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1 Introduction.

e Stochastic optimal control problems:

dX(s) = f(s,X(s),u(s))ds+ g(s, X(s),u(s))dW(s), Vselt,T]
X(t) = =x.

Value function:
Vit ) = s B [ /t L(s, X(s), u(s))ds + (T, X (T), u(T))

— Typically, we can derive a HJB equation for the value function. By
solving the associated HJB equation (explicitly or numerically), we can
obtain the value function and optimal control policies.

— The HJB equation is usually a second order partial differential equation
of parabolic type.

— In many cases, the value function is just a viscosity solution of the HJB
equation.



e In many real world applications, some physical systems can only be mod-
eled by stochastic dynamical systems whose evolutions depend on the past
history of the states.

e General form:

dX(s) = f(s, X, u(s))ds + g(s, Xs,u(s))dW(s), selt,T], (1)
X(s) = ¢(s), se€lt—h,t, (2)

where X : [—h,0] — R" is defined by
— We will derive the associated HJB equation.

— The HJB equation is in infinite dimensional space.

— The HJB equation involves Fréchet derivatives.



e A model with memory:

dX(s) = a(s, X(s),Y(s), Z(s),u(s))ds
+B(s, X(s),Y(s), Z(s),u(s))dW(s), selt,T], (3)
X(s) = (s), Vselt—ht] (4)

where

0

Y(s) = / X (s+6)dl, Z(s)= X(s—h).
—h

— The value function V (¢, ) will be defined on [0, T'| x C[—h, 0], which is

an infinite dimensional space.

— Under certain conditions, the associated HJB equation can be turned
into a PDE in a finite dimensional space.



e Another model

dX(1) = b(t, X(1), Y (1), Z(b)u(t))dt
Lot X (1), Y (1), Z(t), u)dW ®), te(s,T] (5
X(t> — 77(15—5>> t e <5_67 5]7 URS C<<_570]7R>7 (6>

where W (t) is a Standard 1-dimensional Brownian motion, u(t) is the control
variable, and Y'(t) is given by

0= [ v 20)= Xt —h), te(sT, (1)
where 1(r) is a function of the form

W(r) = ag+ arr + agr’ + -+ a,r’. (8)



2 A Portfolio Optimization Model with Memory

2.1 Problem Formulation

e One risky asset and one riskless asset with interest rate r.

e {(t): the amount invested on the risky asset; L(¢): the amount invested
on the riskless asset. Total wealth: X (t) = K(t) 4+ L(t).

e We consider the situation in which the performance of the risky asset de-
pends on the history (memory) through the following delay variables Y (t)
and Z(t):

Y(t) = /i e X(t+s)ds, Z(t)=X(t—h). (9)



e Assume that K (t) > 0 almost surely. Instead of Y (t), Z(t), we first consider

Y(t) = fii?) = Kl(t) /_h M X (t + s)ds, (10)
Z() = % 8 - Xgé(_t)h). (1)

e We model that K(t) and L(t) with the stochastic differential equations:

dK(t) = [(u1+ p2Y (1) + psZ (1)) K (1) + 1(t)]dt
+ oK (1)dB(1), 12)
dL(t) = [FL(t) — C(t) — I(t)|dt, 13)

where I(t) is the investment rate and C(t) is the consumption rate.



e Using the definition of Y (t), Z(t), we can get that K (t) and L(t) follow the
stochastic differential equations:
dK(t) = [inK() + uY (¢) + psZ(t) + I(t)]dt
+ oK (t)dB(t), (14)
dL(t) = [rL(t) — C(t) — 1(t)]dt. (15)

e Assume that X (¢) > 0 almost surely. Then we can use c¢(t) = el k(t) =
% as our controls. It is easy to see that L(t) = X (¢)(1 — k(t)). Now we
can get the equation for X(t) as

dX(t) = [((1 = r)k(t) — c(t) + )X () + pY () + ps2(t)] dt
v ok(H)X()dB(t), Vte[s,T). (16)

e Remark: It can showed that X (¢) > 0 almost surely.



