A Stochastic Portfolio Optimization Model with Bounded Memory

Tao Pang ${ }^{1}$
Department of Mathematics
North Carolina State University

Financial Mathematics Seminar
University of Southern California
Nov. 4, 2013

[^0]
Outline

- Background and Introduction
- A Portfolio Optimization Model with Memory
- HJB Equation in Finite Dimensional Space
- Explicit Solutions
- Some Examples and Discussions
- Stochastic Control Problems with Memory
- HJB Equation in Infinite Dimensional Spaces
- Viscosity Solution
- Uniqueness Results

1 Introduction.

- Stochastic optimal control problems:

$$
\begin{aligned}
d X(s) & =f(s, X(s), u(s)) d s+g(s, X(s), u(s)) d W(s), \quad \forall s \in[t, T] \\
X(t) & =x
\end{aligned}
$$

Value function:

$$
V(t, x)=\sup _{u} \mathbf{E}_{t, x}\left[\int_{t}^{T} L(s, X(s), u(s)) d s+\Psi(T, X(T), u(T))\right]
$$

- Typically, we can derive a HJB equation for the value function. By solving the associated HJB equation (explicitly or numerically), we can obtain the value function and optimal control policies.
- The HJB equation is usually a second order partial differential equation of parabolic type.
- In many cases, the value function is just a viscosity solution of the HJB equation.
- In many real world applications, some physical systems can only be modeled by stochastic dynamical systems whose evolutions depend on the past history of the states.
- General form:

$$
\begin{align*}
d X(s) & =f\left(s, X_{s}, u(s)\right) d s+g\left(s, X_{s}, u(s)\right) d W(s), \quad s \in[t, T] \tag{1}\\
X(s) & =\psi(s), \quad s \in[t-h, t] \tag{2}
\end{align*}
$$

where $X_{s}:[-h, 0] \rightarrow \Re^{n}$ is defined by

$$
X_{s}(\theta)=X(s+\theta)
$$

- We will derive the associated HJB equation.
- The HJB equation is in infinite dimensional space.
- The HJB equation involves Fréchet derivatives.
- A model with memory:

$$
\begin{align*}
d X(s)= & \alpha(s, X(s), Y(s), Z(s), u(s)) d s \\
& +\beta(s, X(s), Y(s), Z(s), u(s)) d W(s), \quad s \in[t, T] \tag{3}\\
X(s)= & \psi(s), \quad \forall s \in[t-h, t] \tag{4}
\end{align*}
$$

where

$$
Y(s)=\int_{-h}^{0} e^{\lambda \theta} X(s+\theta) d \theta, \quad Z(s)=X(s-h)
$$

- The value function $V(t, \psi)$ will be defined on $[0, T] \times C[-h, 0]$, which is an infinite dimensional space.
- Under certain conditions, the associated HJB equation can be turned into a PDE in a finite dimensional space.
- Another model

$$
\begin{align*}
d X(t)= & b(t, X(t), Y(t), Z(t) u(t)) d t \\
& +\sigma(t, X(t), Y(t), Z(t), u(t)) d W(t), \quad t \in(s, T] \tag{5}\\
X(t)= & \eta(t-s), \quad t \in(s-\delta, s], \quad \eta \in C((-\delta, 0] ; \mathbb{R}) \tag{6}
\end{align*}
$$

where $W(t)$ is a standard 1-dimensional Brownian motion, $u(t)$ is the control variable, and $Y(t)$ is given by

$$
\begin{equation*}
Y(t)=\int_{-\delta}^{0} \psi(r) X(t+r) d r, \quad Z(t)=X(t-h), \quad t \in(s, T] \tag{7}
\end{equation*}
$$

where $\psi(r)$ is a function of the form

$$
\begin{equation*}
\psi(r)=a_{0}+a_{1} r+a_{2} r^{2}+\cdots+a_{n} r^{n} \tag{8}
\end{equation*}
$$

2 A Portfolio Optimization Model with Memory

2.1 Problem Formulation

- One risky asset and one riskless asset with interest rate r.
- $K(t)$: the amount invested on the risky asset; $L(t)$: the amount invested on the riskless asset. Total wealth: $X(t)=K(t)+L(t)$.
- We consider the situation in which the performance of the risky asset depends on the history (memory) through the following delay variables $Y(t)$ and $Z(t)$:

$$
\begin{equation*}
Y(t) \equiv \int_{-h}^{0} e^{\lambda s} X(t+s) d s, \quad Z(t) \equiv X(t-h) \tag{9}
\end{equation*}
$$

- Assume that $K(t)>0$ almost surely. Instead of $Y(t), Z(t)$, we first consider

$$
\begin{align*}
\tilde{Y}(t) & \equiv \frac{Y(t)}{K(t)}=\frac{1}{K(t)} \int_{-h}^{0} e^{\lambda s} X(t+s) d s \tag{10}\\
\tilde{Z}(t) & \equiv \frac{Z(t)}{K(t)}=\frac{X(t-h)}{K(t)} \tag{11}
\end{align*}
$$

- We model that $K(t)$ and $L(t)$ with the stochastic differential equations:

$$
\begin{align*}
d K(t)= & {\left[\left(\mu_{1}+\mu_{2} \tilde{Y}(t)+\mu_{3} \tilde{Z}(t)\right) K(t)+I(t)\right] d t } \\
& +\sigma K(t) d B(t) \tag{12}\\
d L(t)= & {[r L(t)-C(t)-I(t)] d t } \tag{13}
\end{align*}
$$

where $I(t)$ is the investment rate and $C(t)$ is the consumption rate.

