Optimal Contracting under Mean-Volatility Ambiguity Uncertainties

Jaeyoung Sung Ajou University

November 5, 2018

Mathematical Finance Colloquium at University of Southern California

1 Introduction

- We examine a principal-agent model under moral hazard in the presence of mean-volatility joint ambiguity uncertainties.
- Uncertainties = risks + ambiguities.
 - risk: the probability distribution of the outcome is known. E.g., $\tilde{x} \sim N(\mu, \sigma^2)$, where μ and σ are known constants.
 - ambiguity: the distribution is unknown. E.g., $\tilde{x} \sim N(\mu, \sigma^2)$, where μ and σ are unknown.
- Preferences under ambiguity uncertainties: maxmin, Choquet, and smooth-ambiguity expected utilities.

- In our agency economy,
 - Both the principal and agent are endowed with Gilboa-Schmeidler's maxmin (multiple-priors) utilities.
 - Ambiguity uncertainties arise in terms of both the mean and volatility of the continuous-time outcome.

- Literature on contracting under ambiguity
 - Weinschenk (2010, WP): a discrete-time model, agree-to-disagree.
 - Szydlowski (2012, WP): ambiguity leads to excessive incentives.
 - Miao and Rivera (2015, WP): a tradeoff between incentives and ambiguity sharing.
 - Mastrolia and Possamäi (2018): similar to this paper, but no joint ambiguity.
 - Remark: Unlike these studies, we
 - (1) distinguish between ex-ante perceived and ex-post realized volatilities,
 - (2) show that the worst priors of the two contracting parties are symmetrized at optimum,
 - (3), and a number of other results.

The road map

Section 2: Three major issues in contracting under ambiguity

Section 3: The general mean-volatility control problem

Section 4: The contracting model

• The first-best contracting

• The second-best contracting

Section 5: A linear-quadratic case: an example

Section 6: Conclusion

Three major issues in contracting under ambiguity

- i. Agree-to-disagree possibilities.
- ii. Two different dynamics for the same outcome: ex-ante perceived vs. ex-post realized.
- iii. Volatility control method in weak formulation.

i. Agree-to-disagree issues

Two individuals with maxmin utilities under ambiguity. Given an uncertain payoff ξ with an ambiguity set \mathcal{P} , two different individuals, A and B would maximize, resp.,

$$\min_{P \in \mathcal{P}} E^P[U_A(\xi^A)], \quad \text{and} \quad \min_{P \in \mathcal{P}} E^P[U_B(\xi^B)].$$

Let

$$P^A \in \arg\min_{P \in \mathcal{P}} E^P[U_A(\xi^A)], \text{ and } P^B \in \arg\min_{P \in \mathcal{P}} E^P[U_B(\xi^B)].$$

- P^A and $P^B \neq$ the true probability measure. They are merely *perceptions* about ambiguity.
- Different perceptions, $P^A \neq P^B$, $\sim info.$ asymm. without learning.

Then, individuals A and B agree to disagree.

ii. The Two Different Dynamics for the same outcome, because of ambiguity parameter \tilde{v} .

ex-post realized: $dY_t = f(t, Y, \widetilde{v})dt + \sigma(t, Y, \widetilde{v})dB_t^{\widetilde{v}},$

ex-ante perceived: $dY_t = f(t, Y, v)dt + \sigma(t, Y, v)dB_t^v$.

Ex-post realized process: ex-ante unknown, yet ex-post verifiable and thus contractable.

Ex-ante perceived process: ex-ante known, yet privately perceived and thus noncontractable.

Note: Three different volatilities for the same outcome.

- $-\sigma(t,Y,v)$: ex-ante perceived volatility,
- $-\widetilde{\sigma}$: realized volatility, i.e., $\widetilde{\sigma}^2 dt \equiv d\langle Y_t \rangle$,
- $-\sigma: \mathcal{P}$ -aggregator of all admissible σ 's.

iii. Mean-Volatility Control Method in Weak Formulation

- \Rightarrow Need to introduce singular measures.
 - Our problem requires weak formulation.
 - Maxmin (multiple-priors) utilities in weak formulation.
 - Contracting problems in weak formulation.

• Formulation

- Strong formulation: fix a probability measure, and choose a process.
- Weak formulation: fix a process, and choose a probability measure.

For weak formulation, we need to find a fixed process Y_t whose QV varies with probability measure.

We want to find a fixed process Y_t with the property that under each P^v , $dY_t = \sigma(t, Y, v) dW_t^v.$

- Let $\Omega \equiv \{\omega \in C[0,1] \mid \omega(0) = 0\}.$
- Define Y_t , pathwise, for each $\omega \in \Omega$,

$$dY_t(\omega) \equiv d\omega_t, \quad Y_0 \in \mathcal{R}.$$

• Partition Ω by QV, σ^2 , of each ω .

$$\Omega^{\sigma} := \{ \omega \in \Omega \mid d \langle Y_t \rangle = \sigma_t^2 dt, \ t \in [0, 1] \},$$

- $\Omega^{\sigma} \cap \Omega^{\sigma'} = \emptyset$, if $\sigma \neq \sigma'$.
- Then P^{σ} and $P^{\sigma'}$ have to be singular.
- Let P^{σ} be a Wiener measure on partition Ω^{σ} , and W_t^{σ} be a P^{σ} -standard BM.

