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1 Introduction

• We examine a principal-agent model under moral hazard in the
presence of mean-volatility joint ambiguity uncertainties.

• Uncertainties = risks + ambiguities.

– risk: the probability distribution of the outcome is known.
E.g., x̃ ∼ N(µ, σ2), where µ and σ are known constants.

– ambiguity: the distribution is unknown.
E.g., x̃ ∼ N(µ, σ2), where µ and σ are unknown.

• Preferences under ambiguity uncertainties:
maxmin, Choquet, and smooth-ambiguity expected utilities.



• In our agency economy,

– Both the principal and agent are endowed with Gilboa-Schmeidler’s
maxmin (multiple-priors) utilities.

– Ambiguity uncertainties arise in terms of both the mean and
volatility of the continuous-time outcome.



• Literature on contracting under ambiguity

– Weinschenk (2010, WP): a discrete-time model, agree-to-disagree.

– Szydlowski (2012, WP): ambiguity leads to excessive incen-
tives.

– Miao and Rivera (2015, WP): a tradeoff between incentives
and ambiguity sharing.

– Mastrolia and Possamäi (2018): similar to this paper, but no
joint ambiguity.

– Remark: Unlike these studies, we

(1) distinguish between ex-ante perceived and ex-post real-
ized volatilities,

(2) show that the worst priors of the two contracting parties
are symmetrized at optimum,

(3) ...., and a number of other results.



The road map

Section 2: Three major issues in contracting under ambiguity

Section 3: The general mean-volatility control problem

Section 4: The contracting model

• The first-best contracting

• The second-best contracting

Section 5: A linear-quadratic case: an example

Section 6: Conclusion



2 Three major issues in contracting under
ambiguity

i. Agree-to-disagree possibilities.

ii. Two different dynamics for the same outcome:
ex-ante perceived vs. ex-post realized.

iii. Volatility control method in weak formulation.



i. Agree-to-disagree issues
Two individuals with maxmin utilities under ambiguity.
Given an uncertain payoff ξ with an ambiguity set P,
two different individuals, A and B would maximize, resp.,

min
P∈P

EP [UA(ξ
A)], and min

P∈P
EP [UB(ξ

B)].

Let

PA ∈ arg min
P∈P

EP [UA(ξ
A)], and PB ∈ arg min

P∈P
EP [UB(ξ

B)].

• PA and PB ̸= the true probability measure.
They are merely perceptions about ambiguity.

• Different perceptions, PA ̸= PB , ∼ info. asymm. without
learning.
Then, individuals A and B agree to disagree.



ii. The Two Different Dynamics for the same outcome, because of
ambiguity parameter ṽ.

ex-post realized: dYt = f(t, Y, ṽ)dt+ σ(t, Y, ṽ)dBṽ
t ,

ex-ante perceived: dYt = f(t, Y, v)dt+ σ(t, Y, v)dBv
t .

Ex-post realized process: ex-ante unknown,
yet ex-post verifiable and thus contractable.

Ex-ante perceived process: ex-ante known,
yet privately perceived and thus noncontractable.

Note: Three different volatilities for the same outcome.

– σ(t, Y, v) : ex-ante perceived volatility,

– σ̃ : realized volatility, i.e., σ̃2dt ≡ d⟨Yt⟩,
– σσσ : P-aggregator of all admissible σ’s.



iii. Mean-Volatility Control Method in Weak Formulation
⇒ Need to introduce singular measures.

• Our problem requires weak formulation.

– Maxmin (multiple-priors) utilities in weak formulation.

– Contracting problems in weak formulation.

• Formulation

– Strong formulation: fix a probability measure, and choose
a process.

– Weak formulation: fix a process, and choose a probability
measure.

For weak formulation, we need to find a fixed process Yt whose QV
varies with probability measure.



We want to find a fixed process Yt

with the property that under each P v,
dYt = σ(t, Y, v)dW v

t .

• Let Ω ≡ {ω ∈ C[0, 1] |ω(0) = 0}.

