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1 Introduction

e We examine a principal-agent model under moral hazard in the
presence of mean-volatility joint ambiguity uncertainties.

e Uncertainties = risks + ambiguities.

— risk: the probability distribution of the outcome is known.
E.g., & ~ N(u,0?), where u and o are known constants.

— ambiguity: the distribution is unknown.

E.g., & ~ N(u,0?), where u and o are unknown.

e Preferences under ambiguity uncertainties:
maxmin, Choquet, and smooth-ambiguity expected utilities.



e In our agency economy,

— Both the principal and agent are endowed with Gilboa-Schmeidler’s
maxmin (multiple-priors) utilities.

— Ambiguity uncertainties arise in terms of both the mean and
volatility of the continuous-time outcome.



e Literature on contracting under ambiguity

— Weinschenk (2010, WP): a discrete-time model, agree-to-disagree.

— Szydlowski (2012, WP): ambiguity leads to excessive incen-
tives.

— Miao and Rivera (2015, WP): a tradeoff between incentives
and ambiguity sharing.

— Mastrolia and Possamaéi (2018): similar to this paper, but no
joint ambiguity.
— Remark: Unlike these studies, we

(1) distinguish between ex-ante perceived and ex-post real-
ized volatilities,

(2) show that the worst priors of the two contracting parties
are symmetrized at optimum,

(3) ...., and a number of other results.



The road map

Section 2: Three major issues in contracting under ambiguity
Section 3: The general mean-volatility control problem
Section 4: The contracting model

e The first-best contracting

e The second-best contracting
Section 5: A linear-quadratic case: an example

Section 6: Conclusion



2 Three major issues in contracting under
ambiguity
i. Agree-to-disagree possibilities.

ii. Two different dynamics for the same outcome:
ex-ante perceived vs. ex-post realized.

iii. Volatility control method in weak formulation.



i. Agree-to-disagree issues
Two individuals with maxmin utilities under ambiguity.
Given an uncertain payoftf £ with an ambiguity set P,
two different individuals, A and B would maximize, resp.,

min B[U4(6Y)], and  min B7[Up(¢7)].

Let

A . P A B . P B
P Eargglé%E Ua(€7)], and P Earggg%E Up(£7)).

e P4 and PP # the true probability measure.
They are merely perceptions about ambiguity.

e Different perceptions, P4 # PB, ~ info. asymm. without
learning.
Then, individuals A and B agree to disagree.




ii. The Two Different Dynamics for the same outcome, because of
ambiguity parameter v.

ex-post realized: dY; = f(t,Y,v)dt + o(t,Y,v)dB?,
ex-ante perceived: dY; = f(t,Y,v)dt + o(t,Y,v)dBy .
Ex-post realized process: ex-ante unknown,

yet ex-post verifiable and thus contractable.

Ex-ante perceived process: ex-ante known,
yet privately perceived and thus noncontractable.

Note: Three different volatilities for the same outcome.
— o(t,Y,v) : ex-ante perceived volatility,
— o : realized volatility, i.e., 02dt = d(Y}),

— o0 : P-aggregator of all admissible o’s.



iii. Mean-Volatility Control Method in Weak Formulation
= Need to introduce singular measures.

e Our problem requires weak formulation.

— Maxmin (multiple-priors) utilities in weak formulation.

— Contracting problems in weak formulation.
e Formulation

— Strong formulation: fix a probability measure, and choose
a Process.

— Weak formulation: fix a process, and choose a probability
measure.

For weak formulation, we need to find a fixed process Y; whose QV
varies with probability measure.



We want to find a fixed process Y,
with the property that under each P°,
dY; =o(t, Y, v)dW}.

Let 2 ={w € C|0,1] |w(0) = 0}.

Define Y;, pathwise, for each w € (2,

dYy(w) =dw;, Yy € R.

Partition Q by QV, ¢2, of each w.

Q7 = {w e Q|d{Y;) =oidt, t €[0,1]},
Q"NQ7 =0, if o # 0.
Then P° and P° have to be singular.

Let P? be a Wiener measure on partition 27,
and W7 be a P?-standard BM.




e | 0?(w) := the QV density of w(€ Q).

Then 0 = 0 under P°? a.s..