• $\sigma^2(\omega) := \text{the QV density of } \omega \in \Omega$. Then $\sigma = \sigma \text{ under } P^{\sigma} \text{ a.s..}$

Namely,
$$\boldsymbol{\sigma}(\omega) = \begin{cases} \sigma(\omega) & \omega \in \Omega^{\sigma} \\ \sigma'(\omega) & \omega \in \Omega^{\sigma'} \\ \sigma''(\omega) & \omega \in \Omega^{\sigma''} \\ \dots & \dots \end{cases}$$

• For
$$\sigma > 0$$
, Let $W_t := \int_0^t \frac{1}{\sigma_s} dY_s$.

Then, W_t is a universal std BM such that $W_t = W_t^{\sigma}$ under P^{σ} .

Namely,
$$W_t = \begin{cases} W_t^{\sigma}(\omega) & \text{under } P^{\sigma} \text{ a.s..} \\ W_t^{\sigma'}(\omega) & \text{under } P^{\sigma'} \text{ a.s..} \\ W_t^{\sigma''}(\omega) & \text{under } P^{\sigma''} \text{ a.s..} \\ \dots & \dots \end{cases}$$

• The family \mathcal{P} of admissible singular measures:

$$\mathcal{P} := \{ \text{singular Wiener measures } P^{\sigma} \text{'s, } \sigma \in \mathbf{\Sigma} \}, \tag{1}$$

where Σ = the class of admissible volatilities.

• Then,

$$dY_t \equiv d\omega_t = \boldsymbol{\sigma}_t dW_t, \, \mathcal{P}\text{-q.s.} = \begin{cases} \sigma_t dW_t^{\sigma} & \text{under } P^{\sigma} \text{ a.s..} \\ \sigma_t' dW_t^{\sigma'} & \text{under } P^{\sigma'} \text{ a.s..} \\ \sigma_t'' dW_t^{\sigma''} & \text{under } P^{\sigma''} \text{ a.s..} \\ \dots & \dots & \dots \end{cases}$$

• Given \mathcal{P} , we have the volatility control in weak formulation as follows:

optimize_{$$P^{\sigma} \in \mathcal{P}$$} $E^{\sigma}[\xi(Y)]$
s.t. $dY_t = \boldsymbol{\sigma}_t dW_t = \sigma dW_t^{\sigma}$.

Assumption 1. The class Σ consists of diffusion coefficients, $\sigma: U \times D \times [0,1] \times \Omega \to \mathcal{R}_+$.

- (1) All σ 's in Σ are $\hat{\mathcal{F}}^{\mathcal{P}}$ -progressively measurable, and uniformly bounded away from zero.
- (2) Σ is closed under concatenation, i.e., if $\sigma, \sigma' \in \Sigma$, then $\sigma \mathbf{1}_{[0,t]} + \sigma' \mathbf{1}_{(t,1]} \in \Sigma$ for $t \in [0,1]$.
- (3) The SDE, $dY_t = \sigma_t dW_t$, has a unique strong solution under P^{σ} , $\sigma \in \Sigma$.

Assumption 2. The class Φ is the collection of functionals, $f: U \times D \times [0,1] \times \Omega \to \mathcal{R}$, with the following properties: for each $(u,v) \in \mathcal{U} \times \mathcal{D}$ and $\sigma(u,v,t,Y) \in \Sigma$, f(u,v,t,Y) is $\hat{\mathcal{F}}^{\mathcal{P}}$ -progressively measurable, $\int_0^t \frac{f^2(u,v,t,Y)}{\sigma^2(u,v,t,Y)} ds < \infty$ path by path for all $t \in [0,1]$, and there exists a constant K such that

$$\left| \frac{f(u, v, t, Y)}{\sigma(u, v, t, Y)} \right| \le K \left(1 + \max_{0 \le s \le t} |Y_s| \right), \quad \forall (u, v, t, Y).$$

Mean-Volatility Control in Weak Formulation

- Enlarge \mathcal{P} to $\overline{\mathcal{P}}$ with abs. cont. measures.
 - Introduce Φ and $\vartheta^{\sigma,f}$, where

 $\Phi =$ the class of admissible drifts, f's;

$$\vartheta^{\sigma,f} = \frac{dP^{\sigma,f}}{dP^{\sigma}} = \exp\left(\int_0^1 \frac{f}{\sigma^2} dY_t - \frac{1}{2} \int_0^1 \frac{f^2}{\sigma_s^2} ds\right).$$

- For each $P^{\sigma} \in \mathcal{P}$ and $f \in \Phi$, let $P^{\sigma,f}$ satisfy $dP^{\sigma,f} = \vartheta^{\sigma,f}dP^{\sigma}$. Then, under $\mathcal{P}^{\sigma,f}$,

$$dY_t = fdt + \sigma dB_t^{\sigma, f}.$$

Let

$$\overline{\mathcal{P}} := \left\{ P^{\sigma, f} \mid dP^{\sigma, f} = \vartheta^{\sigma, f} dP^{\sigma}, \quad (f, \sigma) \in \Phi \times \Sigma \right\}$$

• Then, the following mean-volatility control problem in weak formulation:

optimize_{$$P^{\sigma,f} \in \overline{P}$$} $E^{\sigma,f}[\xi(Y)]$
s.t. $dY_t = \boldsymbol{\sigma}_t dW_t = \sigma(v,t,Y) dW_t^{\sigma}$
 $= f dt + \sigma dW_t^{\sigma,f},$

becomes equivalent to

optimize_{$$P^{\sigma} \in \mathcal{P}$$} $E^{\sigma}[\xi(Y)\vartheta^{\sigma,f}]$
s.t. $dY_t = \sigma_t dW_t$.