e The initial condition is the information about X(s) for s € [—h, 0]
X(s+1t)=o(t), Vie|-h,0] (17)

where ¢ € J where J = C|—h, 0] is the space for all continuous function
defined on [—h, 0] equipped with sup-norm:

el = sup |e(s)]. (18)
s€[—h,0]

e Let U(C) be the utility function and W be the terminal utility function.
The objective function is

T
J(s,,k,¢) = E, , [ | eI X @)t + T (), Y<T>>}19>
e The value function is given by

T
Vi(s,¢) = ksufoEs,@[/ e P (e(t) X (t))dt

+e PT=0( X (T), Y(T))] . (20)
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e Under certain conditions, we have

Vs, o) =Vi(s,2,y,2),
where
T = x@(@) = (0),
y=ylp) = /h e p(s)ds,

z = 2(p) = (=h).
e Further we will give the conditions that V' only depends on s, x,y, i.e.,

Vs, o) =V(s,x,y,2) = V(x,y).

10
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2.2 Hamilton-Jacobi-Bellman Equation.

Let f € CY*2([0,T] x R?) and define
G(t) = f(t, X7(t), y(X))), (26)
where
y(n) = / eMn(u)du, Vnel, Xeu)=X(t+u), Yuc[—h,0]. (27)

—h
Then we have the following Ito’s formula:

Lemma 2.1 (Ito’s formula) Let the system be given by (16)-(17), and
Y(t), Z(t) be given by (11). The Ito’s formula is
dG(t) = Lfdt + (ckz) f.dB(t), (28)
where
Lf = L f(t,2,y,2)
= fi+ (((u1 — )k — c+r)x + poy + usz) fu

+ %(ka)Qfm +(z — Ay — G_Ahz)fy' (29)
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We assume that the value function V' depends on the initial path ¢ only
through the functionals (), y(¢) defined by (22-23). That is,

V<57 @) — V(S, $<90>7 y(@)) — V(87 L, y) <3O>

Then we can obtain the following HJB equation:

Lemma 2.2 (HJB equation) Assume that (30) holds and V(s,x,y) €
C?*(R?). Then the HJB equation for V(s,xz,y) is given by

1
BY = Vs = max | S(0ka) Vs + (G = DRV, | + (o + ooy + p32) Vi

+max[—czV, + Ucx)] + (x — My — e M2)V,, Vze R(31)

c=>0

with the boundary condition

V(T,x,y) =V (x,y). (32)
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2.3 The Solution of the HJB Equation.
Assume that the utility function is of the HARA type:

U(cX) = %(CX)’V, (33)
where v € (—o00, 1],y # 0 is a constant. Then we can get
BV =V, = max [%(0]656)2‘/3;1; + (1 — r)k:a:Vx] + (re + poy + psz)V;y
+ max [—chx + %(caz)”] +(z— My —e M)V, (34)
The candidate for the optimal control policy is
o _w;Z;‘zx%’ (35)

1

Vo (36)

¢t =

1
x



Plug k*, ¢* into the HJB equation, and we can get
1(py —7r)*V?2 1 - _
a7l Gk AR Gl e LY

+ (rz + poy + psz) Vi (37)

It can be rewritten as

1y —7)?Vy7 1 1
Vi—-Vs = —2 - ——1 Vi Vi
5 ST + - + (rz + uoy)
+(x = Ay)Vy + (usVe — e_Ath) Z. (38)

Suppose the terminal utility function W(z, y) is given in a form

Uz, y) = %u + gy (30)
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We look for a solution of the form

V(S,I,y) — Q(S>¢<xvy> (4())

