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1 Introduction.

• Stochastic optimal control problems:

dX(s) = f (s,X(s), u(s))ds + g(s,X(s), u(s))dW (s), ∀s ∈ [t, T ]

X(t) = x.

Value function:

V (t, x) = sup
u

Et,x

[∫ T

t

L(s,X(s), u(s))ds + Ψ(T,X(T ), u(T ))

]
.

– Typically, we can derive a HJB equation for the value function. By
solving the associated HJB equation (explicitly or numerically), we can
obtain the value function and optimal control policies.

– The HJB equation is usually a second order partial differential equation
of parabolic type.

– In many cases, the value function is just a viscosity solution of the HJB
equation.
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• In many real world applications, some physical systems can only be mod-
eled by stochastic dynamical systems whose evolutions depend on the past
history of the states.

• General form:

dX(s) = f (s,Xs, u(s))ds + g(s,Xs, u(s))dW (s), s ∈ [t, T ], (1)

X(s) = ψ(s), s ∈ [t− h, t], (2)

where Xs : [−h, 0]→ <n is defined by

Xs(θ) = X(s + θ).

– We will derive the associated HJB equation.

– The HJB equation is in infinite dimensional space.

– The HJB equation involves Fréchet derivatives.
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• A model with memory:

dX(s) = α(s,X(s), Y (s), Z(s), u(s))ds

+ β(s,X(s), Y (s), Z(s), u(s))dW (s), s ∈ [t, T ], (3)

X(s) = ψ(s), ∀s ∈ [t− h, t], (4)

where

Y (s) =

∫ 0

−h
eλθX(s + θ)dθ, Z(s) = X(s− h).

– The value function V (t, ψ) will be defined on [0, T ]×C[−h, 0], which is
an infinite dimensional space.

– Under certain conditions, the associated HJB equation can be turned
into a PDE in a finite dimensional space.
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• Another model

dX(t) = b(t,X(t), Y (t), Z(t)u(t))dt

+ σ(t,X(t), Y (t), Z(t), u(t))dW (t), t ∈ (s, T ] (5)

X(t) = η(t− s), t ∈ (s− δ, s], η ∈ C((−δ, 0];R), (6)

whereW (t) is a standard 1-dimensional Brownian motion, u(t) is the control
variable, and Y (t) is given by

Y (t) =

∫ 0

−δ
ψ(r)X(t + r)dr, Z(t) = X(t− h), t ∈ (s, T ], (7)

where ψ(r) is a function of the form

ψ(r) = a0 + a1r + a2r
2 + · · · + anr

n. (8)
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2 A Portfolio Optimization Model with Memory

2.1 Problem Formulation

• One risky asset and one riskless asset with interest rate r.

• K(t): the amount invested on the risky asset; L(t): the amount invested
on the riskless asset. Total wealth: X(t) = K(t) + L(t).

•We consider the situation in which the performance of the risky asset de-
pends on the history (memory) through the following delay variables Y (t)
and Z(t):

Y (t) ≡
∫ 0

−h
eλsX(t + s)ds, Z(t) ≡ X(t− h). (9)
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• Assume thatK(t) > 0 almost surely. Instead of Y (t), Z(t), we first consider

Ỹ (t) ≡ Y (t)

K(t)
=

1

K(t)

∫ 0

−h
eλsX(t + s)ds, (10)

Z̃(t) ≡ Z(t)

K(t)
=
X(t− h)

K(t)
. (11)

•We model that K(t) and L(t) with the stochastic differential equations:

dK(t) = [(µ1 + µ2Ỹ (t) + µ3Z̃(t))K(t) + I(t)]dt

+ σK(t)dB(t), (12)

dL(t) = [rL(t)− C(t)− I(t)]dt, (13)

where I(t) is the investment rate and C(t) is the consumption rate.
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• Using the definition of Ỹ (t), Z̃(t), we can get that K(t) and L(t) follow the
stochastic differential equations:

dK(t) = [µ1K(t) + µ2Y (t) + µ3Z(t) + I(t)]dt

+ σK(t)dB(t), (14)

dL(t) = [rL(t)− C(t)− I(t)]dt. (15)

