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Networking
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Fish Schooling
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Introduction: Linear Quadratic Stochastic Games
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Linear Quadratic Game

Bank i for i = 1, · · · ,N is borrowing from and lending to a central bank:

dX i
t = αi

tdt + σdW i
t , X i

0 = ξi .

where

I X i
t represents the log-monetary reserves of the ith bank,

I W i
t are independent standard Brownian motions,

I σ > 0, the diffusion coefficients are constant and identical,

I Bank i controls its rate of borrowing (αi
t > 0)/lending (αi

t < 0) to a
central bank through the control αi

t .

Z. Zhang (UCSB) Stochastic Games with Delay
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The Cost Functional

Bank i wants to minimize

J i (α) = E

{∫ T

0

fi (Xt , α
i
t)dt + gi (XT )

}
,

with running cost

fi (x , α
i ) =

1

2
(αi )2 +

ε

2
(x − x i )2,

and terminal cost

gi (x) =
c

2

(
x − x i

)2
.

Value function

V i (t, x) = inf
α
J i (α).
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Solving for an Exact Nash Equilibrium

Definition
A set of admissible strategy profiles α̂ = (α̂1, · · · , α̂N) ∈ A(N) is said to be a
Nash equilibrium for the game if:

∀i ∈ {1, · · · ,N},∀αi ∈ Ai , J i (α̂) ≤ J i (αi , α̂−i ),

where (αi , α̂−i ) stands for the strategy profile (α̂1, · · · , α̂i−1, αi , α̂i+1), in which
the player i chooses the strategy αi while the others keep the original ones α̂j .

I Probabilistic Approach (N-coupled Forward-Backward SDEs)

I PDE Approach (N-coupled Hamilton-Jacobi-Bellman (HJB) PDEs)

I This is an example of Mean Field Game (MFG) studied extensively by
P.L. Lions and collaborators, R. Carmona and F. Delarue, ...
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Stochastic Game/Mean Field Game with Delay
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Stochastic Game with Delay

Banks are borrowing from and lending to a central bank and money is returned
at maturity τ :

dX i
t =

[
αi
t − αi

t−τ
]
dt + σdW i

t , i = 1, · · · ,N

where αi is the control of bank i which wants to minimize

J i (α) = IE

{∫ T

0

fi (Xt , α
i
t)dt + gi (XT )

}
,

fi (x , α
i ) =

1

2
(αi )2 +

ε

2
(x − x i )2,

gi (x) =
c

2

(
x − x i

)2
,

X i
0 = ξi , αi

t = 0, t ∈ [−τ, 0).

Case τ = 0: no lending/borrowing −→ no liquidity.
Case τ = T : no return/delay −→ full liquidity.
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Mean Field Game with Delay

I Mean field game theory is the study of strategic decision making in very
large populations of small interacting agents, i.e., a game with infinite
many indistinguishable players.

I All players are rational, i.e., each player tries to minimize their cost against
the mass of other players.

I The running cost and terminal cost only depend on ith player’s state x i

and the empirical distribution of (x j)j 6=i .

I As N →∞, denote mt =
∫
IR
xdµt(x),

f (Xt , µt , αt) =
1

2
(αt)

2 +
ε

2
(mt − Xt)

2
,

g(XT , µT ) =
c

2
(mT − XT )2 .
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Probabilistic Approach
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Forward-Advanced-Backward SDEs

Theorem. The strategy α̂ given by

α̂t = −Yt + IEFt (Yt+τ )

is a open-loop Nash equilibrium where (X ,Y ,Z ) is the unique solution to the
following system of FABSDEs:

Xt = ξ +

∫ t

0

(α̂s − α̂s−τ ) ds + σWt , t ∈ [0,T ],

Yt = c (XT −mT ) +

∫ T

t

ε (Xs −ms) ds −
∫ T

t

ZsdWs , t ∈ [0,T ],

Yt = 0, t ∈ (T ,T + τ ],

where the processes Zt are adapted and square integrable, and IEFt denotes the
conditional expectation with respect to the filtration generated by the Brownian
motions.

Z. Zhang (UCSB) Stochastic Games with Delay
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Outline of the Proof

Proof.
Let α′ ∈ A be a generic admissible control, and X ′ = Xα′ the corresponding
controlled state.