Now we can get

BQ(s) — Q'(s)|ih(z, y)
L(p1 —7)?Q(s)12 N

: %1 rx S
2 o2 (; - 1) Q(8)Va] T+ (rz + poy) Qs)¢e
+ (2 = AY)Q(s)Yy + (3t — e M,)Q(s)2. (41)

Apparently, equation (41) has a solution which does not depend on z if we have
the following condition:

(e — e ™,)Q(s)2 =0, ¥z ER (42)
Define u = x + pzeMy and we look for a solution of the form
1 1

@b(l’, y) — ;(CE’ + NSe)\hy)fy — ;u’y7 (43>

15



Plug them into (41), and we can get

%[ﬁ@(@ — Qe
= —l(ul_T)Q s)u’ I ST
= QG+ (2~ 1) Qo)
+ [(r + ez + (g — Mze™) y] Q(s)u' ™. (44)

Assume that
1o — Muse™' = (r + pse) e (45)

(Some discussions on this assumption are given in Section 2.4.) Then it is easy
to verity that

(r+ pze™)z + (2 — Mze™) y] Q(s)u? ™!
= (r+ p3e")Q(s)(x + paeMy)u’ ! (46)
= (r+ uze™)Q(s)u” (47)

16



Canceling the term 4”7 on both sides, we can get

Q'(s) = (v —1)[Q(s)]7T + AQ(s),

where
(1 —7)%y V)
AN=j3+ — :
We assume that the all parameters involved here satisty
A >0,

to guarantee that we have a well-defined solution.

17
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At the point t = T", we have

V(T,x,y) = Q(T%(x + pzey)’ = (x,y) = %(56 + puge'y)?. (51)

Therefore, the boundary condition for Q(s) at s = T' is given by

Q(T) = 1. (52)
By solving (48) — (52), we can get the solution
1 — [
Q(s) = Kl — T7> e T7(T9) 4 TV . (53)
It is easy to verify that, if A > 0, we have
Q(s) >0, Vsel0,T). (54)

Therefore, the solution of the HJB equation (31) — (32) is given by

18



Vs, z,y) = %cxs)(a: T gey). (55)

and the optimal investment ratio and the optimal consumption rate control are

]C*<S> _ (:LLl T T)(:C + :u3€)\hy>

(1~ )0 o0
(s) = gy, (57)

where Q(s) is given by (53) and z, y are estimated at time s as the following:

0

r=X(s), y=Y(s) = /_h M X (s +0)d6. (58)

A verification theorem is needed to ensure that the solution is actually equal
to the value function defined by (20).

19



Theorem 2.1 (Verification Theorem) Let V (s, z,y) € CY*2([0,T] x
R x R) be a solution of the HIB equation (31) — (32) such that

E [/T[k(t)X(t)Vx(t,X(t),Y(t))]th] < oo, Vkell (59)

Then we have

V(s,z,y) = sup Ex¢[/ e P (e(t) X (t))dt

k>0
+e PIDw(X(T), Y(T))] . (60)
In addtion, if the utility function 1s given by
Ux) = %:1:7, v € (=00, 1] and v # 0, (61)
then the optimal control policy is given by
o ( — T)‘/x’ o l%ﬁ (62)

o2z V.., T

20



2.4 Some Examples.

In this section, we discuss some examples. For convenience, we rewrite the
dynamic equation for the wealth process X (t) here:

dX(t) = (1 —1)k(t) = ct) + )X () + poY (¢) + paZ(t)] dt
+ok(O)X ) (E]dB(t), Vt e [s,T]. (63)

The initial condition is given by
X(s+1t)=(t), Vte[-h,0. (64)

In last section, we have obtained an explicit solution given the assumption
(equation (45)):

1o — Mge™ = (use' 4+ ) use. (65)

We discuss some interest cases here.

21



Case 1. Let puz = 0 Then we must have s = 0
dX(t) = |((rn —r)k(t) — c(t) + )X ()] dt
+ok(t) X (t)dB(t), Vte s, T],
X(s+0) = ), VO € [—h,0].