- Using the definition of $\tilde{Y}(t), \tilde{Z}(t)$, we can get that $K(t)$ and $L(t)$ follow the stochastic differential equations:

$$
\begin{align*}
d K(t)= & {\left[\mu_{1} K(t)+\mu_{2} Y(t)+\mu_{3} Z(t)+I(t)\right] d t } \\
& +\sigma K(t) d B(t) \tag{14}\\
d L(t)= & r L(t)-C(t)-I(t)] d t \tag{15}
\end{align*}
$$

- Assume that $X(t)>0$ almost surely. Then we can use $c(t) \equiv \frac{C(t)}{X(t)}, k(t)=$ $\frac{K(t)}{X(t)}$ as our controls. It is easy to see that $L(t)=X(t)(1-k(t))$. Now we can get the equation for $X(t)$ as

$$
\begin{align*}
d X(t)= & {\left[\left(\left(\mu_{1}-r\right) k(t)-c(t)+r\right) X(t)+\mu_{2} Y(t)+\mu_{3} Z(t)\right] d t } \\
& +\sigma k(t) X(t) d B(t), \quad \forall t \in[s, T] \tag{16}
\end{align*}
$$

- Remark: It can showed that $X(t)>0$ almost surely.
- The initial condition is the information about $X(s)$ for $s \in[-h, 0]$:

$$
\begin{equation*}
X(s+t)=\varphi(t), \quad \forall t \in[-h, 0] \tag{17}
\end{equation*}
$$

where $\varphi \in \mathbb{J}$ where $\mathbb{J} \equiv C[-h, 0]$ is the space for all continuous function defined on $[-h, 0]$ equipped with sup-norm:

$$
\begin{equation*}
\|\varphi\|=\sup _{s \in[-h, 0]}|\varphi(s)| . \tag{18}
\end{equation*}
$$

- Let $U(C)$ be the utility function and Ψ be the terminal utility function. The objective function is

$$
\left.J(s, \varphi, k, c)=\mathbf{E}_{s, \varphi}\left[\int_{s}^{T} e^{-\beta(t-s)} U(c(t) X(t)) d t+e^{-\beta(T-s)} \Psi(X(T), Y(T))\right] 19\right)
$$

- The value function is given by

$$
\begin{array}{r}
V(s, \varphi)=\sup _{k, c \geq 0} \mathbf{E}_{s, \varphi}\left[\int_{s}^{T} e^{-\beta(t-s)} U(c(t) X(t)) d t\right. \\
\left.+e^{-\beta(T-s)} \Psi(X(T), Y(T))\right] \tag{20}
\end{array}
$$

- Under certain conditions, we have

$$
\begin{equation*}
V(s, \varphi)=V(s, x, y, z) \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
x & =x(\varphi) \equiv \varphi(0), \tag{22}\\
y=y(\varphi) & \equiv \int_{-h}^{0} e^{\lambda s} \varphi(s) d s, \tag{23}\\
z & =z(\varphi) \equiv \varphi(-h) \tag{24}
\end{align*}
$$

- Further we will give the conditions that V only depends on s, x, y, i.e.,

$$
\begin{equation*}
V(s, \varphi)=V(s, x, y, z)=V(x, y) \tag{25}
\end{equation*}
$$

2.2 Hamilton-Jacobi-Bellman Equation.

Let $f \in C^{1,2,2}\left([0, T] \times \mathbb{R}^{2}\right)$ and define

$$
\begin{equation*}
G(t)=f\left(t, X^{\varphi}(t), y\left(X_{t}^{\varphi}\right)\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
y(\eta)=\int_{-h}^{0} e^{\lambda u} \eta(u) d u, \quad \forall \eta \in \mathbb{J}, \quad X_{t}(u) \equiv X(t+u), \quad \forall u \in[-h, 0] \tag{27}
\end{equation*}
$$

Then we have the following Ito's formula:
Lemma 2.1 (Ito's formula) Let the system be given by (16)-(17), and $Y(t), Z(t)$ be given by (11). The Ito's formula is

$$
\begin{equation*}
d G(t)=\mathcal{L} f d t+(\sigma k x) f_{x} d B(t) \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{L} f= & \mathcal{L}^{k, c} f(t, x, y, z) \\
= & f_{t}+\left(\left(\left(\mu_{1}-r\right) k-c+r\right) x+\mu_{2} y+\mu_{3} z\right) f_{x} \\
& +\frac{1}{2}(\sigma k x)^{2} f_{x x}+\left(x-\lambda y-e^{-\lambda h} z\right) f_{y} \tag{29}
\end{align*}
$$

We assume that the value function V depends on the initial path φ only through the functionals $x(\varphi), y(\varphi)$ defined by (22-23). That is,

$$
\begin{equation*}
V(s, \varphi)=V(s, x(\varphi), y(\varphi))=V(s, x, y) \tag{30}
\end{equation*}
$$

Then we can obtain the following HJB equation:
Lemma 2.2 (HJB equation) Assume that (30) holds and $V(s, x, y) \in$ $C^{2}\left(\mathbb{R}^{2}\right)$. Then the HJB equation for $V(s, x, y)$ is given by

$$
\begin{aligned}
\beta V-V_{s}= & \max _{k}\left[\frac{1}{2}(\sigma k x)^{2} V_{x x}+\left(\left(\mu_{1}-r\right) k\right) x V_{x}\right]+\left(r x+\mu_{2} y+\mu_{3} z\right) V_{x} \\
& +\max _{c \geq 0}\left[-c x V_{x}+U(c x)\right]+\left(x-\lambda y-e^{-\lambda h} z\right) V_{y}, \quad \forall z \in \mathbb{R},(31)
\end{aligned}
$$

with the boundary condition

$$
\begin{equation*}
V(T, x, y)=\Psi(x, y) \tag{32}
\end{equation*}
$$

2.3 The Solution of the HJB Equation.

Assume that the utility function is of the HARA type:

$$
\begin{equation*}
U(c X)=\frac{1}{\gamma}(c X)^{\gamma} \tag{33}
\end{equation*}
$$

where $\gamma \in(-\infty, 1], \gamma \neq 0$ is a constant. Then we can get

$$
\begin{align*}
\beta V-V_{s}= & \max _{k}\left[\frac{1}{2}(\sigma k x)^{2} V_{x x}+\left(\mu_{1}-r\right) k x V_{x}\right]+\left(r x+\mu_{2} y+\mu_{3} z\right) V_{x} \\
& +\max _{c \geq 0}\left[-c x V_{x}+\frac{1}{\gamma}(c x)^{\gamma}\right]+\left(x-\lambda y-e^{-\lambda h} z\right) V_{y} \tag{34}
\end{align*}
$$

