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Introduction
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Main themes

I Model-free and robust investment strategies
I Depend only on directly observable market quantities
I Stochastic portfolio theory (SPT), volatility pumping
I Connections with universal portfolio theory and other approaches
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Set up

I n stocks, discrete time
I Market weight

µi(t) =
market value of stock i at time t

total market value at time t
∈ (0, 1)

I µ(t) = (µ1(t), . . . , µn(t)) ∈ ∆n (open unit simplex)

µ(t)
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Portfolio

I For each t, pick weights

π(t) = (π1(t), . . . , πn(t)) ∈ ∆n

Market portfolio: µ(t) = (µ1(t), . . . , µn(t))
I Relative value w.r.t. market portfolio µ:

Vπ(t) =
growth of $1 of portfolio π at time t

growth of $1 of market portfolio µ at time t

I Vπ(0) = 1 and

Vπ(t + 1)

Vπ(t)
=

n∑
i=1

πi(t)
µi(t + 1)

µi(t)
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Relative arbitrage

Definition
For t0 > 0, a relative arbitrage over the horizon [0, t0] (w.r.t. µ) is a
portfolio π such that Vπ(t0) > 1 for “all” possible realizations of
{µ(t)}∞t=0.

Interpretations:

(i) (Probabilistic) If {µ(t)}∞t=0 is a stochastic process, we mean

P (Vπ(t0) > 1) = 1.

(ii) (Pathwise) Let P be a path property. We require Vπ(t0) > 1 for
all sequences {µ(t)}∞t=0 ⊂ ∆n satisfying property P .
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Stochastic portfolio theory

I Relative arbitrage exists (for t0 sufficiently large) under realistic
conditions:

I Stability of capital distribution; diversity µ(t) ∈ K

K

I Sufficient volatility
I Functionally generated portfolios (Fernholz)

e.g. πi(t) =
−µi(t) logµi(t)∑n
j=1−µj(t) logµj(t)

(entropy-weighted portfolio)
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Geometry
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Geometry of relative arbitrage

I Consider deterministic portfolios:

π(t) = π(µ(t)),

where π : ∆n → ∆n is a portfolio map.
I Let K ⊂ ∆n be open and convex:

K K

I Ask: If the portfolio map π : ∆n → ∆n is a relative arbitrage
given the market is volatile and satisfies the generalized diversity
condition µ(t) ∈ K, what does π look like?
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Relative arbitrage as FGP

Theorem (Pal and W. (2014))
K ⊂ ∆n open convex, π : ∆n → ∆n portfolio map. TFAE:

(i) π is a pseudo-arbitrage over the market on K: there exists ε > 0
such that inft≥0 Vπ(t) ≥ ε for all sequences {µ(t)}∞t=0 ⊂ K, and
there exists a sequence {µ(t)}∞t=0 ⊂ K along which
limt→∞ Vπ(t) =∞.

(ii) π is functionally generated: there exists a non-affine, concave
function Φ : ∆n → (0,∞) such that log Φ is bounded below on
K and

n∑
i=1

πi(p)
qi

pi
≥ Φ(q)

Φ(p)
, for all p, q ∈ K.

I The ratios πi/µi are given by supergradients of the exponential
concave function log Φ.
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Examples

πi(µ) Φ(µ)

Market µi 1

Diversity-weighted µλi∑n
j=1 µ

λ
j

(∑n
j=1 µ

λ
j

) 1
λ

Constant-weighted πi µπ1
1 · · ·µπn

n

Entropy-weighted −µi logµi∑n
j=1−µj logµj

∑n
j=1−µj logµj

R package RelValAnalysis on CRAN
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FGP leads to relative arbitrage

I Recall

Vπ(t + 1)

Vπ(t)
=

n∑
i=1

πi(µ(t))
µi(t + 1)

µi(t)
≥ Φ(µ(t + 1))

Φ(µ(t))

I Write

log
Vπ(t + 1)

Vπ(t)
= log

Φ(µ(t + 1)

Φ(µ(t))
+ T (µ(t + 1) | µ(t))

where
T (µ(t + 1) | µ(t)) ≥ 0

is a measure of volatility
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FGP leads to relative arbitrage

t

log Vπ(t)

t0

A(t)

oscK(log Φ)

log Vπ(t) = log
Φ(µ(t))
Φ(µ(0))︸ ︷︷ ︸

diversity

+

t−1∑
s=0

T (µ(s + 1) | µ(s))︸ ︷︷ ︸
=A(t) sufficient volatility
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Relative arbitrage as optimal transport maps
I X , Y: Polish spaces
I c: cost function
I P: Borel probability measure on X
I Q: Borel probability measure on Y
I Coupling: R p.m. on X × Y with marginals P and Q
I Monge-Kantorovich optimal transport problem:

min
R

ER[c(X,Y)], (X,Y) ∼ R

I Intuition: π : µ 7→ π(µ)

market weights portfolio weights

µ

P

π

Q
pay c(µ, π)
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Optimal transport and FGP
Take

I X = ∆n, Y = [−∞,∞)n

I Cost:

c(µ, h) = log

(
n∑

i=1

ehiµi

)
I Portfolio at µ given h:

πi(µ) =
µiehi∑n
j=1 µjehj

(1)

Theorem (Pal and W. (2014))
Let P be any Borel probability measure on ∆n, and let π be an FGP.
Define h = h(µ) via (1), and let Q be the law of h when µ ∼ P . Then
the coupling (µ, h) minimizes ER[c(µ, h)] whereR has marginals P
and Q.
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Optimization
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Point estimation of FGP
I Assume 1

M ≤
µi(t+1)
µi(t) ≤ M (M is unknown to the investor)

I FG :=
{
π : ∆n → ∆n | functionally generated

}
I For π ∈ FG,

log
Vπ(t + 1)

Vπ(t)
= log

(
n∑

i=1

πi(µ(t))
µi(t + 1)

µi(t)

)
=: `π(µ(t), µ(t + 1))

I Logarithmic growth rate:

1
t

log Vπ(t) =

∫
∆n×∆n

`πdPt

where

Pt :=
1
t

t−1∑
s=0

δ(µ(s),µ(s+1))

is the empirical measure
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Point estimation of FGP

I P: Borel probability measure on

S :=

{
(p, q) ∈ ∆n ×∆n :

1
M
≤ qi

pi
≤ M

}
I Given P, consider

sup
π∈FG

∫
S
`πdP

Solution π̂ is analogous to MLE
I Nonparametric MLE: given a random sample X1, ...,XN ∼ f0 in

Rd, consider

sup
f∈F

N∑
k=1

log f (Xk)

where F is a class of densities

18 / 29



Point estimation of FGP

Theorem (W. 2015)
Under suitable regularity conditions on P:

I (Solvability) The problem has an optimal solution which is
a.e. unique.

I (Consistency) If π̂(N) is optimal for PN , PN → P weakly, and π̂ is
optimal for P, then

π̂(N) → π̂ a.e.
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Point estimation of FGP

Theorem (continued)

I (Finite-dimensional reduction) Suppose P is discrete:

P =
1
N

N∑
j=1

δ(p(j),q(j)).

Then the optimal solution (π̂, Φ̂) can be chosen such that Φ̂ is
polyhedral over the data points. In particular, Φ̂ is piecewise
affine over a triangulation of the data points.
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Universal portfolio for FG

I Aim: achieve the asymptotic growth rate of

V∗(t) = sup
π∈FG

Vπ(t)

I Cover (1991): wealth-weighted average (for constant-weighted
portfolios)

I We will construct a “market portfolio” π̂ whose basic assets are
the portfolios in FG
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Wealth distribution

I Equip FG with topology of uniform convergence
I ν0: Borel probability measure on FG (initial distribution)
I At time 0, distribute ν0(dπ) wealth to π ∈ FG
I Total wealth at time t is

V̂(t) :=

∫
FG

Vπ(t)dν0(π)

I Wealth distribution at time t:

νt(B) :=
1

V̂(t)

∫
B

Vπ(t)dν0(π), B ⊂ FG

I Bayesian interpretation:

ν0 : prior, Vπ(t) : likelihood, νt : posterior
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Example

Wealth density for a family of constant-weighted portfolios:

1995

2000

2005

2010

−2

−1

0

1

2

0

1

2

3

4
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Universal portfolio for FG

I In this context, define Cover’s portfolio by the posterior mean

π̂(t) :=

∫
FG

π(µ(t))dνt(π)

I Then
Vπ̂(t) ≡ V̂(t)

Suppose an asymptotically optimal portfolio π∗ exists. Hope:
I Posterior νt concentrates around π∗

I V̂(t) is “close” to V∗(t)
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Universal portfolio for FG

Theorem (W. (2015))
Let {µ(t)}∞t=0 be a sequence in ∆n such that the empirical measure
Pt = 1

t

∑t−1
s=0 δ(µ(s),µ(s+1)) converges weakly to an absolutely

continuous Borel probability measure on S. Here, the asymptotic
growth rate W(π) := limt→∞

1
t log Vπ(t) exists for all π ∈ FG.

(i) For any initial distribution ν0, the sequence {νt}∞t=0 of wealth
distributions satisfies the large deviation principle (LDP) with
rate

I(π) =

{
W∗ −W(π) if π ∈ supp(ν0),

∞ otherwise,

where W∗ := supπ∈supp(ν0) W(π).
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Universal portfolio for FG

Wealth distribution of FG satisfies LDP:

FG

νt

B

νt(B) ≈ e−t infθ∈B I(θ)
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Universal portfolio for FG

Theorem (Continued)

(ii) There exists an initial distribution ν0 on FG such that
W∗ = supπ∈FG W(π) for any absolutely continuous P. For this
initial distribution, Cover’s portfolio satisfies the asymptotic
universality property

lim
t→∞

1
t

log
V̂(t)
V∗(t)

= 0.
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Future research

I Connections between SPT, universal portfolio theory and online
portfolio selection (statistical learning)

I Risk-adjusted universal portfolios
I Relative arbitrage under price impacts and transaction costs
I Economic models inspired by SPT
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