The optimal control policy is

* (1 — 1)
ST =)
¢ = QT

(71)



The value function is given by

Vs, z,y) = %Q(s):ﬂ (72)

The value function and the optimal consumption control policy is the same
with the optimal consumption control policy of the classical Merton’s problem
on a finite time horizon with objective function

T
1 1
J(s,2) = max Eg, [ / e =9 (c() X (1)) Vdt + e PT—9) =

with dynamic equations for X (¢) being

dX(t) = [(u1 — r)k(t) — c(t) + r] X ()dt + ok(t) X ()dB(t),  (74)
X(0) = z. (75)

X, (73)

where z = z(¢) = p(0).
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Case 2. Let u3 = ve " for a constant v > 0 and let jy = 12+ v(r + \).Now
the equations of X (¢) become

dX(t) = [((1 = r)k(t) — ct) + )X (&) + (" + v(r + N)Y(2)

+ve M Z(O))dt + ok(t) X (t)dB(t), (76)
X(s+0) = ), VO € [—h,0]. (77)
The optimal control is now given by
. (m—r)lz+rvy) v (1 —r)v|y.
ek e G
i = e = (1Y) Qe (79)

where Q)(s) is given by

24



and A is given by

N=p(+ ;/;1 <_ ) f; Y(v + 7). (81)

The value function is given by

Vs, z,y) = %Q(S)(SE + vy)”. (82)

As we can see, both the control policy and the value function now depend on
the parameter v.

25



Case 3. Now we assume pz3 = e . Then we have
’r+,u36Ah:fr+1.
If po satisties
po =1+ 1+ A, (83)

then it is easy to verify that (65) holds. Then the dynamic equation for X (¢)
is now given by

dX(t) = [((pn —r)k(t) —ct) + )X )+ A +r+ )Y () +e M Z(t)] dt

+ok(t) X (t)dB(t), Vte s, T], (84)
X(s+0) = ), VO € [—h,0]. (85)
The optimal control policy is
=)ty o (b —1) |y
e e R
@ = e = (1+2) Qe (87)

26



where Q(s) is given by

Q(s) = [(1 _ 1%) R 1_T7] . (88)

and A is given by

A:B+§/:2<;i>17—7(1+r). (89)

The value function is given by

N—

Vis,z,y) = %@<s><x Fy). (90)

As we can see, both the control policy and the value function now depend on
the delay variable y. Actually, this is a special case of Case 2 with v = 1.

27



Final Remark. From the condition (65), we can get

py = Auze + (r + pge) pse™

= e 41+ pze). (91)
So it is easy to see that py = 0 if and only if ug = 0, provided that pg > 0, and

lim o = o0.
H3— 00

In other words, the price change of X (¢) must depend on both Y () and Z(t)
at the same time with similar manner in order to obtain a explicit solution

Vs, z,y).
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3 Stochastic Control Problems with Memory: Gen-
eral Framework

3.1 Problem Formulation

e We study the finite time horizon optimal control problem for a general
system of stochastic functional differential equations on the interval [¢, T7.

e Let h > 0 be a fixed constant, and let J = |—h, 0] denote the duration
of the bounded memory of the equations considered in this paper. For the
sake of simplicity, we denote C'(J;R"), the space of continuous functions
¢ J — K" by C. Note that C is a real separable Banach space under the
supremum norm defined by

|o[l = sup |o(t)], ¢ € C,

telJ

where | - | is the Euclidean norm in R".

29



e Denote by ( - | - ) the inner product in L*(J, R") as the following

0W®=/<M$¢®M& and [|]ls = (6l0)}, V,0 € C,

T

l\Dll—‘

where (-, -) is the inner product in R".

e Notation: If ¢ € C(|—r,00); R") and t € Ry, let 1)y € C be defined by
Wi(l) =t +0),0 €.

o Let {W(t),t > 0} be a certain m-dimensional standard Brownian motion
defined on a complete filtered probability space (§2, F, P; F).

o Let L*(Q), C) be the space of C-valued random variables = : Q — C such

that 1
2
nupz{/w ) [2AP(w) } < .

