Casino gambling problem under probability weighting

Sang Hu

National University of Singapore

Mathematical Finance Colloquium University of Southern California Jan 25, 2016

Based on joint work with Xue Dong He, Jan Obłój, and Xun Yu Zhou

- Casino gambling is popular, but a typical casino bet has at most zero expected value
- The popularity of casino gambling cannot be explained by models in the expected utility framework with concave utility functions

- Barberis (2012) was the first to employ the cumulative prospect theory (CPT) of Tversky and Kahneman (1992) to model and study casino gambling
- A gambler comes to a casino at time 0 and is offered a bet with an equal chance to win or lose \$1
- If the gambler accepts, the bet is then played out and she either gains \$1 or loses \$1 at time 1
- Then, the gambler is offered the same bet, and she can choose to leave the casino or to continue gambling
- It is a five-period model: at time 5, the gambler must leave the casino

A Model by Barberis (2012) (Cont'd)

- The gambler decides the optimal exit time to maximize the CPT value of her cumulative gain and loss at the exit time
- Barberis (2012) consider path-independent strategies only
- Barberis (2012) finds the optimal exit time by enumeration
- In this model, time-inconsistency arises due to probability weighting in CPT
- Barberis (2012) compares the strategies of three types of gamblers:
 - naive gamblers, who do not realize the inconsistency in the future and thus keeps changing their strategy
 - Sophisticated gamblers with pre-commitment, who realize the inconsistency and commit their future selves to the strategy planned today
 - sophisticated gamblers without pre-commitment, who realize the inconsistency but fail to commit their future selves

A Model by Barberis (2012) (Cont'd)

- With reasonable parameter values, Barberis (2012) finds
 - sophisticated gamblers with pre-commitment tend to take loss-exit strategies
 - naive gamblers, by contrast, end up with gain-exit strategies
 - sophisticated agents without pre-commitment choose not to play at all
- CPT is a *descriptive* model for individuals' preferences
- A crucial contribution in Barberis (2012): show that the optimal strategy of a gambler with CPT preferences is consistent with several commonly observed gambling behaviors such as the popularity of casino gambling and the implementation of gain-exit and loss-exit strategies

- Can CPT also explain other commonly observed gambling patterns?
 - Gamblers become more risk seeking in the presence of a prior gain, a phenomenon referred to as *house money effect* (Thaler and Johnson, 1990)
 - Individuals may use a random device, such as a coin flip, to aid their choices in various contexts (Dwenger, Kübler, and Weizsacker, 2013)
- Can we solve the casino gambling problem with CPT preferences analytically?

- We consider the casino gambling problem without additional restrictions on time-horizon or set of available strategies
- We find that the gambler may strictly prefer path-dependent strategies over path-independent strategies, and may further strictly improve her preference value by tossing random coins
- We study theoretically the issue of why the gambler prefers randomized strategies
- We show that any path-dependent strategy is equivalent to a randomization of path-independent strategies
- We develop a systematic approach to solving the casino gambling problem

• Suppose an individual experiences a random gain/loss X. Then, in CPT, the preference value of X is

$$V(X) := \int_0^\infty u(x)d[-w_+(1-F_X(x))] + \int_{-\infty}^0 u(x)d[w_-(F_X(x))],$$

- F_X is the CDF of X
- u is an S-shaped utility function
- w_{\pm} are two inverse-S-shaped probability weighting functions

- At time 0, a gambler is offered a fair bet: win or lose one dollar with equal probability
- If she declines this bet, she does not enter the casino to gamble
- Otherwise, she starts the game and the outcome of the bet is played out at time 1, at which time she either wins or loses one dollar
- The gambler is then offered the same bet and she can again choose to play or not, and so forth
- At time 0, the gambler decides whether to enter the casino and, if yes, the optimal time to leave the casino
- The decision criterion is to maximize the CPT value of her cumulative gain and loss at the time when she leaves the casino

Binomial Tree Representation

Figure: Gain/loss process represented as a binomial tree

Sang Hu (NUS)

- Denote $S_t, t \ge 0$ as the cumulative gain/loss of the gambler
- Path-independent (Markovian) strategies: for any t ≥ 0, {τ = t} (conditioning on {τ ≥ t}) is determined by (t, St)
- Path-dependent strategies: for any $t \geq 0, \; \{\tau = t\}$ is determined by $(u, S_u), u \leq t$
- Randomized, path-independent strategies:
 - At each time the gambler tosses a coin and decides whether to leave the casino (continue with tails and stop with heads)
 - The coins are tossed independently
 - The probability that the coin tossed at t turns up tails is determined by $(t,S_t),\,{\rm and}$ is part of the gambler's strategy