3 The General Mean-Volatility Control Problem

We consider the following general problem:

$$\sup_{u \in \mathcal{U}} \inf_{v \in \mathcal{D}} E^{u,v} \left[-\exp\left\{ -\gamma \left(\xi(Y) + \int_0^1 g(.)ds + \int_0^1 q(.)d\langle Y_s \rangle + \int_0^1 h(.)dY_s \right) \right\} \right]$$
(2)

s.t.
$$dY_t = f(u, v, t, Y)dt + \sigma(u, v, t, Y)dB_t^{u,v}$$
,

where $B_t^{u,v} (= W_t - \int_0^t \frac{f_s}{\sigma_s} ds)$ is the standard BM under $P^{u,v}$. We assume $\gamma > 0$.

Let

$$\hat{\vartheta}_1 = \frac{dP^{u,v}}{d\hat{P}^{u,v}} = \exp\left(\int_0^1 \frac{f}{\sigma^2} dY_t - \frac{1}{2} \int_0^1 \frac{f^2}{\sigma_s^2} ds\right). \tag{3}$$

Then the problem can be stated as follows:

$$\sup_{u \in \mathcal{U}} \inf_{v \in \mathcal{D}} \hat{E}^{u,v} \left[-\exp\left\{ -\gamma \xi(Y) - \int_0^1 \hat{G}_s ds - \int_0^1 \Gamma_s dY_s \right\} \right]$$
(4)
s.t.
$$dY_t = \boldsymbol{\sigma}_t dW_t,$$

where

$$\hat{G}_t = \gamma g(.) + \gamma q(.)\sigma^2 + \frac{1}{2}\frac{f^2}{\sigma^2},$$

$$\Gamma_t = \gamma h(.) - \frac{f}{\sigma^2}.$$

Let

$$\phi_t(u, v, Y) := -\exp\left\{-\gamma \xi(Y) - \int_t^1 \hat{G}(u, v, s, Y) ds - \int_t^1 \Gamma(u, v, s, Y) dY_s\right\}, \quad (5)$$

We define the CEQ wealth \mathcal{Q} and value functions (V, \mathcal{V}) as follows:

$$Q_t^{u,v} := -\frac{1}{\gamma} \ln \left(-\hat{E}_t^{u,v} \left[\phi_t(u, v, Y) \right] \right), \tag{6}$$

$$V_t(u, v^*(u)) = \underset{v \in \mathcal{D}_t^1}{\operatorname{ess inf}} - \exp\left(-\gamma \mathcal{Q}_t^{u, v}\right), \tag{7}$$

$$\mathcal{V}_t = \operatorname{ess\,sup}_{u \in \mathcal{U}_t^1} V_t(u, v^*(u)). \tag{8}$$

Assumption 3. There exists a saddle point process $(u^*, v^*) \in \mathcal{U} \times \mathcal{D}$ such that for $u \in \mathcal{U}_t^1$ and $v \in \mathcal{D}_t^1$, \mathcal{P} -q.s.,

$$-\exp(-\gamma Q_t^{u,v^*}) \le -\exp(-\gamma Q_t^{u,v^*}) (= \mathcal{V}_t) \le -\exp(-\gamma Q_t^{u^*,v}).$$

Let us define the Hamiltonian H^o as follows: for $(u_t, v_t, p, t, Y) \in U_t(Y) \times D_t(Y) \times \mathcal{R} \times [0, 1] \times \Omega$,

$$H^{o}(u_{t}, v_{t}, p, t, Y) \equiv pK(.) + G(.) - \frac{\gamma}{2} (p\sigma(.))^{2},$$
 (9)

where (.) is short for (u_t, v_t, t, Y) , and

$$G := g + hf + \left[q - \frac{\gamma}{2}h^2\right]\sigma^2,$$

$$K := f - \gamma h\sigma^2.$$

Lemma 1. Let Assumptions 1 to 3 hold. Also assume that $\phi_t(u, v, Y) \in \mathcal{L}^2_{\mathcal{P}}$ for all $(t, u, v) \in [0, 1] \times \mathcal{U} \times \mathcal{D}$. Then, there exists a unique \mathcal{P} -q.s. square integrable process Z_t^* such that $H^o(u_t, v_t, Z_t^*, t, Y)$ has a saddle point (u_t^*, v_t^*) , i.e., for all $u_t \in U_t(Y)$ and $v_t \in D_t(Y)$,

$$H^{o}(u_{t}, v_{t}^{*}, Z_{t}^{*}, t, Y) \leq H^{o}(u_{t}^{*}, v_{t}^{*}, Z_{t}^{*}, t, Y) \leq H^{o}(u_{t}^{*}, v_{t}, Z_{t}^{*}, t, Y).$$
(10)

Under \hat{P}^{u^*,v^*} ,

$$dQ_t^* = -H^o(u_t^*, v_t^*, Z_t^*, t, Y)dt + Z_t^* dY_t, \quad Q_1^* = \xi(Y), \quad (11)$$

and $\mathcal{V}_t = -\exp\left(-\gamma \mathcal{Q}_t^*\right) = \operatorname{ess\,sup}_{u \in \mathcal{U}_t^1} \operatorname{ess\,inf}_{v \in \mathcal{D}_t^1} \left[-\exp\left(-\gamma \mathcal{Q}_t^{u,v}\right)\right].$

A PREVIEW of the economics side of the paper

- The optimal contracts
 - The structure of the 1st-best contract under ambiguity uncertainties is similar to that of risk uncertainties.
 - The 2nd-best contract under ambiguity consists of two sharing rules:
 - (1) one for realized outcome and (2) the other for realized volatility.
- 2nd-best vol. sharing rule \Rightarrow compensation and realized volatility are positively related.
 - Consistent with stock option granting practices in managerial compensation.
- Ambiguity decreases the 2nd-best pay-for-performance sensitivity.
- Agree-to-disagree issues arise neither in the 1st-best nor in 2nd-best cases.