The candidate for the optimal control policy is

$$
\begin{align*}
k^{*} & =-\frac{\left(\mu_{1}-r\right) V_{x}}{\sigma^{2} x V_{x x}} \tag{35}\\
c^{*} & =\frac{1}{x} V_{x}^{\frac{1}{\gamma-1}} \tag{36}
\end{align*}
$$

Plug k^{*}, c^{*} into the HJB equation, and we can get

$$
\begin{align*}
\beta V-V_{s}= & -\frac{1}{2} \frac{\left(\mu_{1}-r\right)^{2} V_{x}^{2}}{\sigma^{2} V_{x x}}+\left(\frac{1}{\gamma}-1\right) V_{x}^{\frac{\gamma}{\gamma-1}}+\left(x-\lambda y-e^{-\lambda h} z\right) V_{y} \\
& +\left(r x+\mu_{2} y+\mu_{3} z\right) V_{x} \tag{37}
\end{align*}
$$

It can be rewritten as

$$
\begin{align*}
\beta V-V_{s}= & -\frac{1}{2} \frac{\left(\mu_{1}-r\right)^{2} V_{x}^{2}}{\sigma^{2} V_{x x}}+\left(\frac{1}{\gamma}-1\right) V_{x}^{\frac{\gamma}{\gamma-1}}+\left(r x+\mu_{2} y\right) V_{x} \\
& +(x-\lambda y) V_{y}+\left(\mu_{3} V_{x}-e^{-\lambda h} V_{y}\right) z \tag{38}
\end{align*}
$$

Suppose the terminal utility function $\Psi(x, y)$ is given in a form

$$
\begin{equation*}
\Psi(x, y)=\frac{1}{\gamma}\left(x+\mu_{3} e^{\lambda h} y\right)^{\gamma} . \tag{39}
\end{equation*}
$$

We look for a solution of the form

$$
\begin{equation*}
V(s, x, y)=Q(s) \psi(x, y) \tag{40}
\end{equation*}
$$

Now we can get

$$
\begin{align*}
& {\left[\beta Q(s)-Q^{\prime}(s)\right] \psi(x, y) } \\
= & -\frac{1}{2} \frac{\left(\mu_{1}-r\right)^{2} Q(s) \psi_{x}^{2}}{\sigma^{2} \psi_{x x}}+\left(\frac{1}{\gamma}-1\right)\left[Q(s) \psi_{x}\right]^{\frac{\gamma}{\gamma-1}}+\left(r x+\mu_{2} y\right) Q(s) \psi_{x} \\
& +(x-\lambda y) Q(s) \psi_{y}+\left(\mu_{3} \psi_{x}-e^{-\lambda h} \psi_{y}\right) Q(s) z \tag{41}
\end{align*}
$$

Apparently, equation (41) has a solution which does not depend on z if we have the following condition:

$$
\begin{equation*}
\left(\mu_{3} \psi_{x}-e^{-\lambda h} \psi_{y}\right) Q(s) z=0, \quad \forall z \in \mathbb{R} \tag{42}
\end{equation*}
$$

Define $u \equiv x+\mu_{3} e^{\lambda h} y$ and we look for a solution of the form

$$
\begin{equation*}
\psi(x, y)=\frac{1}{\gamma}\left(x+\mu_{3} e^{\lambda h} y\right)^{\gamma}=\frac{1}{\gamma} u^{\gamma} \tag{43}
\end{equation*}
$$

Plug them into (41), and we can get

$$
\begin{align*}
& \frac{1}{\gamma}\left[\beta Q(s)-Q^{\prime}(s)\right] u^{\gamma} \\
= & -\frac{1}{2} \frac{\left(\mu_{1}-r\right)^{2}}{\sigma^{2}(\gamma-1)} Q(s) u^{\gamma}+\left(\frac{1}{\gamma}-1\right)[Q(s)]^{\frac{\gamma}{\gamma-1}} u^{\gamma} \\
& +\left[\left(r+\mu_{3} e^{\lambda h}\right) x+\left(\mu_{2}-\lambda \mu_{3} e^{\lambda h}\right) y\right] Q(s) u^{\gamma-1} . \tag{44}
\end{align*}
$$

Assume that

$$
\begin{equation*}
\mu_{2}-\lambda \mu_{3} e^{\lambda h}=\left(r+\mu_{3} e^{\lambda h}\right) \mu_{3} e^{\lambda h} \tag{45}
\end{equation*}
$$

(Some discussions on this assumption are given in Section 2.4.) Then it is easy to verify that

$$
\begin{align*}
& {\left[\left(r+\mu_{3} e^{\lambda h}\right) x+\left(\mu_{2}-\lambda \mu_{3} e^{\lambda h}\right) y\right] Q(s) u^{\gamma-1} } \\
= & \left(r+\mu_{3} e^{\lambda h}\right) Q(s)\left(x+\mu_{3} e^{\lambda h} y\right) u^{\gamma-1} \tag{46}\\
= & \left(r+\mu_{3} e^{\lambda h}\right) Q(s) u^{\gamma} \tag{47}
\end{align*}
$$

Canceling the term u^{γ} on both sides, we can get

$$
\begin{equation*}
Q^{\prime}(s)=(\gamma-1)[Q(s)]^{\frac{\gamma}{\gamma-1}}+\Lambda Q(s), \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda \equiv \beta+\frac{\left(\mu_{1}-r\right)^{2} \gamma}{2 \sigma^{2}(\gamma-1)}-\gamma\left(r+\mu_{3} e^{\lambda h}\right) \tag{49}
\end{equation*}
$$

We assume that the all parameters involved here satisfy

$$
\begin{equation*}
\Lambda>0 \tag{50}
\end{equation*}
$$

to guarantee that we have a well-defined solution.