• Define Yt, pathwise, for each ω ∈ Ω,

dYt(ω) ≡ dωt, Y0 ∈ R.

• Partition Ω by QV, σ2, of each ω.

Ωσ := {ω ∈ Ω | d ⟨Yt⟩ = σ2
t dt, t ∈ [0, 1]},

• Ωσ ∩ Ωσ′
= ∅, if σ ̸= σ′.

• Then P σ and P σ′
have to be singular.

• Let Pσ be a Wiener measure on partition Ωσ,
and Wσ

t be a Pσ-standard BM.



• σσσ2(ω) := the QV density of ω(∈ Ω).

Then σσσ = σ under Pσ a.s..

Namely, σσσ(ω) =


σ(ω) ω ∈ Ωσ

σ′(ω) ω ∈ Ωσ′

σ′′(ω) ω ∈ Ωσ′′

.... ....

• For σσσ > 0, Let Wt :=

∫ t

0

1

σσσs
dYs.

Then, Wt is a universal std BM such that Wt = Wσ
t under Pσ.

Namely, Wt =


Wσ

t (ω) under Pσ a.s..

Wσ′
t (ω) under Pσ′

a.s..

Wσ′′
t (ω) under Pσ′′

a.s..
.... ....



• The family P of admissible singular measures:

P := {singular Wiener measures Pσ’s, σ ∈ Σ}, (1)

where Σ = the class of admissible volatilities.

• Then,

dYt ≡ dωt = σσσtdWt, P-q.s. =


σtdW

σ
t under Pσ a.s..

σ′
tdW

σ′

t under Pσ′
a.s..

σ′′
t dW

σ′′

t under Pσ′′
a.s..

..... .....

• Given P, we have the volatility control in weak formulation as
follows:

optimizePσ∈P Eσ[ξ(Y )]

s.t. dYt = σσσtdWt = σdW σ
t .



Assumption 1. The class ΣΣΣ consists of diffusion coefficients, σ : U ×
D × [0, 1]× Ω → R+.

(1) All σ’s inΣΣΣ are F̂P -progressively measurable, and uniformly bounded
away from zero.

(2) Σ is closed under concatenation, i.e., if σ, σ′ ∈ Σ, then σ111[0,t] +
σ′111(t,1] ∈ Σ for t ∈ [0, 1].

(3) The SDE, dYt = σtdWt, has a unique strong solution under Pσ,
σ ∈ ΣΣΣ.

Assumption 2. The class Φ is the collection of functionals, f : U ×
D × [0, 1] × Ω → R, with the following properties: for each (u, v) ∈
U ×D and σ(u, v, t, Y ) ∈ Σ, f(u, v, t, Y ) is F̂P -progressively measurable,∫ t

0
f2(u,v,t,Y )
σ2(u,v,t,Y )ds < ∞ path by path for all t ∈ [0, 1], and there exists a

constant K such that∣∣∣∣f(u, v, t, Y )

σ(u, v, t, Y )

∣∣∣∣ ≤ K

(
1 + max

0≤s≤t
|Ys|

)
, ∀(u, v, t, Y ).



Mean-Volatility Control in Weak Formulation

• Enlarge P to P with abs. cont. measures.

– Introduce Φ and ϑσ,f , where

Φ = the class of admissible drifts, f ’s;

ϑσ,f =
dPσ,f

dPσ
= exp

(∫ 1

0

f

σ2
dYt −

1

2

∫ 1

0

f2

σ2
s

ds

)
.

– For each Pσ ∈ P and f ∈ Φ,
let Pσ,f satisfy dPσ,f = ϑσ,fdPσ. Then, under Pσ,f ,

dYt = fdt+ σdBσ,f
t .



Let

P :=
{
P σ,f | dP σ,f = ϑσ,fdP σ, (f, σ) ∈ Φ× Σ

}
• Then, the following mean-volatility control problem in weak for-

mulation:

optimizePσ,f∈P Eσ,f [ξ(Y )]

s.t. dYt = σσσtdWt = σ(v, t, Y )dWσ
t

= fdt+ σdW σ,f
t ,

becomes equivalent to

optimizePσ∈P Eσ[ξ(Y )ϑσ,f ]

s.t. dYt = σσσtdWt.