4 The Model

- The time horizon is the unit interval [0, 1].
- One principal and one agent with CARA preferences: coefficients are γ_P and γ_A , respectively.
- Before time 0, the principal owns an asset with a cashflow prospect Y. The agent has an employment opportunity with his reservation utility $= -\exp(-\gamma_A W_0)$.
- At time 0, both the principal and agent sign a compensation scheme S(Y), and then the agent manages the asset to improve its cashflow prospect.
- The agent's cumulative cost of effort up to time t: $\int_0^t c(e_t, t, Y) dt$.

• The (universal) filtered probability space (see STZ (2011)):

$$(\Omega, \hat{\mathcal{F}}, {\{\hat{\mathcal{F}}_t\}}, P \in \mathcal{P}),$$

where

- $\Omega := \{ \omega \in C([0,1]) \, | \, \omega_0 = 0 \};$
- $-\{\hat{\mathcal{F}}_t\}$ is the universal filtration for the family \mathcal{P} .
- $-\mathcal{P}:=\{P^{\sigma}, | \sigma \in \Sigma\}, \text{ a family of singular Wiener measures.}$
- $\overline{\mathcal{P}} := \{ P^{e,\mu,\nu} \mid P^{e,\mu,\nu} = \vartheta_1(e,\mu,\nu) P^{\nu}, \quad P^{\nu} \in \mathcal{P} \}.$

• Given a contract S, the agent chooses $P^{e,\mu,\nu} \in \overline{\mathcal{P}}$ to solve the following problem:

$$\sup_{e \in \mathcal{U}} \inf_{(\mu,\nu) \in \mathcal{D}} E^{e,\mu,\nu} \left[-e^{-\gamma_A \left(S(Y) - \int_0^1 c(e,t,Y) dt \right)} \right]$$
s.t.
$$dY_t = f(e,\mu,\nu,t,Y) dt + \sigma(\nu,t,Y) dB_t^{e,\mu,\nu}.$$

• The agent's problem is equivalently transformed into a volatility control problem as follows.

$$\sup_{e \in \mathcal{U}} \inf_{(\mu,\nu) \in \mathcal{D}} E^{\nu} \left[-e^{-\gamma_A \left(S(Y) - \int_0^1 c(e,t,Y)dt \right)} \vartheta_1(e,\mu,\nu) \right]$$
s.t.
$$dY_t = \sigma_t dW_t.$$

• The admissible class Ψ of contracts:

$$\Psi := \left\{ S \middle| \begin{array}{l} S \text{ is } \hat{\mathcal{F}}_{1}^{\mathcal{P}}\text{-measurable, } S \cdot \vartheta_{1}(e, \mu, \nu) \in \mathcal{L}_{\mathcal{P}}^{2}, \text{ and} \\ \exp \left\{ -\gamma_{A} \left(S - \int_{0}^{1} c(e_{t}, t, Y) dt \right) \right\} \vartheta_{1}(e, \mu, \nu) \in \mathcal{L}_{\mathcal{P}}^{2} \end{array} \right\}.$$

$$(12)$$

Remark: Given each admissible S, the conditional expectation of the agent's expected utility satisfies the q.s. version of the MRT of STZ (2011).

4.1 Representation of Admissible Contracts

Given $(S, e) \in \Psi \times \mathcal{U}$, let

 $\mathcal{W}_0^{S,e}$ = the CEQ wealth level of the agent's most pessimistic utility, $v = (\mu, \nu)$, ambiguity parameter pair.

Then,

$$-\exp\left(-\gamma_A \mathcal{W}_0^{S,e}\right) = \inf_v E^{e,v} \left[-\exp\left\{-\gamma_A \left(S(Y) - \int_0^1 c(e_t, t, Y))dt\right)\right\} \right]$$
s.t.
$$dY_t = f(e_t, \mu_t, \nu_t, t, Y)dt + \sigma(\nu_t, t, Y)dB_t^{u,v}.$$

Proposition 1. There exist unique \mathcal{P} -q.s. $\{\hat{\mathcal{F}}_t\}$ -progressively measurable and square integrable processes, (β_t, θ_t, K_t) , i.e., $\beta, \theta \in \mathcal{H}^2_{\mathcal{P}}$ and $K \in \mathbb{I}^2_{\mathcal{P}}$, such that S can be represented in the following form: \mathcal{P} -q.s.,

$$S = \mathcal{W}_0^{S,e} + \int_0^1 \left\{ c(e_t, t, Y) - \beta_t f(e_t, \mu_t, \nu_t, t, Y) + \left[\frac{\gamma_A}{2} \beta_t^2 - \theta_t \right] \sigma^2(\nu_t, t, Y) \right\} dt$$
$$+ \int_0^1 \theta_t d\langle Y_t \rangle + \int_0^1 \beta_t dY_t + K_1, \tag{13}$$

where $K_0 = 0$, under all $P \in \mathcal{P}$; and for all $t \in [0,1]$, $K_t = 0$ under P^v , and K_t is nondecreasing over time under other $P^{v'}$'s in \mathcal{P} .