At the point $t=T$, we have

$$
\begin{equation*}
V(T, x, y)=Q(T) \frac{1}{\gamma}\left(x+\mu_{3} e^{\lambda h} y\right)^{\gamma}=\Psi(x, y)=\frac{1}{\gamma}\left(x+\mu_{3} e^{\lambda h} y\right)^{\gamma} \tag{51}
\end{equation*}
$$

Therefore, the boundary condition for $Q(s)$ at $s=T$ is given by

$$
\begin{equation*}
Q(T)=1 \tag{52}
\end{equation*}
$$

By solving (48) - (52), we can get the solution

$$
\begin{equation*}
Q(s)=\left[\left(1-\frac{1-\gamma}{\Lambda}\right) e^{-\frac{\Lambda}{1-\gamma}(T-s)}+\frac{1-\gamma}{\Lambda}\right]^{1-\gamma} \tag{53}
\end{equation*}
$$

It is easy to verify that, if $\Lambda>0$, we have

$$
\begin{equation*}
Q(s)>0, \quad \forall s \in[0, T] . \tag{54}
\end{equation*}
$$

Therefore, the solution of the HJB equation (31) - (32) is given by

$$
\begin{equation*}
V(s, x, y)=\frac{1}{\gamma} Q(s)\left(x+\mu_{3} e^{\lambda h} y\right)^{\gamma} . \tag{55}
\end{equation*}
$$

and the optimal investment ratio and the optimal consumption rate control are

$$
\begin{align*}
& k^{*}(s)=\frac{\left(\mu_{1}-r\right)\left(x+\mu_{3} e^{\lambda h} y\right)}{(1-\gamma) \sigma^{2} x} \tag{56}\\
& c^{*}(s)=\frac{x+\mu_{3} e^{\lambda h} y}{x} Q(s)^{\frac{1}{\gamma-1}} \tag{57}
\end{align*}
$$

where $Q(s)$ is given by (53) and x, y are estimated at time s as the following:

$$
\begin{equation*}
x=X(s), \quad y=Y(s)=\int_{-h}^{0} e^{\lambda \theta} X(s+\theta) d \theta \tag{58}
\end{equation*}
$$

A verification theorem is needed to ensure that the solution is actually equal to the value function defined by (20).

Theorem 2.1 (Verification Theorem) Let $V(s, x, y) \in C^{1,2,2}([0, T] \times$ $\mathbb{R} \times \mathbb{R}$) be a solution of the HJB equation (31) - (32) such that

$$
\begin{equation*}
\mathbf{E}\left[\int_{0}^{T}\left[k(t) X(t) V_{x}(t, X(t), Y(t))\right]^{2} d t\right]<\infty, \quad \forall k \in \Pi \tag{59}
\end{equation*}
$$

Then we have

$$
\begin{align*}
V(s, x, y)=\sup _{k, c \geq 0} \mathbf{E}_{x, \phi} & {\left[\int_{s}^{T} e^{-\beta(t-s)} U(c(t) X(t)) d t\right.} \\
& \left.+e^{-\beta(T-s)} \Psi(X(T), Y(T))\right] \tag{60}
\end{align*}
$$

In addtion, if the utility function is given by

$$
\begin{equation*}
U(x)=\frac{1}{\gamma} x^{\gamma}, \quad \gamma \in(-\infty, 1] \text { and } \gamma \neq 0 \tag{61}
\end{equation*}
$$

then the optimal control policy is given by

$$
\begin{equation*}
k^{*}=-\frac{\left(\mu_{1}-r\right) V_{x}}{\sigma^{2} x V_{x x}}, \quad c^{*}=\frac{1}{x} V_{x}^{\frac{1}{\gamma-1}} \tag{62}
\end{equation*}
$$

2.4 Some Examples.

In this section, we discuss some examples. For convenience, we rewrite the dynamic equation for the wealth process $X(t)$ here:

$$
\begin{align*}
d X(t)= & {\left[\left(\left(\mu_{1}-r\right) k(t)-c(t)+r\right) X(t)+\mu_{2} Y(t)+\mu_{3} Z(t)\right] d t } \\
& +[\sigma k(t) X(t)(t)] d B(t), \quad \forall t \in[s, T] \tag{63}
\end{align*}
$$

The initial condition is given by

$$
\begin{equation*}
X(s+t)=\varphi(t), \quad \forall t \in[-h, 0] \tag{64}
\end{equation*}
$$

In last section, we have obtained an explicit solution given the assumption (equation (45)):

$$
\begin{equation*}
\mu_{2}-\lambda \mu_{3} e^{\lambda h}=\left(\mu_{3} e^{\lambda h}+r\right) \mu_{3} e^{\lambda h} \tag{65}
\end{equation*}
$$

We discuss some interest cases here.

Case 1. Let $\mu_{3}=0$ Then we must have $\mu_{2}=0$

$$
\begin{align*}
d X(t)= & {\left[\left(\left(\mu_{1}-r\right) k(t)-c(t)+r\right) X(t)\right] d t } \\
& +\sigma k(t) X(t) d B(t), \quad \forall t \in[s, T] \tag{66}\\
X(s+\theta)= & \varphi(\theta), \quad \forall \theta \in[-h, 0] \tag{67}
\end{align*}
$$

The optimal control policy is

$$
\begin{align*}
k_{s}^{*} & =\frac{\left(\mu_{1}-r\right)}{\sigma^{2}(1-\gamma)} \tag{68}\\
c_{s}^{*} & =[Q(s)]^{\frac{1}{\gamma-1}} \tag{69}
\end{align*}
$$

where $Q(s)$ is given by

$$
\begin{equation*}
Q(s)=\left[\left(1-\frac{1-\gamma}{\Lambda}\right) e^{-\frac{\Lambda(T-s)}{1-\gamma}}+\frac{1-\gamma}{\Lambda}\right]^{1-\gamma} \tag{70}
\end{equation*}
$$

and Λ is given by

$$
\begin{equation*}
\Lambda=\beta+\frac{\left(\mu_{1}-r\right)^{2} \gamma}{2 \sigma^{2}(\gamma-1)}-\gamma r \tag{71}
\end{equation*}
$$

