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Introduction
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Main themes

v

Model-free and robust investment strategies

v

Depend only on directly observable market quantities

v

Stochastic portfolio theory (SPT), volatility pumping

v

Connections with universal portfolio theory and other approaches
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Set up

» n stocks, discrete time

» Market weight

_ market value of stock i at time ¢

- € (0,1
total market value at time ¢ 0. 1)

> u(t) = (pi(t), ..., ua(t)) € A, (open unit simplex)




Portfolio

» For each ¢, pick weights
(1) = (mi(1),...,m (1)) € A,

Market portfolio: pu(t) = (1(2), ..., pn(t))
» Relative value w.r.t. market portfolio p:

growth of $1 of portfolio 7 at time ¢

Va(t) =
() growth of $1 of market portfolio y at time ¢

» V.(0) =1and

n

V,rt 1 ,u,t—|—
i(



Relative arbitrage

Definition
For ty > 0, a relative arbitrage over the horizon [0, to] (w.r.t. 1) is a
portfolio T such that V(ty) > 1 for “all” possible realizations of

{12,
Interpretations:

(i) (Probabilistic) If {(¢) }32,, is a stochastic process, we mean
P (Ve(to) > 1) = 1.

(ii) (Pathwise) Let P be a path property. We require V. (f) > 1 for
all sequences {u(t)}:°, C A, satisfying property P.



Stochastic portfolio theory

> Relative arbitrage exists (for 7y sufficiently large) under realistic
conditions:

» Stability of capital distribution; diversity u(7) € K

» Sufficient volatility
» Functionally generated portfolios (Fernholz)
— (1) log pui(1)

e.g. m(t) = Sy —pi(t) log (1)

(entropy-weighted portfolio)
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Geometry
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Geometry of relative arbitrage

» Consider deterministic portfolios:

(1) = m(u(2)),

where 7 : A, — A, is a portfolio map.

» Let K C A, be open and convex:

» Ask: If the portfolio map 7 : A, — A, is a relative arbitrage
given the market is volatile and satisfies the generalized diversity
condition p(f) € K, what does 7 look like?
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Relative arbitrage as FGP

Theorem (Pal and W. (2014))
K C A, open convex, 7 : A, — A, portfolio map. TFAE:

(i) 7 is a pseudo-arbitrage over the market on K: there exists ¢ > 0
such that inf;> V(1) > € for all sequences {j(1)}°, C K, and
there exists a sequence {u(t)}7°, C K along which
limy_s 00 V(1) = 00

(i1)  is functionally generated: there exists a non-affine, concave
Sfunction ® : A, — (0, 00) such that log ® is bounded below on
K and

*@*

lzl:m(p)ql q)gz;, forallp,q € K.

» The ratios 7;/; are given by supergradients of the exponential
concave function log ®.
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Examples

mi(p) D(p)
Market i 1
I e
Diversity-weighted < < n )
iversity-weighte S D i1 M
Constant-weighted e pit e e
—pilog pi

Entropy-weighted ST o Z}’:l —pjlog p;
R package RelValAnalysis on CRAN
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FGP leads to relative arbitrage

> Recall
Vet +1) _ pi(t+1) _ ®(u(r+1))
v &L e
> Write
tog Y1 E) —10g LD o (ute 1) o)
where

T (e +1) | (1)) > 0

is a measure of volatility



FGP leads to relative arbitrage

log V(1)
AW
= L t
osck (log @) BT )
—1
P (u())

log V(1) = log

50 * 2T 0+ D) |69

diversity =A(r) sufficient volatility




Relative arbitrage as optimal transport maps

X, Y: Polish spaces

c: cost function

‘P: Borel probability measure on X’

Q: Borel probability measure on )

Coupling: R p.m. on X x ) with marginals P and Q
Monge-Kantorovich optimal transport problem:

minEr[c(X,Y), (X,¥)~R

vV Vv vy VY VvYyy

v

Intuition: 7 : p — ()

market weights portfolio weights
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Optimal transport and FGP

Take
» X =A,,Y=[-00,00)

» Cost:
n
) =g 34
i=1

» Portfolio at p given A:

hi
/1'6’
l(} ) j:n l

= (1
j=1 e

Theorem (Pal and W. (2014))

Let P be any Borel probability measure on A, and let ™ be an FGP.