Remark: Two distinguishing features: volatility sharing rule θ and the process K.

Why the process K?

- To adjust for realized off-the-equilibrium singular events.
- The decision maker views, ex ante, ambiguity uncertainties through his most pessimistic prior, and thus he treats $K_t = 0$, ex ante.
- Singular deviations, if any, from the most pessimistic events lead to less pessimistic payoffs. Hence, adjustments by K have to be positive amounts.

4.2 First-Best Contracting

Problem 1. (First-best contracting.) Choose a contract S by solving the following problem.

$$\sup_{S \in \Psi, e \in \mathcal{U}} \inf_{(\mu^{P}, \nu^{P}) \in \mathcal{D}} E^{e, \mu^{P}, \nu^{P}} \left[-\exp \left\{ -\gamma_{P} \left(Y_{1} - S \right) \right\} \right]$$

$$(\mu^{A}, \nu^{A}) \in \mathcal{D}$$

$$s.t. \quad (i) \quad dY_{t} = f(e_{t}, \mu_{t}^{P}, \nu_{t}^{P}, t, Y) dt + \sigma(\nu_{t}^{P}, t, Y) dB_{t}^{e, \mu^{P}, \nu^{P}},$$

$$(ii) \quad (\mu^{A}, \nu^{A}) \in \arg \inf_{(\hat{\mu}, \hat{\nu}) \in \mathcal{D}} E^{e, \hat{\mu}, \hat{\nu}} \left[-\exp \left\{ -\gamma_{A} \left(S - \int_{0}^{1} c(e, t, Y) dt \right) \right\} \right]$$

$$s.t. \quad dY_{t} = f(e_{t}, \hat{\mu}, \hat{\nu}, t, Y) dt + \sigma(\hat{\nu}, t, Y) dB_{t}^{e, \hat{\mu}, \hat{\nu}},$$

$$(iii) \quad E^{e, \mu^{A}, \nu^{A}} \left[-\exp \left\{ -\gamma_{A} \left(S - \int_{0}^{1} c(e_{t}, t, Y) dt \right) \right\} \right] \geq -\exp(-\gamma_{A} \mathcal{W}_{0}).$$

Remark: Constraint (ii) is new: an incentive compatibility condition which arises even in the first best.

Theorem 1. (First best.) Suppose that the optimizers, $(e_t, \theta_t, \mu_t^P, \nu_t^P)$ and (μ_t^A, ν_t^A) lie in the interiors of their respective domains, for all $t \in [0, 1]$. Then, in the first best, the worst priors of the principal and agent are symmetrized such that $(\mu_t^A, \nu_t^A) = (\mu_t^P, \nu_t^P) = (\mu_t^c, \nu_t^c) \in D_t(Y)$. Moreover, there exists a unique \mathcal{P} -q.s. square integrable process Z_t^{0P} such that

$$(\mu_t^c, \nu_t^c) \in \min_{(\bar{\mu}, \bar{\nu}) \in D_t(Y)} f(e_t, \bar{\mu}, \bar{\nu}, t, Y) - \frac{1}{2} \frac{\gamma_A \gamma_P}{\gamma_A + \gamma_P} (1 + Z_t^{0P}) \sigma^2(\bar{\nu}, t, Y), \tag{14}$$

and that the first-best optimal contract S is: \mathcal{P} -q.s.,

$$S = \mathcal{W}_0 + \int_0^1 \left(c(e_t, t, Y) - \beta_t f(e_t, \mu_t^c, \nu_t^c, t, Y) + \frac{\gamma_A}{2} \beta_t^2 \sigma^2(\nu_t^c, t, Y) \right) dt + \int_0^1 \beta_t dY_t,$$
(15)

where
$$\beta_t = \frac{\gamma_P}{\gamma_A + \gamma_P} (1 + Z_t^{0P})$$
, and $1 + Z_t^{0P} = \frac{c_e(e_t, t, Y)}{f_e(e_t, \mu_t^c, \nu_t^c, t, Y)}$.

- The form of the 1st-best contract with ambiguity is the same as that of the classical 1st-best contract without ambiguity.
 - $-\theta_t = 0$ for all t.
 - $-\beta_t$ is the same as that of the classical case without ambiguity.
 - Deviation from the (static) rule of marginal product of labor: $c_e \neq f_e$ whenever $Z_t^P \neq 0$, where Z_t^P represents the principal's outcome-share growth opportunities.
- At optimum, the worst priors of the two parties are symmetrized.