• Assume that X(t) > 0 almost surely. Then we can use c(t) ≡ C(t)
X(t), k(t) =

K(t)
X(t) as our controls. It is easy to see that L(t) = X(t)(1 − k(t)). Now we

can get the equation for X(t) as

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t) + µ3Z(t)] dt

+ σk(t)X(t)dB(t), ∀t ∈ [s, T ]. (16)

• Remark: It can showed that X(t) > 0 almost surely.
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• The initial condition is the information about X(s) for s ∈ [−h, 0]:

X(s + t) = ϕ(t), ∀t ∈ [−h, 0], (17)

where ϕ ∈ J where J ≡ C[−h, 0] is the space for all continuous function
defined on [−h, 0] equipped with sup-norm:

‖ϕ‖ = sup
s∈[−h,0]

|ϕ(s)|. (18)

• Let U(C) be the utility function and Ψ be the terminal utility function.
The objective function is

J(s, ϕ, k, c) = Es,ϕ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt + e−β(T−s)Ψ(X(T ), Y (T ))

]
.(19)

• The value function is given by

V (s, ϕ) = sup
k,c≥0

Es,ϕ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+e−β(T−s)Ψ(X(T ), Y (T ))

]
. (20)
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• Under certain conditions, we have

V (s, ϕ) = V (s, x, y, z), (21)

where

x = x(ϕ) ≡ ϕ(0), (22)

y = y(ϕ) ≡
∫ 0

−h
eλsϕ(s)ds, (23)

z = z(ϕ) ≡ ϕ(−h). (24)

• Further we will give the conditions that V only depends on s, x, y, i.e.,

V (s, ϕ) = V (s, x, y, z) = V (x, y). (25)
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2.2 Hamilton-Jacobi-Bellman Equation.

Let f ∈ C1,2,2([0, T ]× R2) and define

G(t) = f (t,Xϕ(t), y(Xϕ
t )), (26)

where

y(η) =

∫ 0

−h
eλuη(u)du, ∀η ∈ J, Xt(u) ≡ X(t + u), ∀u ∈ [−h, 0]. (27)

Then we have the following Ito’s formula:

Lemma 2.1 (Ito’s formula) Let the system be given by (16)-(17), and
Y (t), Z(t) be given by (11). The Ito’s formula is

dG(t) = Lfdt + (σkx)fxdB(t), (28)

where

Lf = Lk,cf (t, x, y, z)

= ft + (((µ1 − r)k − c + r)x + µ2y + µ3z) fx

+
1

2
(σkx)2fxx + (x− λy − e−λhz)fy. (29)
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We assume that the value function V depends on the initial path ϕ only
through the functionals x(ϕ), y(ϕ) defined by (22-23). That is,

V (s, ϕ) = V (s, x(ϕ), y(ϕ)) = V (s, x, y). (30)

Then we can obtain the following HJB equation:

Lemma 2.2 (HJB equation) Assume that (30) holds and V (s, x, y) ∈
C2(R2). Then the HJB equation for V (s, x, y) is given by

βV − Vs = max
k

[
1

2
(σkx)2Vxx + ((µ1 − r)k)xVx

]
+ (rx + µ2y + µ3z)Vx

+ max
c≥0

[−cxVx + U(cx)] + (x− λy − e−λhz)Vy, ∀z ∈ R,(31)

with the boundary condition

V (T, x, y) = Ψ(x, y). (32)
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2.3 The Solution of the HJB Equation.

Assume that the utility function is of the HARA type:

U(cX) =
1

γ
(cX)γ, (33)

where γ ∈ (−∞, 1], γ 6= 0 is a constant. Then we can get

βV − Vs = max
k

[
1

2
(σkx)2Vxx + (µ1 − r)kxVx

]
+ (rx + µ2y + µ3z)Vx

+ max
c≥0

[
−cxVx +

1

γ
(cx)γ

]
+ (x− λy − e−λhz)Vy. (34)

The candidate for the optimal control policy is

k∗ = −(µ1 − r)Vx
σ2xVxx

, (35)

c∗ =
1

x
V

1
γ−1
x . (36)
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Plug k∗, c∗ into the HJB equation, and we can get

βV − Vs = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+

(
1

γ
− 1

)
V

γ
γ−1
x + (x− λy − e−λhz)Vy

+ (rx + µ2y + µ3z)Vx. (37)