3 The General Mean-Volatility Control Prob-
lem

We consider the following general problem:

sup
u∈U

inf
v∈D

Eu,v

[
− exp

{
−γ

(
ξ(Y ) +

∫ 1

0
g(.)ds+

∫ 1

0
q(.)d⟨Ys⟩+

∫ 1

0
h(.)dYs

)}]
(2)

s.t. dYt = f(u, v, t, Y )dt+ σ(u, v, t, Y )dBu,v
t ,

where Bu,v
t (= Wt−

∫ t

0
fs
σs
ds) is the standard BM under Pu,v. We assume

γ > 0.
Let

ϑ̂1 =
dPu,v

dP̂u,v
= exp

(∫ 1

0

f

σ2
dYt −

1

2

∫ 1

0

f2

σ2
s

ds

)
. (3)



Then the problem can be stated as follows:

sup
u∈U

inf
v∈D

Êu,v

[
− exp

{
−γξ(Y )−

∫ 1

0

Ĝsds−
∫ 1

0

ΓsdYs

}]
(4)

s.t. dYt = σσσtdWt,

where

Ĝt = γg(.) + γq(.)σ2 +
1

2

f2

σ2
,

Γt = γh(.)− f

σ2
.



Let

ϕt(u, v, Y ) := − exp

{
−γξ(Y )−

∫ 1

t
Ĝ(u, v, s, Y )ds−

∫ 1

t
Γ(u, v, s, Y )dYs

}
, (5)

We define the CEQ wealth Q and value functions (V,V) as follows:

Qu,v
t := − 1

γ
ln

(
−Êu,v

t [ϕt(u, v, Y )]
)
, (6)

Vt(u, v
∗(u)) = ess inf

v∈D1
t

− exp (−γQu,v
t ) , (7)

Vt = ess sup
u∈U1

t

Vt(u, v
∗(u)). (8)

Assumption 3. There exists a saddle point process (u∗, v∗) ∈ U × D
such that for u ∈ U1

t and v ∈ D1
t , P-q.s.,

− exp(−γQu,v∗

t ) ≤ − exp(−γQu,v∗

t )(= Vt) ≤ − exp(−γQu∗,v
t ).



Let us define the Hamiltonian Ho as follows:
for (ut, vt, p, t, Y ) ∈ Ut(Y )×Dt(Y )×R× [0, 1]× Ω,

Ho(ut, vt, p, t, Y ) ≡ pK(.) +G(.)− γ

2
(pσ(.))

2
, (9)

where (.) is short for (ut, vt, t, Y ), and

G := g + hf +
[
q − γ

2
h2

]
σ2,

K := f − γhσ2.



Lemma 1. Let Assumptions 1 to 3 hold. Also assume that ϕt(u, v, Y ) ∈
L2
P for all (t, u, v) ∈ [0, 1] × U × D. Then, there exists a unique P-q.s.

square integrable process Z∗
t such that Ho(ut, vt, Z

∗
t , t, Y ) has a saddle

point (u∗
t , v

∗
t ), i.e., for all ut ∈ Ut(Y ) and vt ∈ Dt(Y ),

Ho(ut, v
∗
t , Z

∗
t , t, Y ) ≤ Ho(u∗

t , v
∗
t , Z

∗
t , t, Y ) ≤ Ho(u∗

t , vt, Z
∗
t , t, Y ). (10)

Under P̂u∗,v∗
,

dQ∗
t = −Ho(u∗

t , v
∗
t , Z

∗
t , t, Y )dt+ Z∗

t dYt, Q∗
1 = ξ(Y ), (11)

and Vt = − exp (−γQ∗
t ) = ess supu∈U1

t
ess infv∈D1

t
[− exp (−γQu,v

t )].