In addition, let L*(Q2, C; F(t)) be those = € L?*(€2,C) which are F(t)-
measurable.

30



e We consider the following system of controlled stochastic functional differ-
ential equations with a bounded memory:

AX(5) = f(s, Xoru(s))ds + g(s, X u(s)dW(s), s € [t,T], (92
with the initial condition
Xy =1, Vyy € LQ(Q C; F(t))

e The functions, f: [0,T] x Cx U — R" and g : [0,T] x C x U — "™
are given deterministic functions and they satisty the following linear growth
and Lipschitz conditions (See also Mohammed [?7, 7).

Assumption 1 There exists a constant A > 0 such that

V(t, @, u), (L ¢, u) € [0,T] x CxU.

Assumption 2 There exists a constant K > 0 such that
[f(t o, u)| + 9(t, ¢, u)| < K(L+[¢]]), V(¢,¢,u) € 0,T] x CxU.
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e Let L and ¥ be two continuous real-valued functions on |0, T] x C x U and
0, 7] x C, with at most polynomial growth in L*(J; ). In other words,
there exist a constant A > 0 and an integer £ > 0 such that

L(t, ¢, u)] < AL+ Igll2)",  and [Pt 0)] < AL+ [0]]2)",

e The objective function is
T
It () = E[ [ e s Xt b))
t

+ e T (Xp(t, 9, ul-))) | (93)

where p > 0 denotes a discount factor.

e The value function V' : [0,7] x C — R is defined as
V(t, )= sup J(t ;ul)). (94)

u(-)EU[t,T]
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3.2 The Hamilton-Jacobi-Bellman Equation

e Let C* and CT be the space of bounded linear functionals ¢ : C — R and
bounded bilinear functionals ® : C x C — R, of the space C, respectively.

o Let B = {vlyy,v € "}, where 14y : [—7,0] — R is defined by

0 for 0 € [—r,0),
1oy(0) = { 1 for 6 = 0.

We form the direct sum
C@B:{¢+U1{O} | p e C, veR"}
and equip it with the norm || - || defined by

o+ v1gy| = Sup ]|¢(9)\ +v], ¢€C,veR"
el—r,0

e Frechet derivative: D®(p) € C*.
[t has a unique and continuous linear extension D®(p) € (C @ B)*.
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e The Second order Fréchet derivative, D?®(¢) € C', has a unique and
continuous linear extension D?®(p) € (C @ B)T.

e S-operator: For a Borel measurable function ® : C — ¥, we also define

S(@)(6) = T 7 [2(d) — 2(6)] (95)

h—0+ h
for all ¢ € C, where ¢ : [—r, T] — R" is an extension of ¢ defined by

- o(t) if t € [—r,0)
Bt) = { $(0) if t >0,

and ¢; € C is defined by
0:(0) = (t +6), 0 € [-r0].

) Let C;ZPQ([O T| x C) be the space of functions ® : [0, T] x C — R such that

W [0, T] x C — R and D?® : [0,7] x C — CT exist and are continuous
and satisty the following Lipschitz condition:

|D*0(t, ¢) — D*0(t, )| < K¢ — || Vt€[0,T], .p€C.
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Theorem 3.2 Suppose that ® € C’llif([O,T] x C)ND(S). Letu(-) e U[t,T]
and {Xs, s € [t,T]} be the C-valued Markov solution process of equation
(92) with the initial data (t, ;) € [0,T] x C. Then

EO(t + €, Xito)] — O(t, 1)

I 96
im : (96)