Namely, o(w) = {

t
e Foro > 0, Let | W, ::/ idYS.
0 Os

([ o(w)
o' (w)

o (w) weQ

w € N°
wEQU/

Then, W; is a universal std BM such that W; = W7 under P°.

"
W¢ (w)

/

Namely, W; =« 7
Wy (w)

under P° a.s..

/
under P° a.s..

!/
under P° a.s..



e The family P of admissible singular measures:
P := {singular Wiener measures P?’s, 0 € 3}, (1)
where 3 = the class of admissible volatilities.
e Then,

(0, dWZ  under P? a.s..
/ /
o, dW?  under P? a.s..

dYy = dwy = 01 dWy, P-q.s. = "’ !
t Wt O 1 73 gq.S < O_é/thO' under PO- a.s..

e Given P, we have the volatility control in weak formulation as
follows:

optimizeps cp E7(E(Y))]
S.t. dY—t = O'tth = O'tha.



Assumption 1. The class X consists of diffusion coefficients, o : U X
Dx[0,1]xQ—=>R..

(1) Allo’sinX are FP -progressively measurable, and uniformly bounded
away from zero.

(2) X is closed under concatenation, i.e., if 0,0’ € X, then ol +
o'l € X fort €[0,1].

(3) The SDE, dY; = o:dW;, has a unique strong solution under P?,
o€ .

Assumption 2. The class ® is the collection of functionals, f : U X
D x [0,1] x @ — R, with the following properties: for each (u,v) €

UXD and o(u,v,t,Y) € X, f(u,v,t,Y) is FP -progressively measurable,

ft (J;EZ zil}jg ds < oo path by path for all t € [0,1], and there exists a

constant K such that

(u,v,t,Y)
< Y. Y).
(w0t Y) <K 1+Orgsa§t\ | V(u,v,t,Y)



Mean-Volatility Control in Weak Formulation

e Enlarge P to P with abs. cont. measures.

— Introduce ® and 99/, where

® = the class of admissible drifts, f’s;

dpo:f Lof 1 [t f?
o f — _ 7 _ = L
v Do exp (/o = dY; 5 /o = ds) :

S

— For each P € P and f € O,
let P/ satisfy dP?/ = 9 7dP°. Then, under P77,

dY;, = fdt + ocdB7.



Let

P:={pP°f|dP>f =97IdP°, (f,0) € x X}

e Then, the following mean-volatility control problem in weak for-
mulation:

optimize p, 5 E (V)]
S.t. d}/t = O'tth = O'(’U, t, Y)tha
= fdt + odW;,

becomes equivalent to

optimize po cp E° [g(Y)ﬁa’f]
s.t. dY; = o, dW;.



3 The General Mean-Volatility Control Prob-
lem

We consider the following general problem:
1 1 1
inf E“Y|— — Y )d )d(Ys h(.)dYs
sup inf £ |—exp{— (cr)+ [ g0as+ [ a0+ [ n0av) }]

(2)
s.t. dY: = f(u,v,t,Y)dt 4+ o(u,v,t,Y)dB,"",

where B,"" (= Wy — fot (J;—zds) is the standard BM under P*". We assume
v > 0.

Let
. AP bf 1 [ f?
= —=—= —dY; — = | ds).
YT b T </0 o2 2/0 02 S) )




Then the problem can be stated as follows:

1 1
sup inf E™ [— exp {—fyf(Y) —/ G .ds —/ FSdYS}] (4)
0 0

ueld V€D
st. dY; = o, dW,.

where
5 1 f?
_ 2 =
Gy =9() +7a()o” + 5 =5,



Let
1 1
¢t(U,U,Y) — —exXp {_f}/g(y> T / G(u,’l),S,Y)dS T / F(U,’U,S,Y)dYS} ) (5)
t t
We define the CEQ wealth Q and value functions (V, V) as follows:

U,V 1 U,V
Pri= s (B [0, V)] ) (6)
Vilon, " () = essinf —exp (7 Q™). 7)
veE %
Vi = esssup Vi(u, v™(u)). (8)
uEL{éL

Assumption 3. There exists a saddle point process (u*,v*) € U x D
such that for w € U}l and v € D}, P-q.s.,

—exp(—Qi"" ) < —exp(—QP ) (= V) < —exp(—Qy ).