A PREVIEW of the economics side of the paper

• The optimal contracts

– The structure of the 1st-best contract under ambiguity uncer-
tainties is similar to that of risk uncertainties.

– The 2nd-best contract under ambiguity consists of two shar-
ing rules:
(1) one for realized outcome and (2) the other for realized volatility.

• 2nd-best vol. sharing rule ⇒ compensation and realized volatility
are positively related.
Consistent with stock option granting practices in man-
agerial compensation.

• Ambiguity decreases the 2nd-best pay-for-performance sensitivity.

• Agree-to-disagree issues arise neither in the 1st-best nor in 2nd-
best cases.



4 The Model

• The time horizon is the unit interval [0, 1].

• One principal and one agent with CARA preferences: coefficients
are γP and γA, respectively.

• Before time 0, the principal owns an asset with a cashflow prospect
Y . The agent has an employment opportunity with his reservation
utility = − exp(−γAW0).

• At time 0, both the principal and agent sign a compensation scheme
S(Y ), and then the agent manages the asset to improve its cashflow
prospect.

• The agent’s cumulative cost of effort up to time t:
∫ t

0
c(et, t, Y )dt.



• The (universal) filtered probability space (see STZ (2011)):

(Ω, F̂ , {F̂t}, P ∈ P),

where

– Ω := {ω ∈ C([0, 1]) |ω0 = 0};
– {F̂t} is the universal filtration for the family P.

– P := {Pσ, |σ ∈ Σ}, a family of singular Wiener measures.

– P := {P e,µ,ν |P e,µ,ν = ϑ1(e, µ, ν)P
ν , P ν ∈ P}.



• Given a contract S, the agent chooses P e,µ,ν ∈ P to solve the
following problem:

sup
e∈U

inf
(µ,ν)∈D

Ee,µ,ν
[
−e−γA(S(Y )−

∫ 1
0
c(e,t,Y )dt)

]
s.t. dYt = f(e, µ, ν, t, Y )dt+ σ(ν, t, Y )dBe,µ,ν

t .

• The agent’s problem is equivalently transformed into a volatility
control problem as follows.

sup
e∈U

inf
(µ,ν)∈D

Eν
[
−e−γA(S(Y )−

∫ 1
0
c(e,t,Y )dt)ϑ1(e, µ, ν)

]
s.t. dYt = σσσtdWt.



• The admissible class Ψ of contracts:

Ψ :=

{
S

∣∣∣∣∣ S is F̂P
1 -measurable, S · ϑ1(e, µ, ν) ∈ L2

P , and

exp
{
−γA

(
S −

∫ 1

0
c(et, t, Y )dt

)}
ϑ1(e, µ, ν) ∈ L2

P

}
.

(12)

Remark: Given each admissible S, the conditional expectation of
the agent’s expected utility satisfies the q.s. version of the
MRT of STZ (2011).



4.1 Representation of Admissible Contracts

Given (S, e) ∈ Ψ× U , let

WS,e
0 = the CEQ wealth level of the agent’s most pessimistic utility,

v = (µ, ν), ambiguity parameter pair.

Then,

− exp
(
−γAWS,e

0

)
= inf

v
Ee,v

[
− exp

{
−γA

(
S(Y )−

∫ 1

0

c(et, t, Y ))dt

)}]
s.t. dYt = f(et, µt, νt, t, Y )dt+ σ(νt, t, Y )dBu,v

t .



Proposition 1. There exist unique P-q.s. {F̂t}-progressively measur-
able and square integrable processes, (βt, θt,Kt), i.e., β, θ ∈ H2

P and
K ∈ I2P , such that S can be represented in the following form: P-q.s.,

S = WS,e
0 +

∫ 1

0

{
c(et, t, Y )− βtf(et, µt, νt, t, Y ) +

[γA
2
β2
t − θt

]
σ2(νt, t, Y )

}
dt

+

∫ 1

0

θtd⟨Yt⟩+
∫ 1

0

βtdYt +K1, (13)

where K0 = 0, under all P ∈ P; and for all t ∈ [0, 1], Kt = 0 under P v,
and Kt is nondecreasing over time under other P v′

’s in P.