The value function is given by

$$
\begin{equation*}
V(s, x, y)=\frac{1}{\gamma} Q(s) x^{\gamma} \tag{72}
\end{equation*}
$$

The value function and the optimal consumption control policy is the same with the optimal consumption control policy of the classical Merton's problem on a finite time horizon with objective function

$$
\begin{equation*}
J(s, x)=\max _{k, c} \mathbf{E}_{s, x}\left[\int_{s}^{T} e^{-\beta(t-s)} \frac{1}{\gamma}(c(t) X(t))^{\gamma} d t+e^{-\beta(T-s)} \frac{1}{\gamma}[X(T)]^{\gamma}\right] \tag{73}
\end{equation*}
$$

with dynamic equations for $X(t)$ being

$$
\begin{align*}
d X(t) & =\left[\left(\mu_{1}-r\right) k(t)-c(t)+r\right] X(t) d t+\sigma k(t) X(t) d B(t) \tag{74}\\
X(0) & =x \tag{75}
\end{align*}
$$

where $x=x(\varphi)=\varphi(0)$.

Case 2. Let $\mu_{3}=\nu e^{-\lambda h}$ for a constant $\nu>0$ and let $\mu_{2}=\nu^{2}+\nu(r+\lambda)$.Now the equations of $X(t)$ become

$$
\begin{align*}
d X(t)= & {\left[\left(\left(\mu_{1}-r\right) k(t)-c(t)+r\right) X(t)+\left(\nu^{2}+\nu(r+\lambda)\right) Y(t)\right.} \\
& \left.+\nu e^{-\lambda h} Z(t)\right] d t+\sigma k(t) X(t) d B(t) \tag{76}\\
X(s+\theta)= & \varphi(\theta), \quad \forall \theta \in[-h, 0] \tag{77}
\end{align*}
$$

The optimal control is now given by

$$
\begin{align*}
& k_{s}^{*}=\frac{\left(\mu_{1}-r\right)(x+\nu y)}{(1-\gamma) \sigma^{2} x}=\frac{\mu_{1}-r}{\sigma^{2}(1-\gamma)}+\left[\frac{\left(\mu_{1}-r\right) \nu}{\sigma^{2}(1-\gamma)}\right] \frac{y}{x} \tag{78}\\
& c_{s}^{*}=\frac{x+\nu y}{x} Q(s)^{\frac{1}{\gamma-1}}=\left(1+\nu \frac{y}{x}\right) Q(s)^{\frac{1}{\gamma-1}} \tag{79}
\end{align*}
$$

where $Q(s)$ is given by

$$
\begin{equation*}
Q(s)=\left[\left(1-\frac{1-\gamma}{\Lambda}\right) e^{-\frac{\Lambda(T-s)}{1-\gamma}}+\frac{1-\gamma}{\Lambda}\right]^{1-\gamma} \tag{80}
\end{equation*}
$$

and Λ is given by

$$
\begin{equation*}
\Lambda=\beta+\frac{\left(\mu_{1}-r\right)^{2} \gamma}{2 \sigma^{2}(\gamma-1)}-\gamma(\nu+r) \tag{81}
\end{equation*}
$$

The value function is given by

$$
\begin{equation*}
V(s, x, y)=\frac{1}{\gamma} Q(s)(x+\nu y)^{\gamma} . \tag{82}
\end{equation*}
$$

As we can see, both the control policy and the value function now depend on the parameter ν.

Case 3. Now we assume $\mu_{3}=e^{-\lambda h}$. Then we have

$$
r+\mu_{3} e^{\lambda h}=r+1
$$

If μ_{2} satisfies

$$
\begin{equation*}
\mu_{2}=r+1+\lambda \tag{83}
\end{equation*}
$$

then it is easy to verify that (65) holds. Then the dynamic equation for $X(t)$ is now given by

$$
\begin{align*}
d X(t)= & {\left[\left(\left(\mu_{1}-r\right) k(t)-c(t)+r\right) X(t)+(\lambda+r+1) Y(t)+e^{-\lambda h} Z(t)\right] d t } \\
& +\sigma k(t) X(t) d B(t), \quad \forall t \in[s, T], \tag{84}\\
X(s+\theta)= & \varphi(\theta), \quad \forall \theta \in[-h, 0] . \tag{85}
\end{align*}
$$

The optimal control policy is

$$
\begin{align*}
& k_{s}^{*}=\frac{\left(\mu_{1}-r\right)(x+y)}{\sigma^{2}(1-\gamma) x}=\frac{\mu_{1}-r}{\sigma^{2}(1-\gamma)}+\left[\frac{\left(\mu_{1}-r\right)}{\sigma^{2}(1-\gamma)}\right] \frac{y}{x}, \tag{86}\\
& c_{s}^{*}=\frac{x+y}{x} Q(s)^{\frac{1}{\gamma-1}}=\left(1+\frac{y}{x}\right) Q(s)^{\frac{1}{\gamma-1}}, \tag{87}
\end{align*}
$$

where $Q(s)$ is given by

$$
\begin{equation*}
Q(s)=\left[\left(1-\frac{1-\gamma}{\Lambda}\right) e^{-\frac{\Lambda(T-s)}{1-\gamma}}+\frac{1-\gamma}{\Lambda}\right]^{1-\gamma} \tag{88}
\end{equation*}
$$

and Λ is given by

$$
\begin{equation*}
\Lambda=\beta+\frac{\left(\mu_{1}-r\right)^{2} \gamma}{2 \sigma^{2}(\gamma-1)}-\gamma(1+r) \tag{89}
\end{equation*}
$$

The value function is given by

$$
\begin{equation*}
V(s, x, y)=\frac{1}{\gamma} Q(s)(x+y)^{\gamma} \tag{90}
\end{equation*}
$$

As we can see, both the control policy and the value function now depend on the delay variable y. Actually, this is a special case of Case 2 with $\nu=1$.