Let us define the Hamiltonian H° as follows:
for (us,ve,p,t,Y) € Us(Y) X Di(Y) x R x [0,1] x €,

HO(us, v, p,1,Y) = pK(.) + G(.) — % (por())?,

where (.) is short for (u:, v, ¢,Y), and

G:=g+hf+ [q—%hz} o2,
K := f —vho?.



Lemma 1. Let Assumptions 1 to 3 hold. Also assume that ¢¢(u,v,Y) €
L3 for all (t,u,v) € [0,1] x U x D. Then, there exists a unique P-q.s.
square integrable process Z; such that H®(us, v, Z7,t,Y) has a saddle
point (uy,vy), i.e., for all uy € Ug(Y) and vy € D(Y),

H(ug, vy, Z7,t,Y) < H?(uf,v;, 27,6, Y) < H(uy, v, Z;,t,Y). (10)
Under Pv v ,
dQ; = —H°(uj,v;, Z;,t,Y)dt + Z;dY;, Q7 =¢&(Y), (11)

and Vy = — exp (—yQyf) = esssup, g essinf cp1 [—exp (—yQ;"")].



A PREVIEW of the economics side of the paper

The optimal contracts

— The structure of the 1st-best contract under ambiguity uncer-
tainties is similar to that of risk uncertainties.

— The 2nd-best contract under ambiguity consists of two shar-
ing rules:
(1) one for realized outcome and (2) the other for realized volatility.

2nd-best vol. sharing rule = compensation and realized volatility
are positively related.

Consistent with stock option granting practices in man-
agerial compensation.

Ambiguity decreases the 2nd-best pay-for-performance sensitivity.

Agree-to-disagree issues arise neither in the 1st-best nor in 2nd-
best cases.



4 The Model

e The time horizon is the unit interval |0, 1].

e One principal and one agent with CARA preferences: coefficients
are vp and v4, respectively.

e Before time 0, the principal owns an asset with a cashflow prospect
Y. The agent has an employment opportunity with his reservation
utility = — exp(—yaWp).

e At time 0, both the principal and agent sign a compensation scheme
S(Y'), and then the agent manages the asset to improve its cashflow
prospect.

e The agent’s cumulative cost of effort up to time ¢: f(f cles, t,Y)dt.



e The (universal) filtered probability space (see STZ (2011)):
(Qaﬁa {ﬁt}ap S 7))7

where

- Q= w e O([0,1]) [wo = 0}

— {ﬁt} is the universal filtration for the family P.

— P :={P?, |o € 3}, a family of singular Wiener measures.
— P = {PerV| PV =9 (e, u,v)PY, PV € P}.



e Given a contract S, the agent chooses P%** € P to solve the
following problem:

sup inf etV |:_€—’)/A(S(Y)—f01 c(e,t,Y)dt)
662/{ (ILL,]/)E'D
s.t. dY; = f(e,pu,v,t,Y)dt + o(v,t,Y)dB;"".

e The agent’s problem is equivalently transformed into a volatility
control problem as follows.

sup inf E* —e_%“(s(y)_folC(e’t’y)dt)ﬁl(e,,u, V)}
661/{ (/L,I/)ED

S.t. d}/t = O'tth.




e The admissible class W of contracts:

S is FP-measurable, S - 91 (e, u, v) € £, and
exp {—%4 (S — fol c(e, t, Y)dt) } V1 (e, u,v) € L3

- {s

(12)

Remark: Given each admissible S, the conditional expectation of
the agent’s expected utility satisfies the q.s. version of the

MRT of STZ (2011).




4.1 Representation of Admissible Contracts

Given (S,e) € ¥ x U, let

W[)g “ = the CEQ wealth level of the agent’s most pessimistic utility,

v = (u, V), ambiguity parameter pair.

Then,

~exp (—VAW(?’6> _ iIvlf e [_ exp {_%4 (S(Y) — /01 c(e,t, Y))dt> H

S.t. dYVt = f(et,,ut,yt,t,Y)dt—I—O'(Vt,t,Y>dBZL’U.



Proposition 1. There exrist unique P-q.s. {]:"t}-pmgressz'vely measur-
able and square integrable processes, (B¢, 0, Ky), i.e., 5,0 € 7—[72; and
K e ]I%, such that S can be represented in the following form: P-q.s.,

1
S:M€£+/i%ﬁ%@yf—&ﬂ%meJJQ+[%%f—@}Hﬁbtygdt
0

1 1
+ [ odwy+ [ By K, (13)
0 0

where Ky = 0, under all P € P; and for all t € [0,1], K; = 0 under P,
and K; is nondecreasing over time under other PY ’s in P.