Remark: Two distinguishing features: volatility sharing rule θ and the
process K.



Why the process K?

• To adjust for realized off-the-equilibrium singular events.

• The decision maker views, ex ante, ambiguity uncertainties through
his most pessimistic prior, and thus he treats Kt = 0, ex ante.

• Singular deviations, if any, from the most pessimistic events lead
to less pessimistic payoffs. Hence, adjustments by K have to be
positive amounts.



4.2 First-Best Contracting

Problem 1. (First-best contracting.) Choose a contract S by solving
the following problem.

sup
S ∈ Ψ, e ∈ U
(µA, νA) ∈ D

inf
(µP ,νP )∈D

Ee,µP ,νP
[− exp {−γP (Y1 − S)}]

s.t. (i) dYt = f(et, µ
P
t , νPt , t, Y )dt+ σ(νPt , t, Y )dBe,µP ,νP

t ,

(ii) (µA, νA) ∈ arg inf
(µ̂,ν̂)∈D

Ee,µ̂,ν̂

[
− exp

{
−γA

(
S −

∫ 1

0
c(e, t, Y )dt

)}]
s.t. dYt = f(et, µ̂, ν̂, t, Y )dt+ σ(ν̂, t, Y )dBe,µ̂,ν̂

t ,

(iii) Ee,µA,νA
[
− exp

{
−γA

(
S −

∫ 1

0
c(et, t, Y )dt

)}]
≥ − exp (−γAW0) .

Remark: Constraint (ii) is new: an incentive compatibility condition
which arises even in the first best.



Theorem 1. (First best.) Suppose that the optimizers, (et, θt, µ
P
t , ν

P
t )

and (µA
t , ν

A
t ) lie in the interiors of their respective domains, for all t ∈

[0, 1]. Then, in the first best, the worst priors of the principal and agent
are symmetrized such that (µA

t , ν
A
t ) = (µP

t , ν
P
t ) = (µc

t , ν
c
t ) ∈ Dt(Y ).

Moreover, there exists a unique P-q.s. square integrable process Z0P
t

such that

(µc
t , ν

c
t ) ∈ min

(µ̄,ν̄)∈Dt(Y )
f(et, µ̄, ν̄, t, Y )− 1

2

γAγP
γA + γP

(1 + Z0P
t )σ2(ν̄, t, Y ),

(14)

and that the first-best optimal contract S is: P-q.s.,

S = W0 +

∫ 1

0

(
c(et, t, Y )− βtf(et, µ

c
t , ν

c
t , t, Y ) +

γA

2
β2
t σ

2(νct , t, Y )
)
dt+

∫ 1

0
βtdYt,

(15)

where βt =
γP

γA+γP

(
1 + Z0P

t

)
, and 1 + Z0P

t = ce(et,t,Y )
fe(et,µc

t ,ν
c
t ,t,Y ) .



• The form of the 1st-best contract with ambiguity is the same as
that of the classical 1st-best contract without ambiguity.

– θt = 0 for all t.

– βt is the same as that of the classical case without ambiguity.

– Deviation from the (static) rule of marginal product of labor:
ce ̸= fe whenever Z

P
t ̸= 0, where ZP

t represents the principal’s
outcome-share growth opportunities.

• At optimum, the worst priors of the two parties are symmetrized.



4.3 The Second-Best Contracting

Problem 2. (Second-best contracting.) Choose a contract S by solving
the following problem.

sup
S ∈ Ψ, e ∈ U
(µA, νA) ∈ D

inf
(µP ,νP )∈D

Ee,µP ,νP
[− exp {−γP (Y1 − S)}]

s.t. (i) dYt = f(e, µP , νP , t, Y )dt+ σ(νP , t, Y )dBe,µP ,νP

t ,

(ii) (e, µA, νA) ∈ arg sup
ê∈U

inf
(µ̂,ν̂)∈D

Eê,µ̂,ν̂

[
− exp

{
−γA

(
S −

∫ 1

0
c(û, t, Y )dt

)}]
s.t. dYt = f(ê, µ̂, ν̂, t, Y )dt+ σ(ν̂, t, Y )dBê,µ̂,ν̂

t ,

(iii) Ee,µA,νA
[
− exp

{
−γA

(
S −

∫ 1

0
c(e, t, Y )dt

)}]
≥ − exp (−γAW0) .