0

= o 0(t, @) + S()(t, 1) + DOt 2)(F(t, 0, ult) 110y)
I =5
+ Z D2®(t, p1)(g(t, pr, u(l))ejlioy, g(t, o1, ult))e;lioy),
j=1

where e;,7 = 1,2,--- ,m, s the jth unit vector of the standard basis in

R
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Theorem (Larssen) Let Assumptions 1-2 hold. Then for any (t,v) €
0, 7] x C and F(t)-stopping time T € [t, T,

V(t,y) = sup E[/; e_p(s_t)L(s,Xs(t,w,u(-)),u(s))ds

u(-)eUlt,T)

+ e PTOV(r XL (0, u())]. (97)

Letv e U. We define:
AV (t, ) = S(V)(t,¥) + DV (L, ¥)(f(t, ¥, v)1)

m

+1 Z D2V (t,4)(g(t, ¥, v)eiLlyn, g(t, ¥, v)edl).
1=1

24
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Theorem 3.3 Suppose V' is the value function defined by (94) and atisfies
V e Cllif([O,T] x C) N D(S). Then the value function V satisfies the
following HJB equation:

PV(1,1) — (6, 0) — max AV(E0) 4 L) =0 (09

vel

on [0,T] x C, and V(T,v) =V (), Vi € C.

e The value function V satisfies the necessary smoothness condition V' &

C2(10,T] x C)ND(S).

lip
e In general we need to consider viscosity solution instead of a classical solution
for HJB equation (98).

e Actually, the value function is a unique viscosity solution of the HJB equa-
tion (98).
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3.3 Viscosity Solution of the HJB Equation

Definition 1 Let w € C(|0,T] x C). We say that w is a viscosity subsolu-
tion of (98) if, for every I' € C’llif([O,T] x C)ND(S), for (t,v) € [0, T x C
satisfying ' > w on [0, T] x C and I'(t, ) = w(t, ), we have
or
pr(t, 'Qb) o E(ta 'Qb) o mea(}{ [Avr<t7 'Qb) T L(tv wa U)] < 0.

We say that w is a wviscosity super solution of (98) if, for every I' €
C2([0,T] x C)ND(S), and for (t,4)) € [0,T] x C satisfying I' < w on

lip

0, 7] x C and I'(t, ) = w(t, ), we have

or
pl(t, ) — E(t, ) — max AT(t, ) + L(t, ¥, v)] > 0.

We say that w is a viscosity solution of (98) if it is both a viscosity super-
solution and a viscosity subsolution of (98).

For our value function V' defined by (94), we now show that it has the fol-
lowing property:.
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Lemma 3.3 The value function V defined in (94) is continuous and there

exists a constant A > 0 and a positive integer k such that, for every (t, ¢) €
0,7] x C,

Vit 0)] < AL+ loll2)" (99)
and there exists a constant K > 0 such that
Vi(s,¢) = Vs, o)l < Kll¢ = ¢ll, ¥(s,0),(s,0) €[0,T] x C. (100)
We have the following result:
Theorem 3.4 The value function V' is a wviscosity solution of the HJB

equation
PVt 9) — o (8 ¥) —max [ATV(E, ) + L, ¥, v)] =0 (101)

on [0,T] x C, and V(T,v) =V (), Vi € C.

%
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3.4 Uniqueness

Since a viscosity solution is both a subsolution and a supersolution, the unique-
ness result will follow immediately after we establish the following comparison
principle:

Theorem 3.5 (Comparison Principle) Assume that Vi(t,v) and Va(t, )
are both continuous with respect to the argument (t,1) and are respectively
viscosity subsolution and supersolution of (98) with at most a polynomial
growth. In other terms, there exists a real number A > 0 and a positive
integer k > 0 such that,

Vi(t, )| < AL+ [[pll2)*, for (t,4) €0, T] x C, i=1,2.
Then

Vi(t, ) < Va(t, o) for all (t,v) € [0,T] x C. (102)
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THANK YOU!
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