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Introduction

Motivation: model uncertainty in stochastic control problems

To control the risk due to model uncertainty

(error in model estimatation or model misspecification)

To solve control problems when the true law of the underlying

stochastic process is unknown

Popular applicable methods usually rely on parametric models

Traditional model-free approach is not easy to implement and is

rarely used by practitioners

Reinforcement learning faces the dilemma of exploration versus

exploitation
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Introduction

Main Goals

To propose and study a nonparametric adaptive Bayesian

approach for discrete time Markovian control problems subject to

Knightian uncertainty, which integrates learning and optimizing.

To develop a numerical method for efficient and easy

implementation of the proposed nonparametric framework.

T. Chen and J. Myung Nonparametric Adaptive Bayesian Optimal

Control with Financial Applications. In preparation. 2020.
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Introduction

Notations

(Ω,F) - measurable space

T ∈ N - fixed time horizon

T = {0,1, . . . , T}, T ′ = {0,1, . . . , T − 1}, and T ′′ = {1, . . . , T}

X = {Xt, t ∈ T } - controlled process taking values in Rd

ϕ = {ϕt, t ∈ T
′} - adapted process taking values in a compact set A

Z = {Zt, t ∈ T
′′} - random process that is driving X

L - measurable function understood as a loss function

Θ - set of parameters (if a parametric model is assumed for Z)

Pθ - the probablity law of Z corresponding to θ
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Introduction

Example: Dynamic Optimal Portfolio Selection

An investor is deciding on investing in a risky asset and a risk-free

banking account by maximizing the expected utility of the terminal

wealth.

r - the constant risk free rate

eZt - the return on the risky asset

The true law of Zt is unknown

The dynamics of the wealth process produced by a s.f. strategy

Xt+1 =Xt(1 + r + ϕt(e
Zt+1 − 1 − r)), t ∈ T ′, X0 = x0.

To maximize the expected U(Xϕ
T ) but with respect to what model?
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Parametric Stochastic Control Frameworks

Review of Existing Methods
When a parametric model is assumed for the underlying process,

there are several methods can be used.

(Myopic) adaptive solves the problem

inf
ϕ∈A

Eθ[L(X,ϕ)]

for every θ ∈Θ to get ϕMA
t (θ), t ∈ T ′.

(Static) robust solves the problem

inf
ϕ∈A

sup
θ∈Θ

Eθ[L(X,ϕ)].

Bayesian control solves the Bellman equation

V (t, x) = inf
a∈A∫Θ

Eθ[V (t + 1,Xa,θ
t+1(x,Zt+1))]πt(dθ).
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Parametric Stochastic Control Frameworks

Review of Existing Methods (cont.)

Strong robust

V (t, x) = inf
a∈A

sup
θ∈Θ

Eθ[V (t + 1,Xa,θ
t+1(x,Zt+1))].

Adaptive robust

V (t, y) = inf
a∈A

sup
θ∈Θt(θ̂)

Eθ[V (t + 1, Y a,θ
t+1 (y,Zt+1))],

where y = (x, θ̂).

(Time consistent) adpative

V (t, y) = inf
a∈A

Eθ̂[V (t + 1, Y a,θ̂
t+1 (y,Zt+1))],

where y = (x, θ̂).
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Parametric Stochastic Control Frameworks

Comments

The postulated parametric model can be wrong. For example, one

usually assumes that the log-return of a risky asset has a normal

distribution, but in fact it could be bimodal.

If the assumed parametric model is correct, then

Myopic adaptive is time inconsistent and suffers from error in

estimation.

Time consistent adaptive still suffers from error in estimation.

Static and strong robust methods can be overly conservative.

Our goal is to propose a nonparametric methodology that avoids model

misspecification, is robust to error in estimation, and easily balances

between being aggressive and conservative.
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Nonparametric Adaptive Bayesian Control

Definition (Dirichlet Process)

Let α be a finite non-null measure on (R,B(R)), and let D be a

stochastic process indexed by elements in B(R). We say D is a

Dirichlet process with parameter α and write D ∈ D(α), if for every

finite measurable partition {B1, . . . ,Bn} of R, the random vector

(D(B1), . . . ,D(Bn)) has a Dirichlet distribution with parameter

(α(B1), . . . , α(Bn)).