4.3 The Second-Best Contracting

Problem 2. (Second-best contracting.) Choose a contract S by solving the following problem.

$$\sup_{S \in \Psi, e \in \mathcal{U}} \inf_{(\mu^{P}, \nu^{P}) \in \mathcal{D}} E^{e, \mu^{P}, \nu^{P}} \left[-\exp \left\{ -\gamma_{P} \left(Y_{1} - S \right) \right\} \right]$$

$$(\mu^{A}, \nu^{A}) \in \mathcal{D}$$

$$s.t. \quad (i) \quad dY_{t} = f(e, \mu^{P}, \nu^{P}, t, Y) dt + \sigma(\nu^{P}, t, Y) dB_{t}^{e, \mu^{P}, \nu^{P}},$$

$$(ii) \quad (e, \mu^{A}, \nu^{A}) \in \arg \sup_{\hat{e} \in \mathcal{U}} \inf_{(\hat{\mu}, \hat{\nu}) \in \mathcal{D}} E^{\hat{e}, \hat{\mu}, \hat{\nu}} \left[-\exp \left\{ -\gamma_{A} \left(S - \int_{0}^{1} c(\hat{u}, t, Y) dt \right) \right\} \right]$$

$$s.t. \quad dY_{t} = f(\hat{e}, \hat{\mu}, \hat{\nu}, t, Y) dt + \sigma(\hat{\nu}, t, Y) dB_{t}^{\hat{e}, \hat{\mu}, \hat{\nu}},$$

$$(iii) \quad E^{e, \mu^{A}, \nu^{A}} \left[-\exp \left\{ -\gamma_{A} \left(S - \int_{0}^{1} c(e, t, Y) dt \right) \right\} \right] \geq -\exp(-\gamma_{A} \mathcal{W}_{0}).$$

4.3.1 The Agent's Problem

The agent's Hamiltonian given a contract in the form (13):

$$H^{A} = -c(e, t, Y) + \beta_t f(e, \mu_t, \nu_t, t, Y) + \left(\theta_t - \frac{\gamma_A}{2}\beta_t\right)\sigma^2(\nu, t, Y).$$

Theorem 2. (Incentive compatibility/implementability.) Given a contract $S \in \overline{\Psi}$ with admissible $(e_t^*, (\mu_t^*, \nu_t^*); (\beta_t, \theta_t)) \in U \times D_t(Y) \times \mathbb{R}^2$, for $t \in [0, 1]$, the agent chooses $(e_t^*, \mu_t^*, \nu_t^*)$ if and only if

$$(e_t^*, \mu_t^*, \nu_t^*) \in \arg\max_{\hat{e}} \min_{\hat{\mu}, \hat{\nu}} H^A(\hat{e}, \hat{\mu}, \hat{\nu}; \beta_t, \theta_t, t, Y).$$
 (16)

That is, the contract $S \in \overline{\Psi}$ with admissible $(e_t^*, (\mu_t^*, \nu_t^*); (\beta_t, \theta_t)) \in U \times D_t(Y) \times \mathbb{R}^2$ is implementable if and only if $(e_t^*, (\mu_t^*, \nu_t^*))$ is a saddle point of H^A given (β_t, θ_t) , for $t \in [0, 1]$.

Corollary 1. If the optimal e_t lies in the interior of U, then $\beta_t = \frac{c_e(e,t,Y)}{f_e(e,\mu,\nu,t,Y)}$.

- The process K does not affect the implementability condition.
- The agent is indifferent between contracts with and without the process K, because K matters for off-the-equilibrium events only.
- Hence, it is without loss of generality for the principal to consider contracts ignoring the process K as follows:

$$S = \mathcal{W}_0 - \int_0^1 \max_{\hat{e}} \min_{\hat{\mu}, \hat{\nu}} \left[H^A(\hat{e}_t, \hat{\mu}_t, \hat{\nu}_t; \beta_t, \theta_t, t, Y) \right] dt$$
$$+ \int_0^1 \theta_t d\langle Y_t \rangle + \int_0^1 \beta_t dY_t. \tag{17}$$

4.3.2 The Principal's Problem

Theorem 3. Assume that the agent's effort e is in the interior of U. There exists a unique \mathcal{P} -q.s. square integrable process Z_t^P such that the principal's optimal decision $(e_t, \mu_t^A, \nu_t^A, \mu_t^P, \nu_t^P, \theta_t)$ solves the following problem for $t \in [0, 1]: \mathcal{P}$ -q.s.,

$$\max_{\bar{e}_{t},\bar{\theta}_{t}} \min_{(\bar{\mu}_{t}^{P},\bar{\nu}_{t}^{P}) \in D_{t}(Y)} - c(\bar{e}_{t},t,Y) + \left(1 - \bar{\beta}_{t} + Z_{t}^{P}\right) f(\bar{e}_{t},\bar{\mu}_{t}^{P},\bar{\nu}_{t}^{P},t,Y)
- \left[\frac{\gamma_{P}}{2} \left(1 - \bar{\beta}_{t} + Z_{t}^{P}\right)^{2} + \bar{\theta}_{t}\right] \sigma^{2}(\bar{\nu}_{t}^{P},t,Y)
+ \bar{\beta}_{t} f(\bar{e}_{t},\bar{\mu}_{t}^{A},\bar{\nu}_{t}^{A},t,Y) - \left(\frac{\gamma_{A}}{2}\bar{\beta}_{t}^{2} - \bar{\theta}_{t}\right) \sigma^{2}(\bar{\nu}_{t}^{A},t,Y), \tag{18}$$

s.t.
$$\bar{\beta}_t = \frac{c_e(\bar{e}_t, t, Y)}{f_e(\bar{e}_t, \bar{\mu}_t^A, \bar{\nu}_t^A, t, Y)},$$
 (19)

$$(\bar{\mu}_t^A, \bar{\nu}_t^A) \in \arg\min_{(\hat{\mu}, \hat{\nu}) \in D_t(Y)} \varphi_A(\bar{e}_t, \hat{\mu}, \hat{\nu}; \bar{\theta}_t, \bar{\beta}_t, t, Y), \tag{20}$$

where (μ_t^P, ν_t^P) and (μ_t^A, ν_t^A) are, respectively, the principal's and agent's worst ambiguity parameter pairs.