It can be rewritten as

βV − Vs = −1

2

(µ1 − r)2V 2
x

σ2Vxx
+

(
1

γ
− 1

)
V

γ
γ−1
x + (rx + µ2y)Vx

+ (x− λy)Vy +
(
µ3Vx − e−λhVy

)
z. (38)

Suppose the terminal utility function Ψ(x, y) is given in a form

Ψ(x, y) =
1

γ
(x + µ3e

λhy)γ. (39)
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We look for a solution of the form

V (s, x, y) = Q(s)ψ(x, y). (40)

Now we can get

[βQ(s)−Q′(s)]ψ(x, y)

= −1

2

(µ1 − r)2Q(s)ψ2
x

σ2ψxx
+

(
1

γ
− 1

)
[Q(s)ψx]

γ
γ−1 + (rx + µ2y)Q(s)ψx

+ (x− λy)Q(s)ψy + (µ3ψx − e−λhψy)Q(s)z. (41)

Apparently, equation (41) has a solution which does not depend on z if we have
the following condition:

(µ3ψx − e−λhψy)Q(s)z = 0, ∀z ∈ R. (42)

Define u ≡ x + µ3e
λhy and we look for a solution of the form

ψ(x, y) =
1

γ
(x + µ3e

λhy)γ =
1

γ
uγ, (43)
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Plug them into (41), and we can get

1

γ
[βQ(s)−Q′(s)]uγ

= −1

2

(µ1 − r)2

σ2(γ − 1)
Q(s)uγ +

(
1

γ
− 1

)
[Q(s)]

γ
γ−1uγ

+
[
(r + µ3e

λh)x +
(
µ2 − λµ3e

λh
)
y
]
Q(s)uγ−1. (44)

Assume that

µ2 − λµ3e
λh = (r + µ3e

λh)µ3e
λh. (45)

(Some discussions on this assumption are given in Section 2.4.) Then it is easy
to verify that [

(r + µ3e
λh)x +

(
µ2 − λµ3e

λh
)
y
]
Q(s)uγ−1

= (r + µ3e
λh)Q(s)(x + µ3e

λhy)uγ−1 (46)

= (r + µ3e
λh)Q(s)uγ (47)
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Canceling the term uγ on both sides, we can get

Q′(s) = (γ − 1) [Q(s)]
γ
γ−1 + ΛQ(s), (48)

where

Λ ≡ β +
(µ1 − r)2γ

2σ2(γ − 1)
− γ(r + µ3e

λh). (49)

We assume that the all parameters involved here satisfy

Λ > 0, (50)

to guarantee that we have a well-defined solution.
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At the point t = T , we have

V (T, x, y) = Q(T )
1

γ
(x + µ3e

λhy)γ = Ψ(x, y) =
1

γ
(x + µ3e

λhy)γ. (51)

Therefore, the boundary condition for Q(s) at s = T is given by

Q(T ) = 1. (52)

By solving (48)− (52), we can get the solution

Q(s) =

[(
1− 1− γ

Λ

)
e−

Λ
1−γ (T−s) +

1− γ
Λ

]1−γ
. (53)

It is easy to verify that, if Λ > 0, we have

Q(s) > 0, ∀s ∈ [0, T ]. (54)

Therefore, the solution of the HJB equation (31)− (32) is given by
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V (s, x, y) =
1

γ
Q(s)(x + µ3e

λhy)γ. (55)

and the optimal investment ratio and the optimal consumption rate control are

k∗(s) =
(µ1 − r)(x + µ3e

λhy)

(1− γ)σ2x
, (56)

c∗(s) =
x + µ3e

λhy

x
Q(s)

1
γ−1 , (57)

where Q(s) is given by (53) and x, y are estimated at time s as the following:

x = X(s), y = Y (s) =

∫ 0

−h
eλθX(s + θ)dθ. (58)

A verification theorem is needed to ensure that the solution is actually equal
to the value function defined by (20).