4.3.1 The Agent’s Problem

The agent’s Hamiltonian given a contract in the form (13):

HA = −c(e, t, Y ) + βtf(e, µt, νt, t, Y ) +
(
θt −

γA
2
βt

)
σ2(ν, t, Y ).

Theorem 2. (Incentive compatibility/implementability.) Given a con-
tract S ∈ Ψ̄ with admissible (e∗t , (µ

∗
t , ν

∗
t ); (βt, θt)) ∈ U ×Dt(Y )×R2, for

t ∈ [0, 1], the agent chooses (e∗t , µ
∗
t , ν

∗
t ) if and only if

(e∗t , µ
∗
t , ν

∗
t ) ∈ argmax

ê
min
µ̂,ν̂

HA(ê, µ̂, ν̂;βt, θt, t, Y ). (16)

That is, the contract S ∈ Ψ̄ with admissible (e∗t , (µ
∗
t , ν

∗
t ); (βt, θt)) ∈ U ×

Dt(Y )×R2 is implementable if and only if (e∗t , (µ
∗
t , ν

∗
t )) is a saddle point

of HA given (βt, θt), for t ∈ [0, 1].

Corollary 1. If the optimal et lies in the interior of U , then βt =
ce(e,t,Y )

fe(e,µ,ν,t,Y ) .



• The process K does not affect the implementability condition.

• The agent is indifferent between contracts with and without the
process K, because K matters for off-the-equilibrium events only.

• Hence, it is without loss of generality for the principal to consider
contracts ignoring the process K as follows:

S = W0 −
∫ 1

0

max
ê

min
µ̂,ν̂

[
HA(êt, µ̂t, ν̂t;βt, θt, t, Y )

]
dt

+

∫ 1

0

θtd⟨Yt⟩+
∫ 1

0

βtdYt. (17)



4.3.2 The Principal’s Problem

Theorem 3. Assume that the agent’s effort e is in the interior of U .
There exists a unique P-q.s. square integrable process ZP

t such that the
principal’s optimal decision (et, µ

A
t , ν

A
t , µP

t , ν
P
t , θt) solves the following

problem for t ∈ [0, 1]: P-q.s.,

max
ēt,θ̄t

min
(µ̄P

t ,ν̄P
t )∈Dt(Y )

− c(ēt, t, Y ) +
(
1− β̄t + ZP

t

)
f(ēt, µ̄

P
t , ν̄Pt , t, Y )

−
[
γP

2

(
1− β̄t + ZP

t

)2
+ θ̄t

]
σ2(ν̄Pt , t, Y )

+ β̄tf(ēt, µ̄
A
t , ν̄At , t, Y )−

(γA

2
β̄2
t − θ̄t

)
σ2(ν̄At , t, Y ),

(18)

s.t. β̄t =
ce(ēt, t, Y )

fe(ēt, µ̄A
t , ν̄At , t, Y )

, (19)

(µ̄A
t , ν̄At ) ∈ arg min

(µ̂,ν̂)∈Dt(Y )
φA(ēt, µ̂, ν̂; θ̄t, β̄t, t, Y ), (20)

where (µP
t , ν

P
t ) and (µA

t , ν
A
t ) are, respectively, the principal’s and agent’s

worst ambiguity parameter pairs.



