
Beyond mean field limits: Local dynamics
for large sparse networks of interacting

processes

Daniel Lacker

Industrial Engineering and Operations Research, Columbia University

March 8, 2019



Coauthors

Kavita Ramanan Ruoyu Wu



Networks of interacting Markov chains

Inputs:

I Graph G = (V ,E )

I Independent noises ξv (t), v ∈ V , t = 0, 1, . . .

I Transition rule F ,

Particles labeled by v ∈ V evolve/interact according to

Xv (t + 1) = F
(
Xv (t), (Xu(t))u∼v , ξv (t + 1)

)
.

See also: probabilistic cellular automaton, synchronous Markov
chain, simultaneous updating

Examples: Contact process, voter model, exclusion processes, spin
systems...
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Example: Voter model

State space S = {0, 1}.
Let dv = degree of vertex v .

Transition rule: At time t, if particle v is at...

I state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

1

dv

∑
u∼v

1{Xu(t)=1},

I state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p.

1

dv

∑
u∼v

1{Xu(t)=0}.

Tendency to follow the majority of neighboring particles.



Example: Voter model

State space S = {0, 1}. Parameters p, q ∈ [0, 1].
Let dv = degree of vertex v .

Transition rule: At time t, if particle v is at...

I state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p
1

dv

∑
u∼v

1{Xu(t)=1},

I state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p.

q
1

dv

∑
u∼v

1{Xu(t)=0}.

Tendency to follow the majority of neighboring particles.



Networks of interacting diffusions

Particles labeled by v ∈ V interact according to

dXv (t) = b(Xv (t), (Xu(t))u∼v )dt + dWv (t),

where (Wv )v∈V are independent Brownian motions.

This talk focuses on discrete time, but there is a parallel story for
these continuous-time models, with completely different proofs!



Aside: systemic risk models

Most systemic risk models can be grouped in two camps:

(A) Dynamic particle system models.
 Mean field analysis is very tractable but works only for
complete networks.

(B) Static network models.
 Capture realistic network structure but devoid of dynamics.

Bridge this gap by incorporating networks into particle systems?



Networks of interacting Markov chains, more precisely

Inputs:

I Arbitrary (Polish) state space S .

I Independent noises ξv (t), v ∈ V , t = 0, 1, . . . , values in Ξ.

I Continuous transition rule F : S ×
⋃∞

k=0 S
k × Ξ→ S ,

symmetric in second argument.

I Initial distribution for i.i.d. initial states

On any finite/countable locally finite graph G = (V ,E ), define:

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
, v ∈ V , t ∈ N0.

Example: F (x , (yi )i=1,...,k , ξ) = F̂
(
x , 1

k

∑k
i=1 δyi , ξ

)
depends on

empirical distribution of neighbors, F̂ : S × P(S)× Ξ→ S .
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Large n behavior?

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Key question

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how
can we approximate the system or describe the limiting behavior?

Prior literature: Plenty of work on long-time/stationary behavior,
connections with Gibbs measures.

Our work: Large-scale behavior.
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Large n behavior?

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Mean field as a special case

If Gn is the complete graph on n vertices, and F depends on
neighbors through empirical distribution, then XGn

v ⇒ X , where

X (t + 1) = F̂ (X (t),Law(X (t)), ξ(t + 1)).

Moreover, the empirical measure process 1
|Gn|
∑

v∈Gn
δ
XGn
v (t)

converges in probability to Law(X (t)).
 asymptotically i.i.d. particles



Large n behavior

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how
can we describe the limiting behavior of...

I a “typical” or tagged particle XGn
v (t)?

I the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δ
XGn
v (t)

?

Theorem (Bhamidi-Budhiraja-Wu ’16, for diffusions)

Suppose Gn = G (n, pn) is Erdős-Rényi, with npn →∞. Then
everything behaves like in the mean field case.

See also Delattre-Giacomin-Luçon ’16, Delarue ’17,
Coppini-Dietert-Giacomin ’18, Oliveira-Reis ’18, Luçon ’18.
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Large n behavior

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how
can we describe the limiting behavior of...

I a “typical” or tagged particle XGn
v (t)?

I the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δ
XGn
v (t)

?

Theorem (Bhamidi-Budhiraja-Wu ’16, for diffusions)

Suppose Gn = G (n, pn) is Erdős-Rényi, with npn →∞. Then
everything behaves like in the mean field case.

Observation: npn ≈ average degree, so npn →∞ means the
graphs are dense.



Large n behavior, for sparse graphs?

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how
can we describe the limiting behavior of...

I a “typical” or tagged particle Xv (t)?

I the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δXv (t)?

Our focus: The sparse regime, where degrees do not diverge.
How does does the n→∞ limit reflect the graph structure?