J(α̂)− J(α′) = IE

{∫ T

0

(f (Xt , µt , α̂t)− f (X ′t , µ
′
t , α
′
t)) dt

+g(XT , µT )− g(X ′T , µ
′
T )

}
.

Since g is L-convex in (x , µ),

IE (g(XT , µT )− g(X ′T , µ
′
T ))

≤ IE [(∂xg(XT , µT ) + ĨE [∂µg(X̃T , µT )(XT )]) · (XT − X ′T )]

= IE [YT (XT − X ′T )].

Z. Zhang (UCSB) Stochastic Games with Delay
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Outline of the Proof
Applying Itô’s formula, we have

IE (YT (XT − X ′T ))

= IE

[∫ T

0

(Xt − X ′t )dYt +

∫ T

0

Ytd(Xt − X ′t )

]

= IE

∫ T

0

{
− ε(Xt −mt)(Xt − X ′t ) + Yt

(
α̂t − α′t − (α̂t−τ − α′t−τ )

)}
dt

= IE

∫ T

0

{
− ε(Xt −mt)(Xt − X ′t ) + (Yt − IEFt (Yt+τ )) (α̂t − α′t)

}
dt.

due to the change of time,

IE

∫ T

0

Yt

(
α̂t−τ − α′t−τ

)
dt = IE

∫ T−τ

−τ
Ys+τ (α̂s − α′s) ds

= IE

∫ T

0

Ys+τ (α̂s − α′s) ds = IE

∫ T

0

IEFs (Ys+τ ) (α̂s − α′s) ds.

since α̂t = α′t = 0 for t ∈ [−τ, 0) and Yt = 0 for t ∈ (T ,T + τ ].
Z. Zhang (UCSB) Stochastic Games with Delay
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Outline of the Proof

Convexity of f in (x , µ, α), we deduce

J(α̂)− J(α′)

≤ IE

∫ T

0

[(
∂x f (Xt , µt , α̂t) + ĨE [∂µf (X̃t , µt , α̂t)(Xt)

)
(Xt − X ′t )])

+∂αf (Xt , α̂t)(α̂t − α′t)
]
dt + IE [YT (XT − X ′T )]

= IE

∫ T

0

{
ε(Xt −mt)(Xt − X ′t ) + (∂αf (Xt , µt , α̂)) (α̂t − α′t)

}
dt

+IE

∫ T

0

{
− ε(Xt − X ′t )(Xt −mt) + (Yt − IEFt [Yt+τ ]) (α̂t − α′t)

}
dt.

= IE

∫ T

0

(α̂i
t − α′t)×

[
α̂t + (Yt − IEFt (Yt+τ ))

]
dt

= 0

Z. Zhang (UCSB) Stochastic Games with Delay
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Forward-Advanced-Backward SDEs

Theorem. The strategy α̂ given by

α̂t = −Yt + IEFt (Yt+τ )

is a open-loop Nash equilibrium where (X ,Y ,Z ) is the unique solution to the
following system of FABSDEs:

Xt = ξ +

∫ t

0

(α̂s − α̂s−τ ) ds + σWt , t ∈ [0,T ],

Yt = c (XT −mT ) +

∫ T

t

ε (Xs −ms) ds −
∫ T

t

ZsdWs , t ∈ [0,T ],

Yt = 0, t ∈ (T ,T + τ ],

where the processes Zt are adapted and square integrable, and IEFt denotes the
conditional expectation with respect to the filtration generated by the Brownian
motions.
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Existence, no Uniqueness

No simple explicit formula for the optimal strategy α̂.
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Recurrent Neural Network

I Yt ≈ φ(t, (Ws)0≤s≤t |Θt)

I E[Yt+τ |Ft ] ≈ ψ(t, (Ws)0≤s≤t |Λt)

I Zt ≈ χ(t, (Ws)0≤s≤t |Γt)

Z. Zhang (UCSB) Stochastic Games with Delay
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Algorithm

I Time discretization. h = T/N, D = τ/h.
−τ = t−D ≤ · · · ≤ t−1 ≤ t0 = 0 = t0 ≤ t1 ≤ · · · ≤ tN ≤ T .

I Initial states. X0 = 0, Y0 ≈ φ(0,W0|Θ0), IE [Yτ |F0] ≈ ψ(0,W0|Λ0),
Z0 ≈ χ(0,W0|Γ0). α0 = −Y0 + IE [Yτ |F0].