D is a process in space and it is a random probability measure, i.e.

every realization of D is a probability measure on (R,B(R)).

The mean of D is α/α(R).

The support of D with respect to the topology of weak convergence

is the set of all distributions whose support is contained in the

support of α.

A Dirichlet process is characterized by the parameter α. Through

the rest of the talk, we will let α = cP where c is a postive constant

and P is a probability measure on (R,B(R)).
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Nonparametric Adaptive Bayesian Control

Dynamic Learning

Learning of the unknown distribution can be expressed through a

sequence of Dirichlet processes. Denote by P the unknown distribution.

Pick a constant c0 and a probability measure P0. In a Bayesian manner,

we assume that P ∈ D(c0P0).

Let Z1, . . . , Zn be a sample from P. Then the posterior of P is given

by D(cnPn) where cn = c0 + n, and

Pn =
c0P0 +∑

n
i=1 δZi

cn
.

Online learning of the unknown distribution: P ∈ D(cnPn), where

Pn =
cn−1Pn−1 + δZn

cn
=∶ fP (n,Pn−1, Zn)

Pn is a random probability measure and it is a weighted average of

P0 and the empirical distribution.
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Nonparametric Adaptive Bayesian Control

Formulation of Adaptive Bayesian Control Problem
Denote by P(R) the set of all probability measures equipped with Borel

σ-algebra corresponding to the Prokhorov metric (i.e. weak convergence).

Augmented state process Yt = (Xt,Pt) ∈ Rd ×P(R) =∶ EY where

Y0 = (x0, P0).

Dynamics of Yt: Yt = G(t, Yt−1, ϕt−1, Zt) such that

Xt =fX(Xt−1, ϕt−1, Zt)

Pt =fP (t,Pt−1, Zt).

The mapping G is continuous and Borel-measurable.

Borel-measurable stochastic kernel on EY given EY ×A

Q(B ∣ t, y, a) =∫ P(G(t, y, a,Zt) ∈ B)Dt(dP)

=P (G(t, y, a,Zt) ∈ B), y = (x,P ), Dt ∈ D(ctP ).
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Nonparametric Adaptive Bayesian Control

Formulation of Adaptive Bayesian Control Problem (cont.)

For any ϕ ∈ A, define a probability measure Q on the canonical space

ET+1
Y :

Q
ϕ
(x0,P0)(B0 ×⋯ ×BT ) = ∫

B0

⋯∫
BT

T

∏
t=1

Q(dyt∣t, yt−1, ϕt−1)δ(x0,P0)(dy0).

Then, the nonparametric adaptive Bayesian optimal control problem is

formulated as

inf
ϕ∈A

EQϕ(x0,P0)
[L(X,ϕ)] .
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Nonparametric Adaptive Bayesian Control

Solution of the Adaptive Bayesian Control Problem

Consider only the terminal loss ` and Bellman equation

V (T, y) =`(x)

V (t, y) = inf
a∈A∫

EP [V (t + 1,G(t + 1, y, a,Zt+1))]D(dP)

= inf
a∈A

EP [V (t + 1,G(t + 1, y, a,Zt+1))] ,

for y = (x,P ) ∈ EY , D ∈ D(ctP ), t ∈ T ′.

Proposition

The functions V (t, ⋅), t ∈ T , are lower semi-analytic and the universally

measurable selector ϕ∗t exist:

V (t, y) = EP [V (t + 1,G(t + 1, y, ϕ∗t (y), Zt+1))] , t ∈ T ′.

Tao Chen ◇ ◇ ◇ U Mich October 2020 ◇ ◇ ◇ Slide 13



Nonparametric Adaptive Bayesian Control

Solution of the Adaptive Bayesian Control Problem (cont.)

Theorem

The nonparametric adaptive Bayesian optimal control problem is solved

by the above Bellman equations:

V (0, y0) = inf
ϕ∈A

EQϕ(x0,P0)
[L(X,ϕ)] , y0 = (x0, P0).

For any t ∈ T ′, one optimal control is given as ϕ∗t and universally

measurable.
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Numerical Implementation

Outline for Numerical Implementation

We want to find a numerical solver for

V (t, y) = inf
a∈A

EP [V (t + 1,G(t + 1, y, a,Zt+1))] , y = (x,P ) ∈ EY , t ∈ T
′.

