0 \implies \lim_{n \to \infty} law(F_n) = \mathcal{N}(0, 1).$

And by sharp 4th moment theorem of [NP], the convergence is in total variation, and all the converses also holds. More precisely, $\kappa_4(F_n) = o(|\kappa_3(F_n)|)$ and we have the following.

Theorem 4.3 [Sharp third moment theorem in TV]

(i)
$$\lim_{n\to\infty} law(F_n) = \mathcal{N}(0, 1)$$
.
 $\iff (ii) \lim_{n\to\infty} \kappa_3(F_n) = 0;$
 $\iff (iii) \lim_{n\to\infty} \kappa_4(F_n) = 0;$
 $\iff (iv) \varepsilon_n := \left(\sum_{|k| < n} |\rho(k)|^{3/2}\right)^2 v_n^{-3/2} n^{-1/2} = o(1).$
In this case, $\kappa_3(F_n) \asymp \varepsilon_n$, and ε_n is the exact TV convergence rate:

 $d_{TV}(F_n, \mathcal{N}(0, 1)) \asymp \kappa_3(F_n) \asymp \varepsilon_n.$

5 Non-normal convergence References

- [BN] Breton, J.C.; Nourdin, I. (2008). Error bounds on the nonnormal approximation of Hermite power variations of fractional Brownian motion. *Electron. Comm. Probab.* 13, 482-493.
- [DM] Davydov, Y.A.; Martynova, G. V. (1987). Limit behavior of multiple stochastic integral. *Statistics and control of random process. Preila, Nauka, Moscow*, 55-57 (in Russian).
- [DM79] Dobrushin, R.L.; Major, P (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. *Z.Wahrsch. Verw. Gebiete* 50 (9), 27-52.
- [T79] Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. *Z. Wahrsch. Verw. Gebiete* 50 (1), 53-83.

Theorem 5.1 [Dobrushin-Major / Taqqu 79 (special case)] Assumption: $\rho(k) = k^{2H-2}L(k)$ where L is slowly varying at ∞ and $H \in (3/4, 1)$.

Conclusion [DM79]: F_n converges in law to the law of a Rosenblatt r.v.

$$F_{\infty} = \iint_{\mathbf{R}^2} \frac{|xy|^{H-1/2}}{\sqrt{K_H}} \frac{e^{i(x+y)} - 1}{i(x+y)} W(dx) W(dy) \,.$$

Here W is a \mathbb{C} -valued white noise: on \mathbb{R}_+ , $W(dx) = B_1(dx) + iB_2(dx)$ for B_1, B_2 iid BMs; $W(-dx) = \overline{W(dx)}$, $W(dx)^2 = 0$, $|W(dx)|^2 = dx$.

[BN] find TV speed of convergence by using a classical result [DM]: * if F_n and F_∞ are on in the same Wiener chaos, and $Var[F_n]$ bounded * then for large n, $d_{TV}(F, F_\infty) \le c_{F_\infty} \left(\hat{\mathbf{E}} \left[(F - F_\infty)^2 \right] \right)^{1/4}$. **Case** L = 0: using self-similarity of fBm [BN] prove

$$d_{TV}(F, F_{\infty}) \leq c_{F_{\infty}} n^{3/4 - H}.$$

Unfortunately, we find this good speed only works for fGn...

- Log-modulated power spectral density:
 - let $H \in (3/4, 1)$ and $\beta \geq 0$, let $L(y) = \log^{2\beta} (|y|)$ (or asymp). Let

$$q(x) := C_{H,\beta} |x|^{1-2H} L\left(\frac{e\pi}{|x|}\right).$$

- This $q \in L^1(S^1, dx)$, q is C^{∞} except at 0; thus $q \equiv$ Fourier series of its Fourier inverse ρ .
- I.e. let X with covariance function

$$\rho(k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} q(x) \cos(kx) dx$$

then X has spectral density q and def of ρ is Fourier inversion.

– Recompute ρ by changing variables:

$$\rho(k) = \frac{C_{H,\beta}}{2\pi} k^{2H-2} \int_{-k\pi}^{k\pi} |x|^{1-2H} \cos(x) L\left(k\frac{e\pi}{|x|}\right) dx.$$

Theorem 5.2 Using above X, with a c depending only on H and β ,

$$d_{TV}(F_n, F_\infty) \le \frac{c}{\log^{1/2} n}$$

where, with $K' = \frac{(2\Gamma(2-2H)\cos(\pi(1-H)))^2}{(4H-2)(4H-3)}$, F_{∞} is Rosenblatt law

$$F_{\infty} = \iint_{\mathbf{R}^2} \frac{|xy|^{H-1/2}}{\sqrt{K'_H}} \frac{e^{i(x+y)} - 1}{i(x+y)} W(dx) W(dy) \,.$$

• Technical proof:

* Typically: ρ has long memory, thus $\rho \notin \ell^1(\mathbb{Z})$, cannot invoke classical Fourier inversion; prove it or assume it by working with q directly.

* To apply a meta-theorem: use a trade off between a speed of cvce to limiting kernel and speed of integrability of cutoff kernel at ∞ . * need precise estimates of ρ and nv_n :

with
$$K_H := \frac{1}{\pi} \int_0^\infty |x|^{1-2H} \cos(x) \, dx = 2\Gamma \left(2 - 2H\right) \cos\left(\pi \left(1 - H\right)\right),$$

 $\rho(k) = C_{H,\beta} K_H L(k) \, k^{2H-2} \left(1 + \mathcal{O}\left(\frac{1}{L(k)}\right)\right);$
 $nv_n = \left(C_{H,\beta}\right)^2 K'_H n^{4H-2} L^2(n) \left(1 + \mathcal{O}\left(\frac{1}{\log n}\right)\right).$