• Consider the following utility and probability weighting functions

$$u(x) = \begin{cases} x^{\alpha_{\pm}} & \text{for } x \ge 0\\ -\lambda(-x)^{\alpha_{-}} & \text{for } x < 0, \end{cases} \quad w_{\pm}(p) = \frac{p^{\delta_{\pm}}}{(p^{\delta_{\pm}} + (1-p)^{\delta_{\pm}})^{1/\delta_{\pm}}}$$

with $\alpha_+ = \alpha_- = 0.9$, $\delta_+ = \delta_- = 0.4$, and $\lambda = 2.25$

• Consider a 6-period horizon, and compare the CPT values for different strategies

Example (Cont'd)

Figure: Optimal path-independent strategy. The CPT value is V = 0.250440

Example (Cont'd)

Figure: Optimal path-dependent strategy. The CPT value is V = 0.250693

Image: A math a math

Example (Cont'd)

Figure: Randomized, path-independent strategy. The CPT value is V = 0.250702

Image: A match a ma

- It is possible to strictly increase the gambler's CPT value by allowing for path-dependent strategies
- The CPT value can be further improved by switching to randomized, path-independent strategies
- Why?

- Consider a general discrete-time Markov chain $\{X_t\}_{t\geq 0}$ taking integer values
- Consider the optimal stopping problem

 $\sup_{\tau} V(X_{\tau})$

• Assume $V(\cdot)$ is law-invariant, i.e., $V(X)=\mathcal{V}(F_X),$ such as CPT and EUT

Lemma

For any randomized, path-independent strategy τ , there exist Markovian strategies τ_i 's such that the distribution of (X_{τ}, τ) is a convex combination of the distributions of (X_{τ_i}, τ_i) 's, i.e.,

$$F_{X_{\tau},\tau} = \sum_{i} \alpha_{i} F_{X_{\tau_{i}},\tau_{i}}$$

for some $\alpha_i \geq 0$ such that $\sum_i \alpha_i = 1$.

Proposition

For any path-dependent strategy τ , there exists a randomized, path-independent strategy $\tilde{\tau}$ such that (X_{τ}, τ) has the same distribution as $(X_{\tilde{\tau}}, \tilde{\tau})$. More generally, for any randomized, path-dependent strategy τ' , there exists a randomized, path-independent strategy $\tilde{\tau}$ such that $(X_{\tau'}, \tau')$ has the same distribution as $(X_{\tilde{\tau}}, \tilde{\tau})$. • The preference measure $V(X) = \mathcal{V}(F_{X_{\tau}})$ is quasi-convex if

 $\mathcal{V}(pF_1 + (1-p)F_2) \le \max{\{\mathcal{V}(F_1), \mathcal{V}(F_2)\}}, \quad \forall F_1, F_2, \ \forall p \in [0, 1].$

- An agent with quasi-convex preferences does not prefer path-dependent or randomized strategies over Markovian strategies
- The gambler in the casino model strictly prefers path-dependent strategies over Markovian strategies, and strictly prefer randomized, path-independent strategies over path-dependent strategies because CPT is *not* quasi-convex
- EUT is quasi-convex

- Consider the casino gambling problem on an infinite time horizon
- $\bullet\,$ Consider randomized, path-independent strategies $\tau\,$
- Consider uniformly integrable stopping times, i.e., $S_{\tau\wedge t},t\geq 0$ is uniformly integrable
- $\bullet\,$ Denote the set of feasible stopping times as ${\cal T}$
- Optimal stopping problem:

 $\sup_{\tau\in\mathcal{T}} V(S_{\tau})$

- This problem is difficult to solve: Snell envelop and dynamic programming cannot apply due to probability weighting
- Idea: change the decision variable from au to the distribution of $S_{ au}$
- The quantile formulation in Xu and Zhou (2012) cannot apply
- The key is the characterization of the set of feasible distributions
- Denote

$$\mathcal{M}_0(\mathbb{Z}) = \left\{ \mu : \sum_{n \in \mathbb{Z}} |n| \cdot \mu(\{n\}) < \infty, \sum_{n \in \mathbb{Z}} n \cdot \mu(\{n\}) = 0 \right\}.$$