Principal’s Hamiltonian (18)

Ht = −c(ēt, t, Y ) +
(
1− β̄t + ZP

t

)
f(ēt, µ̄

P
t , ν̄

P
t , t, Y )︸ ︷︷ ︸

principal’s perceived share of the drift

−
[γP
2

(
1− β̄t + ZP

t

)2
+ θ̄t

]
σ2(ν̄Pt , t, Y )︸ ︷︷ ︸

principal’s perceived risk premium

+ β̄tf(ēt, µ̄
A
t , ν̄

A
t , t, Y )︸ ︷︷ ︸

agent’s perceived share of the drift

−
(γA

2
β̄2
t − θ̄t

)
σ2(ν̄At , t, Y )︸ ︷︷ ︸

agent’s perceived risk premium

.



Hamiltonian (18) =⇒

• The principal behaves
as if her outcome share were
1− βt + ZP

t , not 1− βt.

• She can shift, to and from the agent,
‘the perceived risk premia’
by using volatility sharing rule θt.

• Nominal shares to the principal and agent, resp: 1− βt and βt.

• Effective shares to the principal and agent, resp: 1 − βt + ZP
t

and βt.

• ZP
t = an imaginary extra share given to the principal: growth

opportunity over time.



Theorem 4. Assume an interior optimum. The worst priors of the two
contracting parties are symmetrized such that (µA

t , ν
A
t ) = (µP

t , ν
P
t ) =

(µc
t , ν

c
t ). Under the symmetrized prior, there exists a unique P-q.s.

square integrable process ZP
t such that the optimal outcome- and volatility-

sharing sensitivities (βt, θt) and the common prior (µc
t , ν

c
t ) can be ex-

pressed as follows.

βt =
fe + γP βe(σc

t )
2

fe + (γP + γA)βe(σc
t )

2
(1 + ZP

t ), (21)

θt =
1

2(1 + ZP
t )

βt(1− βt + ZP
t )

(
γAβt − γP (1− βt + ZP

t )
)
≥ 0, (22)

where βe = ∂
∂e

(
ce(et,t,Y )

fe(et,µ
c
t ,ν

c
t ,t,Y )

)
, and

(µc
t , ν

c
t ) ∈ arg min

(µ̂,ν̂)∈Dt(Y )
(1 + ZP

t )f(et, µ̂t, ν̂t, t, Yt)

−
1

2

(
γAβ2

t + γP (1− βt + ZP
t )2

)
σ2(ν̂, t, Yt). (23)



• That is, the second-best contract is

S = W0 +

∫ 1

0

...dt+

∫ 1

0

θtd⟨Yt⟩+
∫ 1

0

βtdYt.

– If γA = 0, then θt = 0 and βt = 1 + ZP
t .

– If γA > 0, then θt > 0 and 0 < βt < 1 + ZP
t .



• Two striking implications from Theorem 4.

1. θt > 0 ⇒ the agent gets paid for realized volatility.

Realized volatility, ⟨Yt⟩ ↑ =⇒ Realized com-
pensation, S ↑.

Consistent with compensation practices of stock option grants!



2. (µA
t , ν

A
t ) = (µP

t , ν
P
t ) = (µc

t , ν
c
t ).

The worst priors of the two parties are sym-
metrized.

– Suppose the two worst priors are not equal.
⇒ asymmetric perceptions
 asymmetric information without learning
⇒ inefficiency in contracting.

– The principal uses the volatility-sharing contract to elim-
inate the asymmetry of the perceptions.



Symmetrization through volatility sharing

• The principal can, in effect, influence the agent’s risk aversion.

θt ↑ ⇒ agent’s risk burden ↓ ⇒ his effective risk aversion ↓
⇒ risk premium on compensation uncertainty ↓.

• If νA > νP , then the agent demands an excessively high risk
premium.

⇒ The principal shifts the agent’s uncertainty exposure to herself
by increasing θt.

• If νA < νP , then the agent demands lower risk premium than the
principal perceives.

⇒ The principal shifts her own uncertainty exposure to the agent
by decreasing θt.

• At optimum, νA = νP .



Then, Why No Volatility-Sharing in the First Best?

• The 1st-best contract: uncertainty sharing. No incentive issues.

– Under the 1st-best outcome-sharing contract,
both parties share uncertainties symmetrically.
Thus, their worst priors are symmetrized.