Final Remark. From the condition (65), we can get

$$
\begin{align*}
\mu_{2} & =\lambda \mu_{3} e^{\lambda h}+\left(r+\mu_{3} e^{\lambda h}\right) \mu_{3} e^{\lambda h} \\
& =\mu_{3} e^{\lambda h}\left(\lambda+r+\mu_{3} e^{\lambda h}\right) \tag{91}
\end{align*}
$$

So it is easy to see that $\mu_{2}=0$ if and only if $\mu_{3}=0$, provided that $\mu_{3} \geq 0$, and

$$
\lim _{\mu_{3} \rightarrow \infty} \mu_{2}=\infty
$$

In other words, the price change of $X(t)$ must depend on both $Y(t)$ and $Z(t)$ at the same time with similar manner in order to obtain a explicit solution $V(s, x, y)$.

3 Stochastic Control Problems with Memory: General Framework

3.1 Problem Formulation

- We study the finite time horizon optimal control problem for a general system of stochastic functional differential equations on the interval $[t, T]$.
- Let $h>0$ be a fixed constant, and let $\mathbb{J}=[-h, 0]$ denote the duration of the bounded memory of the equations considered in this paper. For the sake of simplicity, we denote $C\left(\mathbb{J} ; \Re^{n}\right)$, the space of continuous functions $\phi: \mathbb{J} \rightarrow \Re^{n}$, by \mathbf{C}. Note that \mathbf{C} is a real separable Banach space under the supremum norm defined by

$$
\|\phi\|=\sup _{t \in \mathbb{J}}|\phi(t)|, \quad \phi \in \mathbf{C},
$$

where $|\cdot|$ is the Euclidean norm in \Re^{n}.

- Denote by $(\cdot \mid \cdot)$ the inner product in $L^{2}\left(\mathbb{J}, \Re^{n}\right)$ as the following

$$
(\phi \mid \psi)=\int_{-r}^{0}\langle\phi(s), \psi(s)\rangle d s, \quad \text { and } \quad\|\phi\|_{2}=(\phi \mid \phi)^{\frac{1}{2}}, \quad \forall \phi, \psi \in \mathbf{C}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in \Re^{n}.

- Notation: If $\psi \in C\left([-r, \infty)\right.$; $\left.\Re^{n}\right)$ and $t \in \Re_{+}$, let $\psi_{t} \in \mathbf{C}$ be defined by $\psi_{t}(\theta)=\psi(t+\theta), \theta \in \mathbb{J}$.
- Let $\{W(t), t \geq 0\}$ be a certain m-dimensional standard Brownian motion defined on a complete filtered probability space $(\Omega, \mathcal{F}, P ; \mathbf{F})$.
- Let $L^{2}(\Omega, \mathbf{C})$ be the space of \mathbf{C}-valued random variables $\Xi: \Omega \rightarrow \mathbf{C}$ such that

$$
\|\Xi\|_{L^{2}}=\left\{\int_{\Omega}\|\Xi(\omega)\|^{2} d P(\omega)\right\}^{\frac{1}{2}}<\infty
$$

In addition, let $L^{2}(\Omega, \mathbf{C} ; \mathcal{F}(t))$ be those $\Xi \in L^{2}(\Omega, \mathbf{C})$ which are $\mathcal{F}(t)$ measurable.

- We consider the following system of controlled stochastic functional differential equations with a bounded memory:

$$
\begin{equation*}
d X(s)=f\left(s, X_{s}, u(s)\right) d s+g\left(s, X_{s}, u(s)\right) d W(s), \quad s \in[t, T] \tag{92}
\end{equation*}
$$

with the initial condition

$$
X_{t}=\psi_{t}, \quad \forall \psi_{t} \in L^{2}(\Omega, \mathbf{C} ; \mathcal{F}(t))
$$

- The functions, $f:[0, T] \times \mathbf{C} \times U \rightarrow \Re^{n}$ and $g:[0, T] \times \mathbf{C} \times U \rightarrow \Re^{n \times m}$ are given deterministic functions and they satisfy the following linear growth and Lipschitz conditions (See also Mohammed [?, ?]).

Assumption 1 There exists a constant $\Lambda>0$ such that

$$
\begin{array}{r}
|f(t, \varphi, u)-f(t, \phi, u)|+|g(t, \varphi, u)-g(t, \phi, u)| \leq \Lambda\|\varphi-\phi\|, \\
\forall(t, \varphi, u),(t, \phi, u) \in[0, T] \times \mathbf{C} \times U .
\end{array}
$$

Assumption 2 There exists a constant $K>0$ such that

$$
|f(t, \phi, u)|+|g(t, \phi, u)| \leq K(1+\|\phi\|), \forall(t, \phi, u) \in[0, T] \times \mathbf{C} \times U
$$

- Let L and Ψ be two continuous real-valued functions on $[0, T] \times \mathbf{C} \times U$ and $[0, T] \times \mathbf{C}$, with at most polynomial growth in $L^{2}(\mathbb{J} ; \Re)$. In other words, there exist a constant $\Lambda>0$ and an integer $k>0$ such that

$$
|L(t, \phi, u)| \leq \Lambda\left(1+\|\phi\|_{2}\right)^{k}, \quad \text { and } \quad|\Psi(t, \phi)| \leq \Lambda\left(1+\|\phi\|_{2}\right)^{k}
$$

- The objective function is

$$
\begin{gather*}
J(t, \psi ; u(\cdot)) \equiv \mathbb{E}\left[\int_{t}^{T} e^{-\rho(s-t)} L\left(s, X_{s}(t, \psi, u(\cdot)), u(s)\right) d s\right. \\
\left.+e^{-\rho(T-t)} \Psi\left(X_{T}(t, \psi, u(\cdot))\right)\right] \tag{93}
\end{gather*}
$$

where $\rho>0$ denotes a discount factor.