Theorem

For any $\mu \in \mathcal{M}_0(\mathbb{Z})$, there exists $\{r_i\}_{i \in \mathbb{Z}}$ such that S_{τ} follows μ where

 $\tau := \inf\{t \ge 0 | \xi_{t,S_t} = 0\}$

and $\xi_{t,i}$, $t \in \mathbb{Z}^+$, $i \in \mathbb{Z}$ are 0-1 random variables independent of each other and S_t with $\mathbb{P}(\xi_{t,i} = 0) = r_i$, $i \in \mathbb{Z}$. Furthermore, $\{S_{\tau \wedge t}\}_{t \geq 0}$ is uniformly integrable and does not visit states outside any interval that contains the support of μ . Conversely, for any randomized, path-independent strategy τ such that $\{S_{\tau \wedge t}\}_{t \geq 0}$ is uniformly integrable, the distribution of S_{τ} belongs to $\mathcal{M}_0(\mathbb{Z})$.

Infinite-Dimensional Program

• The optimal stopping problem is equivalent to

$$\max_{\mathbf{x},\mathbf{y}} \quad U(\mathbf{x},\mathbf{y})$$

subject to $1 \ge x_1 \ge x_2 \ge \dots \ge x_n \ge \dots \ge 0,$
 $1 \ge y_1 \ge y_2 \ge \dots \ge y_n \ge \dots \ge 0,$
 $x_1 + y_1 \le 1,$
 $\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} y_n.$

where

• x and y stand for the cumulative gain distribution and decumulative loss distribution, respectively

۲

$$U(\mathbf{x}, \mathbf{y}) := \sum_{n=1}^{\infty} \left(u_{+}(n) - u_{+}(n-1) \right) w_{+}(x_{n})$$
$$- \sum_{n=1}^{\infty} \left(u_{-}(n) - u_{-}(n-1) \right) w_{-}(y_{n}).$$

Sang Hu (NUS)

Optimal exit time from casino gambling

- After we find the optimal solution $(\mathbf{x}^*, \mathbf{y}^*)$ to the infinite-dimensional problem, we can recover the optimal stopping time τ^* using Skorokhod embedding
- Difficulties in finding the optimal solution $(\mathbf{x}^*, \mathbf{y}^*)$:
 - The objective function is neither concave nor convex in the decision variable
 - There are infinitely many constraints, so the standard Lagrange dual method is not directly applicable even if the objective function were concave

Infinite-Dimensional Program (Cont'd)

• Procedures to find the optimal $(\mathbf{x}^*, \mathbf{y}^*)$:

- Introduce $\mathbf{z}_+ = (z_{+,1}, z_{+,2}, ...)$ with $z_{+,n} := x_{n+1}/x_1, n \ge 1$ Introduce $\mathbf{z}_- = (z_{-,1}, z_{-,2}, ...)$ with $z_{-,n} := y_{n+1}/y_1, n \ge 1$ Introduce $s_+ := (\sum_{n=2}^{\infty} x_n)/x_1$, and $s_- := (\sum_{n=2}^{\infty} y_n)/y_1$
- 2 Find the optimal \mathbf{z}_+ and \mathbf{z}_- with constraint $\sum_{n=1}^{\infty} z_{\pm,n} = s_{\pm}$
- 3 Find the optimal x_1 , y_1 , and s_{\pm}
- After we find optimal \mathbf{z}_{\pm} , x_1 , y_1 , and s_{\pm} , we can compute optimal \mathbf{x} and \mathbf{y} as $\mathbf{x} = (x_1, x_1 \mathbf{z}_+)$ and $\mathbf{y} = (y_1, y_1 \mathbf{z}_-)$, respectively
- s_{\pm} imply the conditional expected gain and loss of S_{τ} , and the (asymptotically) optimal value s_{\pm} will dictate whether the gambler takes a loss-exit, gain-exit, or non-exit strategy

Stop Loss, Disposition Effect, and Non-Exit

• Under some conditions the optimal strategy (asymptotically) is loss-exit, gain-exit, or non-exit strategy

Parameter Values	Exist. Opt. Solution	Strategy
$\alpha_+ > \delta_+$	No	loss-exit
$\alpha < \delta$	No	gain-exit
$\alpha_+ > \alpha$	No	non-exit
$\alpha_{+} = \alpha_{-}, \lambda < \sup_{0 < p < 1} \frac{w_{+}(p)/p^{\alpha_{+}}}{w_{-}(1-p)/(1-p)^{\alpha_{+}}}$	No	non-exit