19



Theorem 2.1 (Verification Theorem) Let V (s, x, y) ∈ C1,2,2([0, T ] ×
R× R) be a solution of the HJB equation (31)− (32) such that

E

[∫ T

0

[k(t)X(t)Vx(t,X(t), Y (t))]2dt

]
<∞, ∀k ∈ Π. (59)

Then we have

V (s, x, y) = sup
k,c≥0

Ex,φ

[ ∫ T

s

e−β(t−s)U(c(t)X(t))dt

+e−β(T−s)Ψ(X(T ), Y (T ))

]
. (60)

In addtion, if the utility function is given by

U(x) =
1

γ
xγ, γ ∈ (−∞, 1] and γ 6= 0, (61)

then the optimal control policy is given by

k∗ = −(µ1 − r)Vx
σ2xVxx

, c∗ =
1

x
V

1
γ−1
x . (62)
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2.4 Some Examples.

In this section, we discuss some examples. For convenience, we rewrite the
dynamic equation for the wealth process X(t) here:

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + µ2Y (t) + µ3Z(t)] dt

+ [σk(t)X(t)(t)]dB(t), ∀t ∈ [s, T ]. (63)

The initial condition is given by

X(s + t) = ϕ(t), ∀t ∈ [−h, 0]. (64)

In last section, we have obtained an explicit solution given the assumption
(equation (45)):

µ2 − λµ3e
λh = (µ3e

λh + r)µ3e
λh. (65)

We discuss some interest cases here.
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Case 1. Let µ3 = 0 Then we must have µ2 = 0

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t)] dt

+ σk(t)X(t)dB(t), ∀t ∈ [s, T ], (66)

X(s + θ) = ϕ(θ), ∀θ ∈ [−h, 0]. (67)

The optimal control policy is

k∗s =
(µ1 − r)
σ2(1− γ)

, (68)

c∗s = [Q(s)]
1

γ−1 , (69)

where Q(s) is given by

Q(s) =

[(
1− 1− γ

Λ

)
e−

Λ(T−s)
1−γ +

1− γ
Λ

]1−γ
(70)

and Λ is given by

Λ = β +
(µ1 − r)2γ

2σ2(γ − 1)
− γr. (71)
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The value function is given by

V (s, x, y) =
1

γ
Q(s)xγ. (72)

The value function and the optimal consumption control policy is the same
with the optimal consumption control policy of the classical Merton’s problem
on a finite time horizon with objective function

J(s, x) = max
k,c

Es,x

[∫ T

s

e−β(t−s) 1

γ
(c(t)X(t))γdt + e−β(T−s) 1

γ
[X(T )]γ

]
, (73)

with dynamic equations for X(t) being

dX(t) = [(µ1 − r)k(t)− c(t) + r]X(t)dt + σk(t)X(t)dB(t), (74)

X(0) = x. (75)

where x = x(ϕ) = ϕ(0).
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Case 2. Let µ3 = νe−λh for a constant ν > 0 and let µ2 = ν2 + ν(r+λ).Now
the equations of X(t) become

dX(t) = [((µ1 − r)k(t)− c(t) + r)X(t) + (ν2 + ν(r + λ))Y (t)

+ νe−λhZ(t)]dt + σk(t)X(t)dB(t), (76)

X(s + θ) = ϕ(θ), ∀θ ∈ [−h, 0]. (77)

The optimal control is now given by

k∗s =
(µ1 − r)(x + νy)

(1− γ)σ2x
=

µ1 − r
σ2(1− γ)

+

[
(µ1 − r)ν
σ2(1− γ)

]
y

x
; (78)

c∗s =
x + νy

x
Q(s)

1
γ−1 =

(
1 + ν

y

x

)
Q(s)

1
γ−1 , (79)

where Q(s) is given by

Q(s) =

[(
1− 1− γ

Λ

)
e−

Λ(T−s)
1−γ +

1− γ
Λ

]1−γ
(80)
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and Λ is given by

Λ = β +
(µ1 − r)2γ

2σ2(γ − 1)
− γ(ν + r). (81)

The value function is given by

V (s, x, y) =
1

γ
Q(s)(x + νy)γ. (82)

As we can see, both the control policy and the value function now depend on
the parameter ν.
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Case 3. Now we assume µ3 = e−λh. Then we have

r + µ3e
λh = r + 1.