- The value function $V:[0, T] \times \mathbf{C} \rightarrow \Re$ is defined as

$$
\begin{equation*}
V(t, \psi)=\sup _{u(\cdot) \in \mathcal{U}[t, T]} J(t, \psi ; u(\cdot)) . \tag{94}
\end{equation*}
$$

3.2 The Hamilton-Jacobi-Bellman Equation

- Let \mathbf{C}^{*} and \mathbf{C}^{\dagger} be the space of bounded linear functionals $\Phi: \mathbf{C} \rightarrow \Re$ and bounded bilinear functionals $\tilde{\Phi}: \mathbf{C} \times \mathbf{C} \rightarrow \Re$, of the space \mathbf{C}, respectively.
- Let $\mathbf{B}=\left\{v \mathbf{1}_{\{0\}}, v \in \Re^{n}\right\}$, where $\mathbf{1}_{\{0\}}:[-r, 0] \rightarrow \Re$ is defined by

$$
\mathbf{1}_{\{0\}}(\theta)=\left\{\begin{array}{l}
0 \text { for } \theta \in[-r, 0) \\
1 \text { for } \theta=0
\end{array}\right.
$$

We form the direct sum

$$
\mathbf{C} \oplus \mathbf{B}=\left\{\phi+v \mathbf{1}_{\{0\}} \mid \phi \in \mathbf{C}, v \in \Re^{n}\right\}
$$

and equip it with the norm $\|\cdot\|$ defined by

$$
\left\|\phi+v \mathbf{1}_{\{0\}}\right\|=\sup _{\theta \in[-r, 0]}|\phi(\theta)|+|v|, \quad \phi \in \mathbf{C}, v \in \Re^{n} .
$$

- Frèchet derivative: $D \Phi(\varphi) \in \mathbf{C}^{*}$.

It has a unique and continuous linear extension $\overline{D \Phi(\varphi)} \in(\mathbf{C} \oplus \mathbf{B})^{*}$.

- The Second order Fréchet derivative, $D^{2} \Phi(\varphi) \in \mathbf{C}^{\dagger}$, has a unique and continuous linear extension $\overline{D^{2} \Phi(\varphi)} \in(\mathbf{C} \oplus \mathbf{B})^{\dagger}$.
- \mathcal{S}-operator: For a Borel measurable function $\Phi: \mathbf{C} \rightarrow \Re$, we also define

$$
\begin{equation*}
\mathcal{S}(\Phi)(\phi)=\lim _{h \rightarrow 0+} \frac{1}{h}\left[\Phi\left(\tilde{\phi}_{h}\right)-\Phi(\phi)\right] \tag{95}
\end{equation*}
$$

for all $\phi \in \mathbf{C}$, where $\tilde{\phi}:[-r, T] \rightarrow \Re^{n}$ is an extension of ϕ defined by

$$
\tilde{\phi}(t)= \begin{cases}\phi(t) & \text { if } t \in[-r, 0) \\ \phi(0) & \text { if } t \geq 0\end{cases}
$$

and $\tilde{\phi}_{t} \in \mathbf{C}$ is defined by

$$
\tilde{\phi}_{t}(\theta)=\tilde{\phi}(t+\theta), \quad \theta \in[-r, 0]
$$

- Let $C_{l i p}^{1,2}([0, T] \times \mathbf{C})$ be the space of functions $\Phi:[0, T] \times \mathbf{C} \rightarrow \Re$ such that $\frac{\partial \Phi}{\partial t}:[0, T] \times \mathbf{C} \rightarrow \Re$ and $D^{2} \Phi:[0, T] \times \mathbf{C} \rightarrow \mathbf{C}^{\dagger}$ exist and are continuous and satisfy the following Lipschitz condition:

$$
\left\|D^{2} \Phi(t, \phi)-D^{2} \Phi(t, \varphi)\right\|^{\dagger} \leq K\|\phi-\varphi\| \quad \forall t \in[0, T], \phi, \varphi \in \mathbf{C}
$$

Theorem 3.2 Suppose that $\Phi \in C_{\text {lip }}^{1,2}([0, T] \times \mathbf{C}) \cap \mathcal{D}(\mathcal{S})$. Let $u(\cdot) \in \mathcal{U}[t, T]$ and $\left\{X_{s}, s \in[t, T]\right\}$ be the \mathbf{C}-valued Markov solution process of equation (92) with the initial data $\left(t, \varphi_{t}\right) \in[0, T] \times \mathbf{C}$. Then

$$
\begin{align*}
& \lim _{\epsilon \downarrow 0} \frac{E\left[\Phi\left(t+\epsilon, X_{t+\epsilon}\right)\right]-\Phi\left(t, \varphi_{t}\right)}{\epsilon} \tag{96}\\
= & \frac{\partial}{\partial t} \Phi\left(t, \varphi_{t}\right)+\mathcal{S}(\Phi)\left(t, \varphi_{t}\right)+\overline{D \Phi\left(t, \varphi_{t}\right)}\left(f\left(t, \varphi_{t}, u(t)\right) \mathbf{1}_{\{0\}}\right) \\
& +\frac{1}{2} \sum_{j=1}^{m} \overline{D^{2} \Phi\left(t, \varphi_{t}\right)}\left(g\left(t, \varphi_{t}, u(t)\right) \mathbf{e}_{j} \mathbf{1}_{\{0\}}, g\left(t, \varphi_{t}, u(t)\right) \mathbf{e}_{j} \mathbf{1}_{\{0\}}\right),
\end{align*}
$$

where $\mathbf{e}_{j}, j=1,2, \cdots, m$, is the j th unit vector of the standard basis in \Re^{m} 。

Theorem (Larssen) Let Assumptions 1-2 hold. Then for any $(t, \psi) \in$ $[0, T] \times \mathbf{C}$ and $\mathbf{F}(t)$-stopping time $\tau \in[t, T]$,

$$
\begin{gather*}
V(t, \psi)=\sup _{u(\cdot) \in \mathcal{U}[t, T]} \mathbf{E}\left[\int_{t}^{\tau} e^{-\rho(s-t)} L\left(s, X_{s}(t, \psi, u(\cdot)), u(s)\right) d s\right. \\
\left.+e^{-\rho(\tau-t)} V\left(\tau, X_{\tau}(t, \psi, u(\cdot))\right)\right] . \tag{97}
\end{gather*}
$$