Principal's Hamiltonian (18)

$$H_{t} = -c(\bar{e}_{t}, t, Y) + \underbrace{\left(1 - \bar{\beta}_{t} + Z_{t}^{P}\right) f(\bar{e}_{t}, \bar{\mu}_{t}^{P}, \bar{\nu}_{t}^{P}, t, Y)}_{\text{principal's perceived share of the drift}}$$

$$-\underbrace{\left[\frac{\gamma_P}{2}\left(1-\bar{\beta}_t+Z_t^P\right)^2+\bar{\theta}_t\right]\sigma^2(\bar{\nu}_t^P,t,Y)}_{\text{principal's perceived risk premium}}$$

+
$$\underline{\bar{\beta}_t f(\bar{e}_t, \bar{\mu}_t^A, \bar{\nu}_t^A, t, Y)}$$
 agent's perceived share of the drift

$$-\underbrace{\left(\frac{\gamma_A}{2}\bar{\beta}_t^2 - \bar{\theta}_t\right)\sigma^2(\bar{\nu}_t^A, t, Y)}_{\text{agent's perceived risk premium}}$$

Hamiltonian (18) \implies

- The principal behaves as if her outcome share were $1 - \beta_t + Z_t^P$, not $1 - \beta_t$.
- She can shift, to and from the agent, 'the perceived risk premia' by using volatility sharing rule θ_t .

- Nominal shares to the principal and agent, resp: $1 \beta_t$ and β_t .
- Effective shares to the principal and agent, resp: $1 \beta_t + Z_t^P$ and β_t .
- $Z_t^P =$ an imaginary extra share given to the principal: growth opportunity over time.

Theorem 4. Assume an interior optimum. The worst priors of the two contracting parties are symmetrized such that $(\mu_t^A, \nu_t^A) = (\mu_t^P, \nu_t^P) = (\mu_t^c, \nu_t^c)$. Under the symmetrized prior, there exists a unique \mathcal{P} -q.s. square integrable process Z_t^P such that the optimal outcome- and volatility-sharing sensitivities (β_t, θ_t) and the common prior (μ_t^c, ν_t^c) can be expressed as follows.

$$\beta_t = \frac{f_e + \gamma_P \beta_e(\sigma_t^c)^2}{f_e + (\gamma_P + \gamma_A)\beta_e(\sigma_t^c)^2} (1 + Z_t^P), \tag{21}$$

$$\theta_t = \frac{1}{2(1 + Z_t^P)} \beta_t (1 - \beta_t + Z_t^P) \left(\gamma_A \beta_t - \gamma_P (1 - \beta_t + Z_t^P) \right) \ge 0, \tag{22}$$

where
$$\beta_e = \frac{\partial}{\partial e} \left(\frac{c_e(e_t, t, Y)}{f_e(e_t, \mu_t^c, \nu_t^c, t, Y)} \right)$$
, and

$$(\mu_t^c, \nu_t^c) \in \arg \min_{(\hat{\mu}, \hat{\nu}) \in D_t(Y)} (1 + Z_t^P) f(e_t, \hat{\mu}_t, \hat{\nu}_t, t, Y_t)$$

$$- \frac{1}{2} \left(\gamma_A \beta_t^2 + \gamma_P (1 - \beta_t + Z_t^P)^2 \right) \sigma^2(\hat{\nu}, t, Y_t).$$
 (23)

• That is, the second-best contract is

$$S = \mathcal{W}_0 + \int_0^1 \dots dt + \int_0^1 \theta_t d\langle Y_t \rangle + \int_0^1 \beta_t dY_t.$$

- If $\gamma_A = 0$, then $\theta_t = 0$ and $\beta_t = 1 + Z_t^P$.
- If $\gamma_A > 0$, then $\theta_t > 0$ and $0 < \beta_t < 1 + Z_t^P$.

- Two striking implications from Theorem 4.
 - 1. $\theta_t > 0 \Rightarrow$ the agent gets paid for realized volatility.

Realized volatility, $\langle Y_t \rangle \uparrow \Longrightarrow$ Realized compensation, $S \uparrow$.

Consistent with compensation practices of stock option grants!

2. $(\mu_t^A, \nu_t^A) = (\mu_t^P, \nu_t^P) = (\mu_t^c, \nu_t^c)$.

The worst priors of the two parties are symmetrized.

- Suppose the two worst priors are not equal.
 - \Rightarrow asymmetric perceptions
 - → asymmetric information without learning
 - \Rightarrow inefficiency in contracting.
- The principal uses the volatility-sharing contract to eliminate the asymmetry of the perceptions.

Symmetrization through volatility sharing

• The principal can, in effect, influence the agent's risk aversion.

 $\theta_t \uparrow \Rightarrow$ agent's risk burden $\downarrow \Rightarrow$ his effective risk aversion $\downarrow \Rightarrow$ risk premium on compensation uncertainty \downarrow .

- If $\nu_A > \nu_P$, then the agent demands an excessively high risk premium.
 - \Rightarrow The principal shifts the agent's uncertainty exposure to herself by increasing θ_t .
- If $\nu_A < \nu_P$, then the agent demands lower risk premium than the principal perceives.
 - \Rightarrow The principal shifts her own uncertainty exposure to the agent by decreasing θ_t .
- At optimum, $\nu_A = \nu_P$.

Then, Why No Volatility-Sharing in the First Best?