If µ2 satisfies

µ2 = r + 1 + λ, (83)

then it is easy to verify that (65) holds. Then the dynamic equation for X(t)
is now given by

dX(t) =
[
((µ1 − r)k(t)− c(t) + r)X(t) + (λ + r + 1)Y (t) + e−λhZ(t)

]
dt

+ σk(t)X(t)dB(t), ∀t ∈ [s, T ], (84)

X(s + θ) = ϕ(θ), ∀θ ∈ [−h, 0]. (85)

The optimal control policy is

k∗s =
(µ1 − r)(x + y)

σ2(1− γ)x
=

µ1 − r
σ2(1− γ)

+

[
(µ1 − r)
σ2(1− γ)

]
y

x
, (86)

c∗s =
x + y

x
Q(s)

1
γ−1 =

(
1 +

y

x

)
Q(s)

1
γ−1 , (87)
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where Q(s) is given by

Q(s) =

[(
1− 1− γ

Λ

)
e−

Λ(T−s)
1−γ +

1− γ
Λ

]1−γ
(88)

and Λ is given by

Λ = β +
(µ1 − r)2γ

2σ2(γ − 1)
− γ(1 + r). (89)

The value function is given by

V (s, x, y) =
1

γ
Q(s)(x + y)γ. (90)

As we can see, both the control policy and the value function now depend on
the delay variable y. Actually, this is a special case of Case 2 with ν = 1.
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Final Remark. From the condition (65), we can get

µ2 = λµ3e
λh + (r + µ3e

λh)µ3e
λh

= µ3e
λh(λ + r + µ3e

λh). (91)

So it is easy to see that µ2 = 0 if and only if µ3 = 0, provided that µ3 ≥ 0, and

lim
µ3→∞

µ2 =∞.

In other words, the price change of X(t) must depend on both Y (t) and Z(t)
at the same time with similar manner in order to obtain a explicit solution
V (s, x, y).
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3 Stochastic Control Problems with Memory: Gen-
eral Framework

3.1 Problem Formulation

•We study the finite time horizon optimal control problem for a general
system of stochastic functional differential equations on the interval [t, T ].

• Let h > 0 be a fixed constant, and let J = [−h, 0] denote the duration
of the bounded memory of the equations considered in this paper. For the
sake of simplicity, we denote C(J;<n), the space of continuous functions
φ : J→ <n, by C. Note that C is a real separable Banach space under the
supremum norm defined by

‖φ‖ = sup
t∈J
|φ(t)|, φ ∈ C,

where | · | is the Euclidean norm in <n.
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• Denote by ( · | · ) the inner product in L2(J,<n) as the following

(φ|ψ) =

∫ 0

−r
〈φ(s), ψ(s)〉ds, and ‖φ‖2 = (φ|φ)

1
2 , ∀φ, ψ ∈ C,

where 〈 · , · 〉 is the inner product in <n.

• Notation: If ψ ∈ C([−r,∞);<n) and t ∈ <+, let ψt ∈ C be defined by
ψt(θ) = ψ(t + θ), θ ∈ J.

• Let {W (t), t ≥ 0} be a certain m-dimensional standard Brownian motion
defined on a complete filtered probability space (Ω,F , P ; F).

• Let L2(Ω,C) be the space of C-valued random variables Ξ : Ω → C such
that

‖Ξ‖L2 =

{∫
Ω

‖Ξ(ω)‖2dP (ω)

}1
2

<∞.

In addition, let L2(Ω,C;F(t)) be those Ξ ∈ L2(Ω,C) which are F(t)-
measurable.
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•We consider the following system of controlled stochastic functional differ-
ential equations with a bounded memory:

dX(s) = f (s,Xs, u(s))ds + g(s,Xs, u(s))dW (s), s ∈ [t, T ], (92)

with the initial condition

Xt = ψt, ∀ψt ∈ L2(Ω,C;F(t))

• The functions, f : [0, T ]×C× U → <n and g : [0, T ]×C× U → <n×m
are given deterministic functions and they satisfy the following linear growth
and Lipschitz conditions (See also Mohammed [?, ?]).

Assumption 1 There exists a constant Λ > 0 such that

|f (t, ϕ, u)− f (t, φ, u)| + |g(t, ϕ, u)− g(t, φ, u)| ≤ Λ‖ϕ− φ‖,
∀(t, ϕ, u), (t, φ, u) ∈ [0, T ]×C× U.