I Euler–Maruyama method.

Xtk+1
= Xtk + (αtk − αtk−D

) ∗ h + σ∆Wtk+1
,where ∆Wtk+1

∼ N(0, h).

Ỹtk+1
= Ytk − εXtk ∗ h + Ztk ∆Wtk+1

.

Ytk+1
≈ φ(tk+1, (Ws)0≤s≤tk+1

|Θtk+1
)

I Loss =
∑M

m=1

∑N
k=1(Ym

tk − Ỹm
tk )2 +

∑M
m=1(Ym

tN − cXm
TN

)2 +∑M
m=1

∑N−D
k=0 (Ym

tk+D
− IE [Ym

tk+D
|Ftk ])2.

I Apply stochastic gradient descent (SGD) to minimize loss and update
parameters.

Z. Zhang (UCSB) Stochastic Games with Delay
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Results

T = 10, τ = 1, h = 0.1, ε = 1, c = 1,M = 2560.

Z. Zhang (UCSB) Stochastic Games with Delay
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Results

T = 10, τ = 1, h = 0.1, ε = 1, c = 1,M = 2560.
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PDE Approach
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Infinite-dimensional HJB Approach

I Denote IH := L2([−τ, 0]; IR).

I Given z := (z0, z1) ∈ IR × IH, where z0 ∈ IR, and z1 ∈ IH. The inner
product on IR × IH will be denoted by 〈·, ·〉, and it is defined by

〈z , z̃〉 = z0z̃0 +

∫ 0

−τ
z1(s)z̃1(s)ds.

I Therefore, the new state is denoted by Zt = (Z0,t ,Z1,t(s)), s ∈ [−τ, 0],
which corresponds to (Xt , αt−τ−s), i.e., the states and the past of the
strategies in our case.

Z. Zhang (UCSB) Stochastic Games with Delay
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Infinite-dimensional HJB Approach

In order to use the dynamic programming principle for stochastic game in
search of a closed-loop Nash equilibrium, at time t ∈ [0,T ], given the initial
state Z0 = z , one representative bank chooses the control α to minimise its
objective function J(t, z , α).

J(t, z , α) = IE

{∫ T

t

f (Z0,s , µ0,s , αs)dt + g(Z0,T , µ0,T ) | Zt = z

}
,

The value function V (t, z) is

V (t, z) = inf
α
J(t, z , α).

subject to

dZt = (AZt + Bαt)dt + GdWt .

Z. Zhang (UCSB) Stochastic Games with Delay
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Coupled HJB Equations

The value functions V (t, z) is the unique solution (in a suitable sense) of the
following HJB equations:

∂tV +
1

2
Tr(Q∂zzV ) + 〈Az , ∂zV 〉+ H0(∂zV ) = 0,

V (T ) = g(Z0,T , µ0,T ),

Q = G ∗ G , G : z0 → (σz0, 0),

A : (z0, z1(γ))→ (z1(0),−dz1(γ)

dγ
) a.e., γ ∈ [−τ, 0],

H0(p) = inf
α

[〈Bα, p〉+ f (z0, α)], p ∈ IR × IH,

B : u → (u,−δ−τ (γ)u), γ ∈ [−τ, 0].

Z. Zhang (UCSB) Stochastic Games with Delay
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Forward Kolmogorov Equation

I Next, since we “lift” the original non-Markovian optimization problem into
a infinite dimensional Markovian control problem. We are able to write the
corresponding generator , which is denoted by ( Lt)t∈[0,T ],

 Lϕ(t, z) = 〈(AZ + Bα̂), ∂zϕ〉+
1

2
Tr(G∗G∂zzϕ).

I Forward Kolmogorov Equation

∂tν =

∫ 0

−τ
∂z1

(
d

ds
z1ν

)
ds −

∫ 0

−τ
∂z1(z1ν)(δ0(s)− δ−τ (s))ds

+ ∂z0{(∂z0V − [∂z1V ](−τ))ν}

−
∫ 0

−τ
∂z1{(∂z0V − [∂z1V ](−τ))ν}δ−τ (s)ds +

1

2
σ2∂z0z0ν,

ν0 = IP(ξ, φ(s)s∈[−τ,0]).