Remark: Two distinguishing features: volatility sharing rule # and the
process K.



Why the process K7

e To adjust for realized ofi-the-equilibrium singular events.

e The decision maker views, ex ante, ambiguity uncertainties through
his most pessimistic prior, and thus he treats K; = 0, ex ante.

e Singular deviations, if any, from the most pessimistic events lead
to less pessimistic payofls. Hence, adjustments by K have to be
positive amounts.



4.2 First-Best Contracting

Problem 1. (First-best contracting.) Choose a contract S by solving
the following problem.

sup inf Ee’”P’”P [—exp{—yp (Y1 — S)}]
SeWw,eclU (Wvh)eD
(n*,v*) eD

P
s.t. (i) dYy = flet,uf vl ,t,Y)dt +o(vi t,Y)dB; o :

0ty o 59 e (5 [ )]

(f1,0)€D

s.t. dYy = f(eta /la ﬁ) t Y)dt + U(’)a t Y)dBf”a,ﬁa

(i) Eer V7 {— exp {—M (s - /01 c(et,t,Y)dt> }] > —exp (—yaW0).

Remark: Constraint (ii) is new: an incentive compatibility condition
which arises even in the first best.



Theorem 1. (First best.) Suppose that the optimizers, (es, 0, ut ,vi)
and (,uf, V{‘) lie in the interiors of their respective domains, for all t €
0,1]. Then, in the first best, the worst priors of the principal and agent
are symmetrized such that (uit,v) = (uf,vl) = (us,vf) € Dy(Y).
Moreover, there exists a unique P-q.s. square integrable process Z¥
such that

: _ L yavp 0Py _2/—
T VL) € min e, 1, 0,8, Y) — = 14+ 2" )o“(v,t,Y),
W)€ | min | flen i ntY) - 5 A (14 207)0% (0,1,Y)

(14)
and that the first-best optimal contract S is: P-q.s.,

1 1
S:WO+/ (C(etatay)_Btf(etaﬂg7ygatay)+%B?UQ(VtcataY)) dt+/ BtdY}j,
0 0
(15)

ce(es,t,Y
where By = S3EC (14 Z07), and 1+ 207 = g2t



e The form of the 1st-best contract with ambiguity is the same as
that of the classical 1st-best contract without ambiguity.

— 0, = 0 for all ¢.
— f: is the same as that of the classical case without ambiguity.

— Deviation from the (static) rule of marginal product of labor:
ce # f. whenever Z} # 0, where Z! represents the principal’s
outcome-share growth opportunities.

e At optimum, the worst priors of the two parties are symmetrized.



4.3 The Second-Best Contracting

Problem 2. (Second-best contracting.) Choose a contract S by solving
the following problem.

sup inf Ee’”P’”P [—exp{—vyp (Y1 — 5)}]
Sev,eclU (W vP)eD
(u*,v?) eD

P P
st. (i) dYy = fle,u”, v t,Y)dt + o(vF t,Y)dBIH

1
(1) (e, p™,v?) € argsup inf E&HTY {— exp {—fyA <S —/ c(ﬁ,t,Y)dt) }]
0

ecu (,0)ED
st dYi = f(&,0,1,Y)dt + o(0,t,Y)dBy ™7,

(i) EeH" v {— exp {—M (s - /01 c(e,t,Y)dt) H > —exp (—yaW0).



4.3.1 The Agent’s Problem

The agent’s Hamiltonian given a contract in the form (13):
HA — _C(ea t Y) + Btf(Ez? pt, Ve, T, Y) + (et o 7714 t) 02(V7t7 Y)

Theorem 2. (Incentive compatibility/implementability.) Given a con-
tract S € W with admissible (e, (ur,v;); (B, 0:)) € U x Dy(Y) x R?, for
t € |0,1], the agent chooses (e}, u;,v;) if and only if

(ey, uy,v;) € arg max min HA(&, 1,05 Be, 04,1, Y). (16)

é v

That is, the contract S € W with admissible (ef, (uf,vy); (B¢, 0:)) € U x
D¢ (Y) x R? is implementable if and only if (ef, (u},v})) is a saddle point
of HA given (B:,0,), fort € [0,1].