Example: Erdős-Rényi G (n, pn) with npn → p ∈ (0,∞).
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Our focus: The sparse regime, where degrees do not diverge.
How does does the n→∞ limit reflect the graph structure?

Example: Detering-Fouque-Ichiba ’18 treats directed cycle graph.



Large n behavior, for sparse graphs?

XG
v (t + 1) = F

(
XG
v (t), (XG

u (t))u∼v , ξv (t + 1)
)
.

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how
can we describe the limiting behavior of...

I a “typical” or tagged particle Xv (t)?

I the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δXv (t)?

Our approach:

1. Show that if Gn → G in a sense then also XGn → XG .

2. Show that if limiting G is a “nice tree” then XG can be
characterized by autonomous dynamics for a single particle
and its neighborhood, the local dynamics.
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Local convergence of graphs

Idea: Encode sparsity via local convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele ’04)

Definition: A graph G = (V ,E , ø) is assumed to be rooted, finite
or countable, locally finite, and connected.

Definition: Rooted graphs Gn converge locally to G if:

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N,

where Bk(·) is ball of radius k at root, and ∼= means isomorphism.
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Examples of local convergence

1. Cycle graph converges to infinite line

ø −→

...

ø

...



Examples of local convergence

2. Line graph converges to infinite line

ø −→

...

ø

...



Examples of local convergence

3. Line graph rooted at end converges to semi-infinite line

ø

−→

...

ø



Examples of local convergence

4. Finite to infinite d-regular trees

(A graph is d-regular if ever vertex has degree d .)

ø −→
ø



Examples of local convergence

5. Uniformly random regular graph to infinite regular tree

Fix d . Among all d-regular
graphs on n vertices, se-
lect one uniformly at ran-
dom. Place the root at a
(uniformly) random vertex.
When n → ∞, this con-
verges (in law) to the in-
finite d-regular tree. (Bol-
lobás ’80)

−→
ø



Examples of local convergence

6. Erdős-Rényi to Galton-Watson(Poisson)

If Gn = G (n, pn) with npn → p ∈ (0,∞), then Gn converges in law
to the Galton-Watson tree with offspring distribution Poisson(p).

ø −→

root

ø

...
...



Examples of local convergence

7. Configuration model to unimodular Galton-Watson

If Gn is drawn from the configuration model on n vertices with
degree distribution ρ ∈ P(N0), then Gn converges in law to the
unimodular Galton-Watson tree UGW(ρ).

I Construct UGW(ρ) by letting root have ρ-many children, and
each child thereafter has ρ̂-many children, where

ρ̂(n) =
(n + 1)ρ(n + 1)∑

k kρ(k)
.

I Example 1: ρ = Poisson(p) =⇒ ρ̂ = Poisson(p).

I Example 2: ρ = δd =⇒ ρ̂ = δd−1, so UGW(δd) is the
(deterministic) infinite d-regular tree.

Intuition: Root is equally likely to be any vertex. Aldous-Lyons ’07
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Local convergence of marked graphs

Recall: Gn = (Vn,En, øn) converges locally to G = (V ,E , ø) if

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N.

Definition: With Gn,G as above: Given a metric space (X , dX )
and a sequence x

n = (xnv )v∈Gn ∈ XGn , say that (Gn, x
n) converges

locally to (G , x) if

∀k, ε > 0 ∃N s.t. ∀n ≥ N ∃ϕ : Bk(Gn)→ Bk(G ) isomorphism
s.t. maxv∈Bk (Gn) dX (xnv , xϕ(v)) < ε.

Lemma
The set G∗[X ] of (isomorphism classes of) (G , x) admits a Polish
topology compatible with the above convergence.
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Local convergence of marked graphs

Recall: Particle system on a rooted graph G = (V ,E , ø):

XG
v (t + 1) = F (XG

v (t), (XG
u (t))u∼v , ξv (t + 1)).

Theorem
If Gn → G locally, then (Gn,X

Gn) converges in law to (G ,XG ) in
G∗[S∞]. Valid for random graphs too.

In particular, root particle dynamics converge: XGn
øn ⇒ XG

ø in S∞.
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Local convergence of marked graphs

Recall: Particle system on a rooted graph G = (V ,E , ø):

XG
v (t + 1) = F (XG

v (t), (XG
u (t))u∼v , ξv (t + 1)).

Theorem
If Gn → G locally, then (Gn,X

Gn) converges in law to (G ,XG ) in
G∗[S∞]. Valid for random graphs too.

Empirical measure convergence is harder. In general, if Gn → G
with G infinite,

1

|Gn|
∑
v∈Gn

δ
XGn
v
6⇒ Law(XG

ø ).

Example: Gn a d-regular tree of height n, d ≥ 3.



Local convergence of marked graphs

Recall: Particle system on a rooted graph G = (V ,E , ø):

XG
v (t + 1) = F (XG

v (t), (XG
u (t))u∼v , ξv (t + 1)).