Z. Zhang (UCSB) Stochastic Games with Delay
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Derivative in IP(IH)

Definition
We say that F : IP(IH)→ IH is C1 if there exists an operator
δF
δν : IP(IH)× IH → IH such that for any µ1 and µ′1 ∈ IP(IH)

lim
ε→0+

F (µ1 + ε(µ′1 − µ1))− F (µ1)

ε
=

∫
IH

δF

δµ1
(µ1, y1)d(µ′1 − µ1)(y1).

Definition
If δF
δµ1

(µ1, y1) is of class C1 with respect to y1, the marginal derivative

Dµ1F : IP(IH)× IH → IH is defined in the sense of Fréchet derivative:

Dµ1F (µ1, y1) := Dy1

δF

δµ1
(µ1, y1).

Z. Zhang (UCSB) Stochastic Games with Delay
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Derivative in IP(IH)

Remark
Usually we will encounter a map U : IP(IH)→ IR. In this case, U can be
expressed in a form of composition Ũ ◦ F , where Ũ : IH → IR, and
F : IP(IH)→ IH, i.e., U = (Ũ ◦ F )(µ1).

If δF
δµ1

is C1 with respect to y1, and Ũ is Fréchet differentiable, then
δU
δµ1

: IP(IH)× IH → IH, and Dµ1U : IP(IH)× IH → IH are defined by

δU

δµ1
(µ1, y1) := (DF Ũ)

(
δF

δµ1

)
, and Dµ1U(µ1, y1) :=

(
DF Ũ

)
(Dµ1F ) .

Z. Zhang (UCSB) Stochastic Games with Delay
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The Master Equation
For any (t0, ν0) ∈ [0,T ]× IP(IR × IH), we define

U(t0, ·, ν0) := V (t0, ·),

where (V , ν) is a classical solution to the system of forward-backward equations.
Then U must satisfy the following master equation

∂tU(t, z0, z1, ν) +
1

2
σ2∂z0z0U(t, z0, z1, ν) +

1

2
σ2

∫
IR

∂y0Dµ0U(t, z0, z1, ν, y0)dµ0(y0)

+

∫ 0

−τ

z1
d

ds
∂z1U(t, z0, z1, ν)ds +

∫ 0

−τ

∫
IH

y1
d

ds
[Dµ1U(t, z0, z1, ν, y1)] (s)dµ1(y1)ds

−
∫
IR×IH

(∂y0U(t, y0, y1, ν)− [∂y1U(t, y0, y1, ν)](−τ))Dµ0U(t, z0, z1, ν, y0)dν(y)

+

∫
IR×IH

(∂y0U(t, y0, y1, ν)− [∂y1U(t, y0, y1, ν)](−τ)) [Dµ1U(t, z0, z1, ν, y1)](−τ)dν(y)

− 1

2
(∂z0U(t, z0, z1, ν)− [∂z1U(t, z0, z1, ν)](−τ))2 +

ε

2

(∫
IR

y0dµ0(y0)− z0

)2

= 0,

where µ0 and µ1 are the marginal law for Z0 and Z1 respectively.

Z. Zhang (UCSB) Stochastic Games with Delay
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Explicit Solution of the Master Equation with Delay

It turns out that this master equation can be solved explicitly by making the
following ansatz.

We define m0 :=
∫
IR
y0dµ0(y0) and m1 :=

∫
IH
y1dµ1(y1) for convenience, then

U(t, z0, z1, ν) = E0(t)(m0 − z0)2 − 2(m0 − z0)

∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds

+

∫ 0

−τ

∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)(m1 − z1)dsdr + E3(t).

Z. Zhang (UCSB) Stochastic Games with Delay
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Explicit Solution of the Master Equation with Delay
We compute the partial derivatives needed in the master equation explicitly, we
have

∂tU =
dE0(t)

dt
(m0 − z0)2 − 2(m0 − z0)

∫ 0

−τ

∂E1(t,−τ − s)

∂t
(m1 − z1)ds

+

∫ 0

−τ

∫ 0

−τ

∂E2(t,−τ − s,−τ − r)