Corollary 1. If the optimal e; lies in the interior of U, then By =
ce(e,t,Y)
fe<e’/’l’71/7t’Y) ’




e The process K does not affect the implementability condition.

e The agent is indifferent between contracts with and without the
process K, because K matters for off-the-equilibrium events only.

e Hence, it is without loss of generality for the principal to consider
contracts ignoring the process K as follows:

1
S =Wy — | maxmin [H*(é, fir, 4; By, 04,1, Y)] dt

A

0 (& [L,l)

1 1
T /O 6,d(Y;) + /O 8., (17)




4.3.2 The Principal’s Problem

Theorem 3. Assume that the agent’s effort e is in the interior of U.

There erists a unique P-q.s. square integrable process Z¥ such that the

principal’s optimal decision (eq, uit, vit, ut’, vk, 0,) solves the following

problem for t € [0,1]: P-q.s.,

max min —C(ét,t,Y)+(1—Bt+ZtID> f(ét7ﬁ75P77715P7t7Y)
e,01 (nf ,vf)eDy(Y)
_ 2 _
& (1-F2) v 8] 6 )
Zor(s ~A A _(YAZ2 5\ _2/-A
‘i‘ﬁtf(eta,ut y Ut 7t7Y) 9 675 O¢) o (l/t 7taY)7
(18)
- et,t, Y
ot By = —celen _’A) , (19)
fe(etnu't 7’/75 7t7Y)
(ﬁf?DtA) € arg min @A(étaﬂaﬁ;e_tagtauy)? (20)

(ﬂvﬁ)GDt(Y)

where (uf, vl and (ui*, v) are, respectively, the principal’s and agent’s

worst ambiguity parameter pairs.



Principal’s Hamiltonian (18)

Ht:_c(étatay)_|— (1_Bt+ZtP)f(ét7:ut7Vt7t Y)

principal’s perceived share of the drift

— |2 (1= B+ 2F)" + 6| (1, )

principal’s perceived risk premium

~N"

+ \Btf(etmut 7Vt 7t Y)

agent’s percelved share of the drift

- (8 -0) @)

\ . 4

agent’s perceived risk premium



e The principal behaves
as if her outcome share were
1—5t—|—ZtP, not 1_5t

Hamiltonian (18) =

e She can shift, to and from the agent,
‘the perceived risk premia’
by using volatility sharing rule 6;.

e Nominal shares to the principal and agent, resp: 1 — 3; and S;.

e Effective shares to the principal and agent, resp: 1 — 8; + Z}F
and [;.

e ZI’ = an imaginary extra share given to the principal: growth
opportunity over time.



Theorem 4. Assume an interior optimum. The worst priors of the two
contracting parties are symmetrized such that (p,vi') = (uf,vf) =
(us,vf).  Under the symmetrized prior, there exists a unique P-q.s.
square integrable process ZL such that the optimal outcome- and volatility-

sharing sensitivities (B¢, 0;) and the common prior (u$,vy) can be ex-
pressed as follows.

fe + ’YPBe(O'g)Q

= 1+ z), 21

o fe+(7P+WA)Be(Of)2( t4) 2D
1

= sz R Bt 20 (vadi e =gk 20) z 0. (22)

_ 0 ce(et,t,Y)
where Be — e (fe(et,ug,Vf,taY)); and

T.Up) € arg min 14+ ZEY f(er, fur, Dt t, Yy
(pt,vi) (ﬂ,ﬁ)EDt(Y)( ¢ ) f(et, b )

L (B e (= Bt ZD?) 020t V). (29)



e That is, the second-best contract is

1 1 1
S:W0+/ ...dt+/ etd<n>+/ BedYy.
0 0 0

— If y4 =0, then §; =0 and 3; =1+ ZF.
— If y4 >0, then §; >0 and 0 < B < 1+ ZF.



e T'wo striking implications from Theorem 4.

1. 6; > 0 = the agent gets paid for realized volatility.

Realized volatility, (Y;) T = Realized com-
pensation, S T.

Consistent with compensation practices of stock option grants!



C(pt vt = (pfovb) = (pg,vp).

The worst priors of the two parties are sym-
metrized.