Theorem
If Gn → G locally, then (Gn,X

Gn) converges in law to (G ,XG ) in
G∗[S∞]. Valid for random graphs too.

Empirical measure convergence is harder. If Gn ∼ G (n, pn),
npn → p ∈ (0,∞), then

1

|Gn|
∑
v∈Gn

δ
XGn
v
⇒ Law(XT

ø ), in P(S∞),

where T ∼ GW(Poisson(p)).



Local convergence of marked graphs

Recall: Particle system on a rooted graph G = (V ,E , ø):

XG
v (t + 1) = F (XG

v (t), (XG
u (t))u∼v , ξv (t + 1)).

Theorem
If Gn → G locally, then (Gn,X

Gn) converges in law to (G ,XG ) in
G∗[S∞]. Valid for random graphs too.

Goal: For infinite regular trees (more generally UGW trees), find
“local” dynamics for root particle and neighbors, {Xø,Xv : v ∼ ø}.

Key idea: Exploit conditional independence structure.



Markov random fields

Notation: For a set A of vertices in a graph G = (V ,E ), define

Boundary: ∂A = {u ∈ V \A : ∃u ∈ A s.t. u ∼ v}.

Definition: A family of random variables (Yv )v∈G is a Markov
random field if

(Yv )v∈A ⊥ (Yv )v∈B | (Yv )v∈∂A,

for all finite sets A,B ⊂ V with B ∩ (A ∪ ∂A) = ∅.

Example: A ∂A B



Markov random fields

Xv (t + 1) = Fv
(
Xv (t), (Xu(t))u∼v , ξv (t + 1)

)
,

Assume the initial states (Xv (0))v∈G are i.i.d.

Question #1:

For each time t, do the particle positions (Xv (t))v∈G form a
Markov random field?

Answer #1:

NO
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,

Assume the initial states (Xv (0))v∈G are i.i.d.

Question #2:

For each time t, do the particle trajectories (Xv [t])v∈G form a
Markov random field? Here x [t] = (x(0), . . . , x(t)).

Answer #2:

NO



Markov random fields
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NO



Second-order Markov random fields

Notation: For a set A of vertices in a graph G = (V ,E ), define

Double-boundary: ∂2A = ∂A ∪ ∂(A ∪ ∂A).

Definition: A family of random variables (Yv )v∈G is a 2nd-order
Markov random field if

(Yv )v∈A ⊥ (Yv )v∈B | (Yv )v∈∂2A,

for all finite sets A,B ⊂ V with B ∩ (A ∪ ∂2A) = ∅.

Example: A ∂2A B



Second-order Markov random fields

Xv (t + 1) = Fv
(
Xv (t), (Xu(t))u∼v , ξv (t + 1)

)
,

Assume the initial states (Xv (0))v∈G are i.i.d.

Question #3:

For each time t, do the particle positions (Xv (t))v∈G form a
second-order Markov random field?

Answer #3:

NO
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Second-order Markov random fields

Xv (t + 1) = Fv
(
Xv (t), (Xu(t))u∼v , ξv (t + 1)

)
,

Assume the initial states (Xv (0))v∈G are i.i.d.

Question #4:

For each time t, do the particle trajectories (Xv [t])v∈G form a
second-order Markov random field? Here x [t] = (x(0), . . . , x(t)).

Answer #4:

Theorem: YES. Holds also if (Xv (0))v∈G is a second-order MRF.
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Local dynamics for infinite 2-regular tree

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

Particle system on infinite line graph, i ∈ Z:

Xi (t + 1) = F
(
Xi (t),Xi−1(t),Xi+1(t), ξi (t + 1)

)
Assume: F is symmetric in neighbors, F (x , y , z , ξ) = F (x , z , y , ξ).

Goal: Find an autonomous stochastic process (Y−1,Y0,Y1) which
agrees in law with (X−1,X0,X1).



Local dynamics for infinite 2-regular tree

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

1. Start with (Y−1,Y0,Y1)(0) = (X−1,X0,X1)(0).

2. Inductively: At time t, define transition kernel

γt(· | y0, y1) = Law
(
Y−1(t) |Y0[t] = y0[t],Y1[t] = y1[t]

)
.

3. Sample ghost particles Y−2(t) and Y2(t) so that

P
(
Y−2(t) ∈ dy−2,Y2(t) ∈ dy2

∣∣∣Y−1[t],Y0[t],Y1[t]
)

= γt(dy−2 |Y−1,Y0)× γt(dy2 |Y1,Y0)

4. Sample new noises (ξ−1, ξ0, ξ1)(t + 1) independently, and
update:

Yi (t + 1) = F
(
Yi (t),Yi−1(t),Yi+1(t), ξi (t + 1)

)
, i = −1, 0, 1



Local dynamics for infinite 2-regular tree
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Symmetries, or why “ghost particles” work
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Particle system on infinite line graph, i ∈ Z:

Xi (t + 1) = F
(
Xi (t),Xi−1(t),Xi+1(t), ξi (t + 1)

)
,

γt(· | x0, x1) = Law
(
X−1(t) |X0[t] = x0[t],X1[t] = x1[t]

)
.