What needs to be done:

Discretization of the state space for Y , accompanied by

interpolation in order to evaluate V (t, y).

Approximation of the integral since integrand is not analytically

available.

Approximation of the optimizers ϕ∗(y) in order to apply it to the

out-of-sample paths.

The key idea is to recursively construct a functional approximation

V̂ (t, ⋅) that is used for interpolation and prediction.
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Numerical Implementation

Infinitely Dimensional State Space

The difficulty arises in this problem is that the augmented state space

EY is infinitely dimenional. How should we discretize it?

This is related to the choice of functional approximation V̂ (t, ⋅).

We choose Gaussian process surrogates for construction of V̂ (t, ⋅).

We use the mapping P ↦ (EP [Z], . . . ,EP [Zm]), where Z ∼ P , and

approximate EY by Rd ×Rm.

Another way to consider is modifying the kernel function of GP such

that it takes into account the Prokhorov distance between

probability measures.
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Numerical Implementation

Basic Loop

Ṽ (t, ŷ) = inf
a∈A

EP [Ṽ (t + 1,G(t + 1, ŷ, a,Zt+1))]

=∶ F (Ṽ (t + 1, ⋅), ŷ), ŷ ∈ Rd ×Rm

In the spirit of Regression Monte Carlo, we have a

fit − predict − optimize − fit loop:

1 (Assume that the surrogate V̂ (t + 1, ⋅) has been fitted)

2 Select an experimental design of N sites yn, n = 1, . . . ,N ;

3 Solve the optimization problem at each yn, using predict(V̂ (t, y′))
for the expectation. This yields the outputs en = F (V̂ (t, ⋅), yn) and

optimal control an at yn;

4 Fit V̂ (t, ⋅) based on data (y1∶N , e1∶N) and ϕ̂∗t (⋅) based on

(y1∶N , a1∶N);

5 Goto 1: start the next recursion for t − 1
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Numerical Results

Adaptive Bayesian Utility Maximization

Consider the loss function `(x) = 1−x1−η
1−η where η > 1.

Xt =Xt−1(1 + r + ϕt−1(e
Zt − 1 − r)) =∶ fW (Xt−1, ϕt−1, r,Zt).

We assume that the random noise process Z1, . . . , ZT is an i.i.d.

sequence of random variables.

Each Zt has 50% probability to come from N (µ1, σ
2
1) and 50%

probability to come from N (µ2, σ
2
2).

inf
ϕ∈A

EQϕx0,P0

⎡
⎢
⎢
⎢
⎣

1 −X1−η
T

1 − η

⎤
⎥
⎥
⎥
⎦
= − sup

ϕ∈A
EQϕx0,P0

⎡
⎢
⎢
⎢
⎣

X1−η
T − 1

1 − η

⎤
⎥
⎥
⎥
⎦
.
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Numerical Results

Comparison to Classical Parametric Approaches

Assume that there are 3 types of investors: nonparametric adaptive

Bayesian (BA), strong robust (SR), and time consistent adaptive (AD).

All of them have the same data of the historical log-return:

Z−t0 , . . . , Z−1.

SR assumes the distribution of Z to be N (µ,σ2), and she solves the

robust Bellman equation

V sr
(t, x) = sup

a∈A
inf

(µ,σ2)∈Θ(µ̂0,σ̂2
0)
Eµ,σ2 [V sr

(t + 1, fW (x, a, r,Zt+1))] ,

where µ̂0 and σ̂2
0 are estimators based on Z−t0 , . . . , Z−1 and

Θ(µ̂0, σ̂
2
0) is the corresponding confidence region.
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Numerical Results

Comparison to Classical Parametric Approaches (cont.)

AD assumes the dsitribution of Z to be N (µ,σ2), and she solves

the adaptive Bellman equation

V ad
(t, y) = sup

a∈A
Eµ̂,σ̂2 [V ad

(t + 1, fW (x, a, r,Zt+1), fΘ(t, µ̂, σ̂2, Zt+1))] ,

where y = (x, µ̂, σ̂2).