— Suppose the two worst priors are not equal.
= asymmetric perceptions
~» asymmetric information without learning
= inefficiency in contracting.

— The principal uses the volatility-sharing contract to elim-
inate the asymmetry of the perceptions.



Symmetrization through volatility sharing
The principal can, in effect, influence the agent’s risk aversion.

0; T = agent’s risk burden | = his effective risk aversion |
= risk premium on compensation uncertainty J.

If v4 > vp, then the agent demands an excessively high risk
premium.

= The principal shifts the agent’s uncertainty exposure to herself
by increasing 6;.

If v4 < vp, then the agent demands lower risk premium than the
principal perceives.

= The principal shifts her own uncertainty exposure to the agent

by decreasing 6;.

At optimum, v4 = vp.



Then, Why No Volatility-Sharing in the First Best?

e The 1st-best contract: uncertainty sharing. No incentive issues.

— Under the 1st-best outcome-sharing contract,
both parties share uncertainties symmetrically.
Thus, their worst priors are symmetrized.

e The 2nd-best contract: uncertainty sharing and incentives.

— For incentives, the 2nd-best outcome-sharing sensitivity has
to be greater than that of the 1st best.

= the two worst priors become asymmetrical.
= contract inefficiency.

=- the principal uses a volatility sharing contract in order
to achieve the symmetrization.



5 A Linear-Quadratic (Markovian) Case

The outcome process:
dY; = (nYy + ey + pg)dt + vy d B, .

o If n > (=, <)0, then
the outcome exhibits ‘increasing (constant, decreas-
ing) returns to scale.’

Assume:

cle) = 362,

D={(uv)elpm = |r=p-sw-v)?=20}.

e The set D becomes Epstein-Schneider’s (2010) quadratic am-
biguity set if 0 = 0.



=

"=

Y




Proposition 2. Assume an interior optimum in (u,v). The common

worst prior (u$,vy) at optimum is a unique solution to the following
equations,

C Q C
My = §<Vt —1")% (24)

0

{1+(1+Iﬁyﬁ%0fﬂ}%ﬂmigg_¢»—F%;—lzo, (25)

where Ry := 1+ (ya + vp)r(vf)?. Moreover, the value function V; is
given by
V(t, }/t) — _e_'YP(C(t)Yt+,0(t))7 P_q.s"

where
C(t) =" —1=2F (26)

o(t) = Yo — Wp + /t ... ds. (27)



The sharing sensitivities (8¢, 0;) of the optimal contract are:

1+ ypr(vf)? n(1—t)
f— (& y 28
SR TR T .
1 _ _
o gt (070 ) = (0 R

Remark 1: In ‘the linear-quadratic case,’
Zi > (=,<)0, iff n > (=,<)0,
iff the outcome exhibits increasing (constant, decreasing)
returns to scale.

Remark 2: If n = 0, then the optimal contract is linear in Y; and (Y7):
an ambiguity version of the Holmstrom-Milgrom stationary case.



Corollary 2. (Comparative statics.)

i. Both the commonly perceived mean and volatility increase with the

returns-to-scale parametern, the degree of ambiguity 1/, and the agent’s

. . ac 80 aC ac ac 80
ability 1/k. That is, 8’;’“‘, 8’/7; > 0, and 8’;’5, 625’ 8‘:, 8’;’; < 0.

ii. The outcome-sharing sensitivity increases with the agent’s ability, but
decreases with the degree of ambiguity: i.e., % < 0, and % > 0.
Moreover, if the principal is risk neutral, i.e., vp = 0, then the sensitivity

increases with the returns-to-scale parameter: 1.e., %ﬁn L > 0.

Remark 1: %’f, 8';’50 = ambiguity increases both mean and volatility

perceptions.

Remark 2: % > (0 = ambiguity decreases the pay-for-performance

sensitivity.



6 Conclusion

e We have developed a martingale method for principal-agent prob-
lems under the joint ambiguity.

e We have distinguished between ex-post realized and ex-ante per-
ceived volatilities.

e The second-best contract in general consists of two sharing rules:
one for realized outcome and the other for realized volatility.

e We have shown that the compensation level is positively associ-
ated with the realized volatility. Consistent with stock option
granting practices in managerial compensation.

e Their worst priors are equalized across the principal and agent.



Thank you!