• The 2nd-best contract: uncertainty sharing and incentives.

– For incentives, the 2nd-best outcome-sharing sensitivity has
to be greater than that of the 1st best.

⇒ the two worst priors become asymmetrical.

⇒ contract inefficiency.

⇒ the principal uses a volatility sharing contract in order
to achieve the symmetrization.



5 A Linear-Quadratic (Markovian) Case

The outcome process:

dYt = (ηYt + et + µt)dt+ νtdB
u,v
t .

• If η > (=, <)0, then
the outcome exhibits ‘increasing (constant, decreas-
ing) returns to scale.’

Assume:

c(e) =
κ

2
e2,

D =
{
(µ, ν) ∈ [µ, µ]× [ν, ν]

∣∣∣π = µ− α

2
(ν − ν0)2 ≥ 0

}
.

• The set D becomes Epstein-Schneider’s (2010) quadratic am-
biguity set if ν0 = 0.



-

6

µ

ν

µ

µ
ν ν0 ν

D



Proposition 2. Assume an interior optimum in (µ, ν). The common
worst prior (µc

t , ν
c
t ) at optimum is a unique solution to the following

equations,

µc
t =

α

2
(νct − ν0)2; (24){

1 + (1 +Rt) γPκ(ν
c
t )

2
} γA exp(η(1− t))

αR2
t

+
ν0

νct
− 1 = 0, (25)

where Rt := 1 + (γA + γP )κ(ν
c
t )

2. Moreover, the value function Vt is
given by

V(t, Yt) = −e−γP (ζ(t)Yt+ρ(t)), P-q.s.,

where

ζ(t) = eη(1−t) − 1 = ZP
t , (26)

ρ(t) = Y0 −W0 +

∫ 1

t

[.....] ds. (27)



The sharing sensitivities (βt, θt) of the optimal contract are:

βt =
1 + γPκ(ν

c
t )

2

1 + (γA + γP )κ(νct )
2
eη(1−t), (28)

θt =
1

2eη(1−t)
βt

(
eη(1−t) − βt

) [
γAβt −

(
eη(1−t) − βt

)
γP

]
. (29)

Remark 1: In ‘the linear-quadratic case,’
ZP
t > (=, <) 0, iff η > (=, <) 0,

iff the outcome exhibits increasing (constant, decreasing)
returns to scale.

Remark 2: If η = 0, then the optimal contract is linear in Y1 and ⟨Y1⟩:
an ambiguity version of the Holmstrom-Milgrom stationary case.



Corollary 2. (Comparative statics.)

i. Both the commonly perceived mean and volatility increase with the
returns-to-scale parameter η, the degree of ambiguity 1/α, and the agent’s

ability 1/κ. That is,
∂µc

t

∂η ,
∂νc

t

∂η > 0, and
∂µc

t

∂α ,
∂νc

t

∂α ,
∂µc

t

∂κ ,
∂νc

t

∂κ < 0.

ii. The outcome-sharing sensitivity increases with the agent’s ability, but
decreases with the degree of ambiguity: i.e., ∂βt

∂κ < 0, and ∂βt

∂α > 0.
Moreover, if the principal is risk neutral, i.e., γP = 0, then the sensitivity
increases with the returns-to-scale parameter: i.e., ∂βt

∂η > 0.

Remark 1:
∂µc

t

∂α ,
∂νc

t

∂α ⇒ ambiguity increases both mean and volatility
perceptions.

Remark 2: ∂βt

∂α > 0⇒ ambiguity decreases the pay-for-performance
sensitivity.



6 Conclusion

• We have developed a martingale method for principal-agent prob-
lems under the joint ambiguity.

• We have distinguished between ex-post realized and ex-ante per-
ceived volatilities.

• The second-best contract in general consists of two sharing rules:
one for realized outcome and the other for realized volatility.

• We have shown that the compensation level is positively associ-
ated with the realized volatility. Consistent with stock option
granting practices in managerial compensation.

• Their worst priors are equalized across the principal and agent.



Thank you!