Let $v \in U$. We define:

$$
\begin{aligned}
\mathcal{A}^{v} V(t, \psi) \equiv & \mathcal{S}(V)(t, \psi)+\overline{D V(t, \psi)}\left(f(t, \psi, v) \mathbf{1}_{\{0\}}\right) \\
& +\frac{1}{2} \sum_{i=1}^{m} \overline{D^{2} V(t, \psi)}\left(g(t, \psi, v) \mathbf{e}_{i} \mathbf{1}_{\{0\}}, g(t, \psi, v) \mathbf{e}_{i} \mathbf{1}_{\{0\}}\right) .
\end{aligned}
$$

Theorem 3.3 Suppose V is the value function defined by (94) and atisfies $V \in C_{l i p}^{1,2}([0, T] \times \mathbf{C}) \cap \mathcal{D}(\mathcal{S})$. Then the value function V satisfies the following HJB equation:

$$
\begin{equation*}
\rho V(t, \psi)-\frac{\partial V}{\partial t}(t, \psi)-\max _{v \in U}\left[\mathcal{A}^{v} V(t, \psi)+L(t, \psi, v)\right]=0 \tag{98}
\end{equation*}
$$

on $[0, T] \times \mathbf{C}$, and $V(T, \psi)=\Psi(\psi), \forall \psi \in \mathbf{C}$.

- The value function V satisfies the necessary smoothness condition $V \in$ $C_{l i p}^{1,2}([0, T] \times \mathbf{C}) \cap \mathcal{D}(\mathcal{S})$.
- In general we need to consider viscosity solution instead of a classical solution for HJB equation (98).
- Actually, the value function is a unique viscosity solution of the HJB equation (98).

3.3 Viscosity Solution of the HJB Equation

Definition 1 Let $w \in C([0, T] \times \mathbf{C})$. We say that w is a viscosity subsolution of (98) if, for every $\Gamma \in C_{l i p}^{1,2}([0, T] \times \mathbf{C}) \cap \mathcal{D}(\mathcal{S})$, for $(t, \psi) \in[0, T] \times \mathbf{C}$ satisfying $\Gamma \geq w$ on $[0, T] \times \mathbf{C}$ and $\Gamma(t, \psi)=w(t, \psi)$, we have

$$
\rho \Gamma(t, \psi)-\frac{\partial \Gamma}{\partial t}(t, \psi)-\max _{v \in U}\left[\mathcal{A}^{v} \Gamma(t, \psi)+L(t, \psi, v)\right] \leq 0 .
$$

We say that w is a viscosity super solution of (98) if, for every $\Gamma \in$ $C_{l i p}^{1,2}([0, T] \times \mathbf{C}) \cap \mathcal{D}(\mathcal{S})$, and for $(t, \psi) \in[0, T] \times \mathbf{C}$ satisfying $\Gamma \leq w$ on $[0, T] \times \mathbf{C}$ and $\Gamma(t, \psi)=w(t, \psi)$, we have

$$
\rho \Gamma(t, \psi)-\frac{\partial \Gamma}{\partial t}(t, \psi)-\max _{v \in U}\left[\mathcal{A}^{v} \Gamma(t, \psi)+L(t, \psi, v)\right] \geq 0 .
$$

We say that w is a viscosity solution of (98) if it is both a viscosity supersolution and a viscosity subsolution of (98).

For our value function V defined by (94), we now show that it has the following property.

Lemma 3.3 The value function V defined in (94) is continuous and there exists a constant $\Lambda>0$ and a positive integer k such that, for every $(t, \phi) \in$ $[0, T] \times \mathbf{C}$,

$$
\begin{equation*}
|V(t, \phi)| \leq \Lambda\left(1+\|\phi\|_{2}\right)^{k} \tag{99}
\end{equation*}
$$

and there exists a constant $K>0$ such that

$$
\begin{equation*}
|V(s, \phi)-V(s, \varphi)| \leq K\|\phi-\varphi\|, \forall(s, \phi),(s, \varphi) \in[0, T] \times \mathbf{C} \tag{100}
\end{equation*}
$$

We have the following result:
Theorem 3.4 The value function V is a viscosity solution of the HJB equation

$$
\begin{equation*}
\rho V(t, \psi)-\frac{\partial V}{\partial t}(t, \psi)-\max _{v \in U}\left[\mathcal{A}^{v} V(t, \psi)+L(t, \psi, v)\right]=0 \tag{101}
\end{equation*}
$$

on $[0, T] \times \mathbf{C}$, and $V(T, \psi)=\Psi(\psi), \forall \psi \in \mathbf{C}$.

3.4 Uniqueness

Since a viscosity solution is both a subsolution and a supersolution, the uniqueness result will follow immediately after we establish the following comparison principle:

Theorem 3.5 (Comparison Principle) Assume that $V_{1}(t, \psi)$ and $V_{2}(t, \psi)$ are both continuous with respect to the argument (t, ψ) and are respectively viscosity subsolution and supersolution of (98) with at most a polynomial growth. In other terms, there exists a real number $\Lambda>0$ and a positive integer $k>0$ such that,

$$
\left|V_{i}(t, \psi)\right| \leq \Lambda\left(1+\|\psi\|_{2}\right)^{k}, \quad \text { for }(t, \psi) \in[0, T] \times \mathbf{C}, i=1,2
$$

Then

$$
\begin{equation*}
V_{1}(t, \psi) \leq V_{2}(t, \psi) \quad \text { for all }(t, \psi) \in[0, T] \times \mathbf{C} \tag{102}
\end{equation*}
$$

THANK YOU!

[^0]: ${ }^{1}$ Based on joint works with Harry Chang, and Yipeng Yang