Assumption 2 There exists a constant K > 0 such that

|f (t, φ, u)| + |g(t, φ, u)| ≤ K(1 + ‖φ‖), ∀(t, φ, u) ∈ [0, T ]×C× U.
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• Let L and Ψ be two continuous real-valued functions on [0, T ]×C×U and
[0, T ] × C, with at most polynomial growth in L2(J;<). In other words,
there exist a constant Λ > 0 and an integer k > 0 such that

|L(t, φ, u)| ≤ Λ(1 + ‖φ‖2)k, and |Ψ(t, φ)| ≤ Λ(1 + ‖φ‖2)k.

• The objective function is

J(t, ψ;u(·)) ≡ E
[ ∫ T

t

e−ρ(s−t)L(s,Xs(t, ψ, u(·)), u(s))ds

+ e−ρ(T−t)Ψ(XT (t, ψ, u(·)))
]
, (93)

where ρ > 0 denotes a discount factor.

• The value function V : [0, T ]×C→ < is defined as

V (t, ψ) = sup
u(·)∈U [t,T ]

J(t, ψ;u(·)). (94)
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3.2 The Hamilton-Jacobi-Bellman Equation

• Let C∗ and C† be the space of bounded linear functionals Φ : C→ < and
bounded bilinear functionals Φ̃ : C×C→ <, of the space C, respectively.

• Let B = {v1{0}, v ∈ <n}, where 1{0} : [−r, 0]→ < is defined by

1{0}(θ) =

{
0 for θ ∈ [−r, 0),
1 for θ = 0.

We form the direct sum

C⊕B = {φ + v1{0} | φ ∈ C, v ∈ <n}

and equip it with the norm ‖ · ‖ defined by

‖φ + v1{0}‖ = sup
θ∈[−r,0]

|φ(θ)| + |v|, φ ∈ C, v ∈ <n.

• Frèchet derivative: DΦ(ϕ) ∈ C∗.
It has a unique and continuous linear extension DΦ(ϕ) ∈ (C⊕B)∗.
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• The Second order Fréchet derivative, D2Φ(ϕ) ∈ C†, has a unique and
continuous linear extension D2Φ(ϕ) ∈ (C⊕B)†.

• S-operator: For a Borel measurable function Φ : C→ <, we also define

S(Φ)(φ) = lim
h→0+

1

h

[
Φ(φ̃h)− Φ(φ)

]
(95)

for all φ ∈ C, where φ̃ : [−r, T ]→ <n is an extension of φ defined by

φ̃(t) =

{
φ(t) if t ∈ [−r, 0)
φ(0) if t ≥ 0,

and φ̃t ∈ C is defined by

φ̃t(θ) = φ̃(t + θ), θ ∈ [−r, 0].

• Let C1,2
lip ([0, T ]×C) be the space of functions Φ : [0, T ]×C→ < such that

∂Φ
∂t : [0, T ]×C→ < and D2Φ : [0, T ]×C→ C† exist and are continuous
and satisfy the following Lipschitz condition:

‖D2Φ(t, φ)−D2Φ(t, ϕ)‖† ≤ K‖φ− ϕ‖ ∀t ∈ [0, T ], φ, ϕ ∈ C.
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Theorem 3.2 Suppose that Φ ∈ C1,2
lip ([0, T ]×C)∩D(S). Let u(·) ∈ U [t, T ]

and {Xs, s ∈ [t, T ]} be the C-valued Markov solution process of equation
(92) with the initial data (t, ϕt) ∈ [0, T ]×C. Then

lim
ε↓0

E[Φ(t + ε,Xt+ε)]− Φ(t, ϕt)

ε
(96)

=
∂

∂t
Φ(t, ϕt) + S(Φ)(t, ϕt) + DΦ(t, ϕt)(f (t, ϕt, u(t))1{0})

+
1

2

m∑
j=1

D2Φ(t, ϕt)(g(t, ϕt, u(t))ej1{0}, g(t, ϕt, u(t))ej1{0}),

where ej, j = 1, 2, · · · ,m, is the jth unit vector of the standard basis in
<m.
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Theorem (Larssen) Let Assumptions 1-2 hold. Then for any (t, ψ) ∈
[0, T ]×C and F(t)-stopping time τ ∈ [t, T ],

V (t, ψ) = sup
u(·)∈U [t,T ]