- The 1st-best contract: uncertainty sharing. No incentive issues.
 - Under the 1st-best outcome-sharing contract,
 both parties share uncertainties symmetrically.
 Thus, their worst priors are symmetrized.
- The 2nd-best contract: uncertainty sharing and incentives.
 - For incentives, the 2nd-best outcome-sharing sensitivity has to be greater than that of the 1st best.
 - \Rightarrow the two worst priors become asymmetrical.
 - \Rightarrow contract inefficiency.
 - \Rightarrow the principal uses a volatility sharing contract in order to achieve the symmetrization.

5 A Linear-Quadratic (Markovian) Case

The outcome process:

$$dY_t = (\eta Y_t + e_t + \mu_t)dt + \nu_t dB_t^{u,v}.$$

• If $\eta > (=, <)0$, then the outcome exhibits 'increasing (constant, decreasing) returns to scale.'

Assume:

$$c(e) = \frac{\kappa}{2}e^{2},$$

$$D = \left\{ (\mu, \nu) \in [\underline{\mu}, \overline{\mu}] \times [\underline{\nu}, \overline{\nu}] \mid \pi = \mu - \frac{\alpha}{2}(\nu - \nu^{0})^{2} \ge 0 \right\}.$$

• The set D becomes Epstein-Schneider's (2010) quadratic ambiguity set if $\nu^0 = 0$.

Proposition 2. Assume an interior optimum in (μ, ν) . The common worst prior (μ_t^c, ν_t^c) at optimum is a unique solution to the following equations,

$$\mu_t^c = \frac{\alpha}{2} (\nu_t^c - \nu^0)^2; \tag{24}$$

$$\left\{1 + (1 + R_t)\gamma_P \kappa(\nu_t^c)^2\right\} \frac{\gamma_A \exp(\eta(1 - t))}{\alpha R_t^2} + \frac{\nu^0}{\nu_t^c} - 1 = 0, \tag{25}$$

where $R_t := 1 + (\gamma_A + \gamma_P)\kappa(\nu_t^c)^2$. Moreover, the value function \mathcal{V}_t is given by

$$\mathcal{V}(t, Y_t) = -e^{-\gamma_P(\zeta(t)Y_t + \rho(t))}, \quad \mathcal{P}\text{-}q.s.,$$

where

$$\zeta(t) = e^{\eta(1-t)} - 1 = Z_t^P, \tag{26}$$

$$\rho(t) = Y_0 - \mathcal{W}_0 + \int_t^1 [....] \, ds. \tag{27}$$

The sharing sensitivities (β_t, θ_t) of the optimal contract are:

$$\beta_t = \frac{1 + \gamma_P \kappa(\nu_t^c)^2}{1 + (\gamma_A + \gamma_P) \kappa(\nu_t^c)^2} e^{\eta(1-t)}, \tag{28}$$

$$\theta_t = \frac{1}{2e^{\eta(1-t)}} \beta_t \left(e^{\eta(1-t)} - \beta_t \right) \left[\gamma_A \beta_t - \left(e^{\eta(1-t)} - \beta_t \right) \gamma_P \right]. \tag{29}$$

Remark 1: In 'the linear-quadratic case,'

$$Z_t^P > (=, <) 0, \text{ iff } \eta > (=, <) 0,$$

iff the outcome exhibits increasing (constant, decreasing) returns to scale.

Remark 2: If $\eta = 0$, then the optimal contract is linear in Y_1 and $\langle Y_1 \rangle$: an ambiguity version of the Holmstrom-Milgrom stationary case.

Corollary 2. (Comparative statics.)

- i. Both the commonly perceived mean and volatility increase with the returns-to-scale parameter η , the degree of ambiguity $1/\alpha$, and the agent's ability $1/\kappa$. That is, $\frac{\partial \mu_t^c}{\partial \eta}$, $\frac{\partial \nu_t^c}{\partial \eta} > 0$, and $\frac{\partial \mu_t^c}{\partial \alpha}$, $\frac{\partial \nu_t^c}{\partial \alpha}$, $\frac{\partial \mu_t^c}{\partial \kappa}$, $\frac{\partial \nu_t^c}{\partial \kappa} < 0$.
- ii. The outcome-sharing sensitivity increases with the agent's ability, but decreases with the degree of ambiguity: i.e., $\frac{\partial \beta_t}{\partial \kappa} < 0$, and $\frac{\partial \beta_t}{\partial \alpha} > 0$. Moreover, if the principal is risk neutral, i.e., $\gamma_P = 0$, then the sensitivity increases with the returns-to-scale parameter: i.e., $\frac{\partial \beta_t}{\partial n} > 0$.
- **Remark 1:** $\frac{\partial \mu_t^c}{\partial \alpha}$, $\frac{\partial \nu_t^c}{\partial \alpha}$ \Rightarrow ambiguity increases both mean and volatility perceptions.
- Remark 2: $\frac{\partial \beta_t}{\partial \alpha} > 0 \Rightarrow$ ambiguity decreases the pay-for-performance sensitivity.

6 Conclusion

- We have developed a martingale method for principal-agent problems under the joint ambiguity.
- We have distinguished between ex-post realized and ex-ante perceived volatilities.
- The second-best contract in general consists of two sharing rules: one for realized outcome and the other for realized volatility.
- We have shown that the compensation level is positively associated with the realized volatility. Consistent with stock option granting practices in managerial compensation.
- Their worst priors are equalized across the principal and agent.

Thank you!