∂t
(m1 − z1)(m1 − z1)dsdr +

dE3(t)

dt
,

∂z0U = −2E0(t)(m0 − z0) + 2

∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds,

∂z1U = 2E1(t,−τ − s)(m0 − z0)− 2

∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)dr ,

Dµ0U = 2E0(t)(m0 − z0)− 2

∫ 0

−τ
E1(t,−τ − s)(m1 − z1)ds,

Dµ1U = −2E1(t,−τ − s)(m0 − z0) + 2

∫ 0

−τ
E2(t,−τ − s,−τ − r)(m1 − z1)dr ,

∂z0z0U = 2E0(t),
Z. Zhang (UCSB) Stochastic Games with Delay
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Collecting (m0 − z0)2 terms, (m0 − z0)(m1 − z1) terms, (m1 − z1)2 terms, and
constant terms, we obtain That the function Ei , i = 0, · · · , 3, satisfy the system
of PDEs:

dE0(t)

dt
− 2(E0(t) + E1(t, 0))2 +

ε

2
= 0,

∂E1(t, s)

∂t
− ∂E1(t, s)

∂s
− 2(E0(t) + E1(t, 0))(E1(t, s) + E2(t, 0, r)) = 0,

∂E2(t, s, r)

∂t
− ∂E2(t, s, r)

∂s
− ∂E2(t, s, r)

∂r
− 2(E1(t, s) + E2(t, s, 0))(E1(t, r) + E2(t, r , 0)) = 0,

dE3(t)

dt
+ E0(t)σ2 = 0,

with boundary conditions

E0(T ) =
c

2
, E1(T , s) = 0, E2(T , s, r) = 0, E2(t, s, r) = E2(t, r , s),

E1(t,−τ) = −E0(t), E2(t, s,−τ) = −E1(t, s), E3(T ) = 0.

Z. Zhang (UCSB) Stochastic Games with Delay
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Finite Dimensional Projection

I Set ui (t, z0, z1) := U(t, z i0, z
i
1, ν

i ), where ν i = 1
N−1

∑
k 6=i δ(zk0 ,zk1 ), denotes

the joint empirical measure of z0 and z1. The empirical measure of z0 is
given by µi

0 = 1
N−1

∑
k 6=i δzk0 , and the empirical measure of z1 is given by

µi
1 = 1

N−1
∑

k 6=i δzk1 .

I By direct computation, for k 6= i , and any N ≥ 2,

∂zk0 u
i (t, z0, z1) =

1

N − 1
Dµi

0
U(t, z i0, z

i
1, ν

i , zk0 ),

∂zk1 u
i (t, z0, z1) =

1

N − 1
Dµi

1
U(t, z i0, z

i
1, ν

i , zk1 ),

∂zk0 zk0 u
i (t, z0, z1) =

1

N − 1
∂zk0 [Dµi

0
U](t, z i0, z

i
1, ν

i , zk0 )

+
1

(N − 1)2
Dµi

0µ
i
0
U(t, z i0, z

i
1, ν

i , zk0 , z
k
0 ).

Z. Zhang (UCSB) Stochastic Games with Delay
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Convergence of the Nash System

Proposition
For any i ∈ {1, · · · ,N}, ui (t, z0, z1) satisfies

∂tu
i +

N∑
k=1

1

2
σ2∂zk0 zk0 u

i +
N∑

k=1

∫ 0

−τ
zk1

d

ds
(∂zk1 u

i )ds

−
N∑
k 6=i

(
∂zk0 u

k − [∂zk1 u
k ](−τ)

)(
∂zk0 u

i − [∂zk1 u
i ](−τ)

)
− 1

2

(
∂z i0u

i − [∂z i1u
i ](−τ)

)2
+
ε

2
(z̄0 − z i0)2 + e i (t, z) = 0,

where ‖e i (t, z)‖ < C
N , with terminal condition ui (T , z) = c

2 (z̄0 − z i0)2.

This shows that (ui )i∈{1,...,N} is “almost” a solution to the Nash system.
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Convergence of the Nash System

Let V i be the solution to the HJB equation of the N-player system, where
N ≥ 1 fixed, and U be the solution to the master equation. Fix any
(t0, ν0) ∈ [0,T ]× IP(IR × IH). For any z ∈ IRN × IHN , let ν i = 1

N−1
∑N

j 6=i δ(z j0,z
j
1)

,

then we have
1

N

N∑
i=1

|V i (t0, z)− U(t0, z
i , ν i )| ≤ CN−1.
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The End

THANKS FOR YOUR ATTENTION
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