E

[ ∫ τ

t

e−ρ(s−t)L(s,Xs(t, ψ, u(·)), u(s))ds

+ e−ρ(τ−t)V (τ,Xτ(t, ψ, u(·)))
]
. (97)

Let v ∈ U . We define:

AvV (t, ψ) ≡ S(V )(t, ψ) + DV (t, ψ)(f (t, ψ, v)1{0})

+
1

2

m∑
i=1

D2V (t, ψ)(g(t, ψ, v)ei1{0}, g(t, ψ, v)ei1{0}).
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Theorem 3.3 Suppose V is the value function defined by (94) and atisfies
V ∈ C1,2

lip ([0, T ] × C) ∩ D(S). Then the value function V satisfies the
following HJB equation:

ρV (t, ψ)− ∂V

∂t
(t, ψ)−max

v∈U
[AvV (t, ψ) + L(t, ψ, v)] = 0 (98)

on [0, T ]×C, and V (T, ψ) = Ψ(ψ), ∀ψ ∈ C.

• The value function V satisfies the necessary smoothness condition V ∈
C1,2
lip ([0, T ]×C) ∩ D(S).

• In general we need to consider viscosity solution instead of a classical solution
for HJB equation (98).

• Actually, the value function is a unique viscosity solution of the HJB equa-
tion (98).
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3.3 Viscosity Solution of the HJB Equation

Definition 1 Let w ∈ C([0, T ]×C). We say that w is a viscosity subsolu-
tion of (98) if, for every Γ ∈ C1,2

lip ([0, T ]×C)∩D(S), for (t, ψ) ∈ [0, T ]×C
satisfying Γ ≥ w on [0, T ]×C and Γ(t, ψ) = w(t, ψ), we have

ρΓ(t, ψ)− ∂Γ

∂t
(t, ψ)−max

v∈U
[AvΓ(t, ψ) + L(t, ψ, v)] ≤ 0.

We say that w is a viscosity super solution of (98) if, for every Γ ∈
C1,2
lip ([0, T ] × C) ∩ D(S), and for (t, ψ) ∈ [0, T ] × C satisfying Γ ≤ w on

[0, T ]×C and Γ(t, ψ) = w(t, ψ), we have

ρΓ(t, ψ)− ∂Γ

∂t
(t, ψ)−max

v∈U
[AvΓ(t, ψ) + L(t, ψ, v)] ≥ 0.

We say that w is a viscosity solution of (98) if it is both a viscosity super-
solution and a viscosity subsolution of (98).

For our value function V defined by (94), we now show that it has the fol-
lowing property.
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Lemma 3.3 The value function V defined in (94) is continuous and there
exists a constant Λ > 0 and a positive integer k such that, for every (t, φ) ∈
[0, T ]×C,

|V (t, φ)| ≤ Λ(1 + ‖φ‖2)k. (99)

and there exists a constant K > 0 such that

|V (s, φ)− V (s, ϕ)| ≤ K‖φ− ϕ‖, ∀(s, φ), (s, ϕ) ∈ [0, T ]×C. (100)

We have the following result:

Theorem 3.4 The value function V is a viscosity solution of the HJB
equation

ρV (t, ψ)− ∂V

∂t
(t, ψ)−max

v∈U
[AvV (t, ψ) + L(t, ψ, v)] = 0 (101)

on [0, T ]×C, and V (T, ψ) = Ψ(ψ), ∀ψ ∈ C.
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3.4 Uniqueness

Since a viscosity solution is both a subsolution and a supersolution, the unique-
ness result will follow immediately after we establish the following comparison
principle:

Theorem 3.5 (Comparison Principle) Assume that V1(t, ψ) and V2(t, ψ)
are both continuous with respect to the argument (t, ψ) and are respectively
viscosity subsolution and supersolution of (98) with at most a polynomial
growth. In other terms, there exists a real number Λ > 0 and a positive
integer k > 0 such that,

|Vi(t, ψ)| ≤ Λ(1 + ‖ψ‖2)k, for (t, ψ) ∈ [0, T ]×C, i = 1, 2.

Then

V1(t, ψ) ≤ V2(t, ψ) for all (t, ψ) ∈ [0, T ]×C. (102)
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THANK YOU!
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