Symmetry 1: Shifts.

(X1, . . . ,Xk)
d
= (Xi+1, . . . ,Xi+k), ∀i ∈ Z, k ∈ N

Implication:

γt(X−1,X0) = Law
(
X−2(t) |X−1[t], X0[t]

)
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Xi (t + 1) = F
(
Xi (t),Xi−1(t),Xi+1(t), ξi (t + 1)

)
,

γt(· | x0, x1) = Law
(
X−1(t) |X0[t] = x0[t],X1[t] = x1[t]

)
.

Symmetry 2: Reflection.

(X1,X2, . . . ,Xk)
d
= (Xk ,Xk−1, . . . ,X1), ∀i ∈ Z, k ∈ N

Implication:

γt(X1,X0) = Law
(
X2(t) |X1[t], X0[t]

)



Symmetries, or why “ghost particles” work
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Particle system on infinite line graph, i ∈ Z:

Xi (t + 1) = F
(
Xi (t),Xi−1(t),Xi+1(t), ξi (t + 1)

)
,

γt(· | x0, x1) = Law
(
X−1(t) |X0[t] = x0[t],X1[t] = x1[t]

)
.

Combining two symmetries & conditional independence:

P
(
X−2(t) ∈ dx−2,X2(t) ∈ dx2

∣∣∣X−1[t],X0[t],X1[t]
)

= γt(dx−2 |X−1,X0)× γt(dx2 |X1,X0)



Continuous-time case
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Particle system on infinite line graph, i ∈ Z:

dX i
t = b(X i

t ,X
i−1
t ,X i+1

t )dt + dW i
t

Local dynamics:

dY 1
t =

〈
γt(Y

1,Y 0), b(Y 1
t ,Y

0
t , ·)

〉
dt + dW 1

t

dY 0
t = b(Y 0

t ,Y
−1
t ,Y 1

t )dt + dW 0
t

dY−1
t =

〈
γt(Y

−1,Y 0), b(Y−1
t , ·,Y 0

t )
〉
dt + dW−1

t

γt(y
0, y−1) = Law

(
Y 1
t |Y 0[t] = y0[t], Y−1[t] = y−1[t]

)
Thm: Exist/unique in law, and (Y−1,Y 0,Y 1)

d
= (X−1,X 0,X 1).
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Infinite d-regular trees

Autonomous dynamics for root
particle and its neighbors,

Xø(t), (Xv (t))v∼ø,

involving conditional law of d − 1
children given root and one other
child u:

Law((Xv )v∼ø, v 6=u |Xø, Xu)

ø

u

d = 3
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Infinite d-regular trees

Autonomous dynamics for root
particle and its neighbors,

Xø(t), (Xv (t))v∼ø,

involving conditional law of d − 1
children given root and one other
child u:

Law((Xv )v∼ø, v 6=u |Xø, Xu)

ø

u

d = 5



Unimodular Galton-Watson trees

Autonomous dynamics for
root & first generation
involving conditional law
of 1st-generation given
root and one child.

Condition on tree structure
as well!

root

ø

u

...
...



Summary

Theorem 1
If graph sequence converges locally, then particle systems converge
locally as well. (Similar result in independent work
Oliveira-Reis-Stolerman ’19.)

Theorem 2
Root neighborhood particles in a unimodular Galton-Watson tree
admits well-posed local dynamics.

Corollary: If finite graph sequence converges locally to a
unimodular Galton-Watson tree, then root neighborhood particles
converges to the local dynamics.



Example: Linear Gaussian dynamics

State space R, noises ξv (t) are independent standard Gaussian.

Xv (t + 1) = aXv (t) + b
∑
u∼v

Xu(t) + c + ξv (t + 1)

Xv (0) = ξv (0), a, b, c ∈ R

 conditional laws are all Gaussian

Proposition

Suppose the graph G is an infinite d-regular tree, d > 2.
Simulating local dynamics for one particle up to time t is O(t2d2).

Compare: Naive simulation using infinite tree is O((d − 1)t+1).



Example: Contact process

Each particle is either 1 or 0. Parameters p, q ∈ [0, 1].

Transition rule: At time t, if particle v ...

I is at state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,

I is at state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

∑
u∼v

Xu(t),

where dv = degree of vertex v .



Example: Contact process

Figure: Infinite 2-regular tree (line), p = 2/3, q = 0.1

Credit: Ankan Ganguly & Mitchell Wortsman, Brown University
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