Define h = h(p) via (1), and let Q be the law of h when i ~ P. Then

the coupling (1, h) minimizes Er [c(u, h)] where R has marginals P
and Q.
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Optimization
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Point estimation of FGP
» Assume ﬁ < % < M (M is unknown to the investor)

FG = {7r : A, — A, | functionally generated}
» Form € FG,

Ve(t+1) m (t+1)
logT(t)—log (Zw, ) )

—: Lo (a(t), p(t + 1))

» Logarithmic growth rate:

1
—log V(1) = / LdP;
t Anx Ay

where

is the empirical measure
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Point estimation of FGP

» [P: Borel probability measure on

» Given IP, consider

sup / {.dP
TeEFGJS

Solution 7 is analogous to MLE

» Nonparametric MLE: given a random sample X, ..., Xy ~ fp in
R4, consider

N
sup ¥ _ logf(Xx)

feF 4

where F is a class of densities
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Point estimation of FGP

Theorem (W. 2015)
Under suitable regularity conditions on P:

> (Solvability) The problem has an optimal solution which is
a.e. unique.
» (Consistency) If 7™ is optimal for Py, Py — P weakly, and 7 is
optimal for P, then
A
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Point estimation of FGP

Theorem (continued)
» (Finite-dimensional reduction) Suppose P is discrete:

N
I
P =52 80040

j=1

Then the optimal solution (T, ®) can be chosen such that ® is
polyhedral over the data points. In particular, ® is piecewise
affine over a triangulation of the data points.

20/29



Universal portfolio for G

» Aim: achieve the asymptotic growth rate of

Vi(1) = sup V(1)
TeFG
» Cover (1991): wealth-weighted average (for constant-weighted
portfolios)
» We will construct a “market portfolio” 7 whose basic assets are
the portfolios in FG



Wealth distribution

» Equip FG with topology of uniform convergence
> 14: Borel probability measure on FG (initial distribution)
» At time 0, distribute vy (dm) wealth to 7 € FG

» Total wealth at time ¢ is
V(t) := / Ve (£)dvy ()
FG

» Wealth distribution at time ¢:

» Bayesian interpretation:

v : prior, Vr(¢) : likelihood, v : posterior



Example

Wealth density for a family of constant-weighted portfolios:
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Universal portfolio for G

» In this context, define Cover’s portfolio by the posterior mean

70)= [ () ()

» Then
Va(t) = V()
Suppose an asymptotically optimal portfolio 7* exists. Hope:
» Posterior v; concentrates around 7*
» V(t) is “close” to V*(1)
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Universal portfolio for G

Theorem (W. (2015))

Let {pu(1)}7°, be a sequence in A, such that the empirical measure
P, = % Z;;%) O(u(s),u(s+1)) converges weakly to an absolutely
continuous Borel probability measure on S. Here, the asymptotic
growth rate W(7) := lim;_, % log V(1) exists for all m € FG.

(i) For any initial distribution vy, the sequence {v;}2°, of wealth
distributions satisfies the large deviation principle (LDP) with
rate

{W* — W(m) ifm € supp(),

I(m) =
(™) o0 otherwise,

where W* := Sup ¢ quon(y) W(T)-



Universal portfolio for G

Wealth distribution of FG satisfies LDP:
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Universal portfolio for G

Theorem (Continued)

(ii) There exists an initial distribution vy on FG such that
W* = sup, . rg W(m) for any absolutely continuous P. For this
initial distribution, Cover’s portfolio satisfies the asymptotic
universality property

1. V(@
lim —log 40 =0.
t—oo t V(1)
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Future research

v

Connections between SPT, universal portfolio theory and online
portfolio selection (statistical learning)

v

Risk-adjusted universal portfolios

v

Relative arbitrage under price impacts and transaction costs

v

Economic models inspired by SPT
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