BA takes P0 = N (µ̂0, σ̂
2
0), chooses c0 > 0, and solves the Bellman

equation

V ba
(t, y) = sup

a∈A
EP [V ba

(t + 1,G(t + 1, y, a,Zt+1))] , y = (x,P ).

We choose µ1 = −0.02/30, σ1 = 0.4/
√

30, µ2 = 0.13/30, σ2 = 0.3/
√

30,

and randomly generate two cases of µ̂0 and σ̂2
0. For comparison, we

apply the computed strategies in both cases on the same set of

out-of-sample Z-paths.
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Numerical Results

Structure of Optimal Control
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Figure: Path of adaptive Bayesian optimal strategy in comparison to
strong robust, and adaptive with t0 = 100, η = 1.5, µ̂0 = 4.615 × 10−3,
σ̂0 = 5.609 × 10−2.
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Numerical Results

Structure of Optimal Control

0.00

0.25

0.50

0.75

1.00

0 10 20 30

t

ϕt

Bayesian ( c0 = 1 )

Bayesian ( c0 = 30 )

Adaptive

Robust

Negative µ

Figure: Path of adaptive Bayesian optimal strategy in comparison to
strong robust, and adaptive with t0 = 100, η = 1.5, µ̂0 = −3.987 × 10−3,
σ̂0 = 6.288 × 10−2.
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Numerical Results

Comparison of Performance on Out-of-Sample Paths

µ̂0 = 4.615 × 10−3, σ̂0 = 5.609 × 10−2

BA SR AR

c0 = 1 c0 = 10 c0 = 30

mean(V ) 1.8037 1.8036 1.8034 1.8020 1.8026

var(V ) 4.295e-4 5.421e-4 6.653e-4 4.917e-14 1.162e-3

q0.30(V ) 1.7919 1.7891 1.7849 1.8020 1.7841

q0.90(V ) 1.8352 1.8405 1.8485 1.8020 1.8483

max(V ) 1.8721 1.8720 1.8656 1.8020 1.8783

min(V ) 1.7711 1.7536 1.7647 1.8020 1.7123

Table: Mean, variance, 30%-quantile, 90%-quantile, maximum, and
minimum of the out-of-sample terminal utility for the BA, SR and AR
methods; Case 1.
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Numerical Results

Comparison of Performance on Out-of-Sample Paths

µ̂0 = −3.987 × 10−3, σ̂0 = 6.288 × 10−2

BA SR AR

c0 = 1 c0 = 10 c0 = 30

mean(V ) 1.8043 1.8041 1.8038 1.8020 1.8016

var(V ) 4.092e-4 3.356e-4 1.768e-4 4.917e-14 2.020e-5

q0.30(V ) 1.7940 1.7959 1.7981 1.8020 1.8006

q0.90(V ) 1.8362 1.8334 1.8256 1.8020 1.8050

max(V ) 1.8702 1.8639 1.8590 1.8020 1.8146

min(V ) 1.7594 1.7574 1.7801 1.8020 1.7715

Table: Mean, variance, 30%-quantile, 90%-quantile, maximum, and
minimum of the out-of-sample terminal utility for the BA, SR and AR
methods; Case 2.
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Numerical Results

Conclusions
We also tried data with trend: Z15k, . . . , Z15k+14 ∼ N (µ1, σ

2
1),

Z15k+15, . . . , Z15k+29 ∼ N (µ2, σ
2
2), where k is even, and BA performs

even better comparatively.

For statistically sound confidence levels, the confidence region

Θ(µ̂, σ̂2) used by SR is usually too large and it leads to conservative

optimal strategies: investing in the banking account all the time.

AD is too sensitive to the initial estimates (µ̂0, σ̂
2
0) as it produces

very different strategies even on the same future paths.

The nonparametric Bayesian approach is more robust to model

misspecification and error in estimation.

The parameter c0 can serve as a tuning parameter for the purpose of

risk management and it balances the strategies between being

aggressive and conservative. A relatively large c0 can prevent the

learning from overfitting during early stages.
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Thank You !

The end of the talk ...but not of the story


	Introduction
	Parametric Stochastic Control Frameworks
	Nonparametric Adaptive Bayesian Control
	Numerical Implementation
	Numerical Results
	
	