Table: Existence of optimal solutions. Utility function is given as $u_{\pm}(x) = x^{\alpha_{\pm}}, u_{-}(x) = \lambda x^{\alpha_{-}}$. Probability weighting function is given as $w_{\pm}(p) = \frac{p^{\delta_{\pm}}}{\left(p^{\delta_{\pm}} + (1-p)^{\delta_{\pm}}\right)^{1/\delta_{\pm}}}$, or $w_{\pm}(p) = a_{\pm}p^{\delta_{\pm}}/(a_{\pm}p^{\delta_{\pm}} + (1-p)^{\delta_{\pm}})$, or $w_{\pm}(p) = p^{\delta_{\pm}}$

Stop Loss, Disposition Effect, and Non-Exit (Cont'd)

- When $\alpha_+ > \delta_+$, the optimal strategy is essentially "loss-exit":
 - To exit once reaching a fixed loss level and not to stop in gain
 - Such a strategy produces a highly skewed distribution which is favored due to probability weighting
- When $\alpha_{-} < \delta_{-}$, the optimal strategy is essentially "gain-exit":
 - To exit when losing a large amount of dollars or when winning a small amount of dollars
 - This type of strategy exhibits disposition effect: sell the winners too soon and hold the losers too long

• When either (1) $\alpha_+ > \alpha_-$, or (2)

$$\alpha_{+} = \alpha_{-}, \quad \lambda < \sup_{0 < p < 1} \frac{w_{+}(p)/p^{\alpha_{+}}}{w_{-}(1-p)/(1-p)^{\alpha_{+}}},$$

the optimal strategy is essentially "non-exit":

- To exit when the gain reaches a sufficiently high level or the loss reaches another sufficiently high level with the same magnitude
- The second condition mean probability weighting on large gains dominates a combination of weighting on large losses and loss aversion

Optimal Solution

		Gamb.	Exist_	Strategies			
$\alpha_+ = \alpha =$	$\lambda \ge 1$	No	Yes	not gamble			
$\delta_+ = \delta = 1$	$\lambda < 1$	Yes	No	non-exit			
$\alpha_+ > \delta_+$	any λ	Yes	No	loss-exit			
$\alpha_{-} < \delta_{-}$	any λ	Yes	No	gain-exit			
$\alpha < \alpha_+$	any λ	Yes	No	non-exit			
$\alpha_+ = \delta_+ < 1$	any λ	Yes	No	certain asymptotical strategy			
$\delta_{-} \leq \delta_{+},$	$\lambda \ge M_1$	No	Yes	not gamble			
$lpha_+ < \delta_+$, and	$\lambda < M_1$	Yes	$(s_+^*, s^*) \in \operatorname{argmax} f(\hat{y}(s_+, s), s_+)$				
$\alpha > \max(\alpha_+, \delta)$				$y_1^* = \hat{y}(s_+^*, s^*)$			
$\delta_{-} \leq \delta_{+},$	$\lambda \ge M_1$	No	Yes	not gamble			
$lpha_+ < \delta_+$, and	$\lambda < M_1$	Yes	No	gain-exit			
$\alpha_{-} = \delta_{-} \ge \alpha_{+}$				Bancolt			
	$\lambda \ge M_1$	No	Yes	not gamble			
$\delta_{-} \leq \delta_{+},$	$M_2 < \lambda < M_1$	Yes	Yes	$(s_{+}^{*}, s_{-}^{*}) \in \operatorname{argmax} f\left(\hat{y}(s_{+}, s_{-}), s_{+}, s_{-}\right)$			
$lpha_+ < \delta_+$, and	2			$y_1^* = \hat{y}(s_+^*, s^*)$			
$\alpha=\alpha_+>\delta$	$\lambda = M_2 < M_1$	Yes					
	$\lambda < M_2$	Yes	No	non-exit			
$\alpha_{-} > \delta_{-} >$	$\lambda \ge M_3$	Yes	Yes	$s^*_+ = s_1, s^* = 0$, and $y^*_1 = ar{y}(s^*_+, s^*)$			
$\delta_+ > \alpha_+$	$\lambda < M_3$	Yes	Yes	$(s^*_+,s^*)\in {\rm argmax} f(\bar{y}(s_+,s),s_+,s)$			
				and $y_1^* = ar{y}(s_+^*,s^*)$			
$\alpha_{-} = \delta_{-} >$	$\lambda > M_A$	Yes	Yes	$s^{*}_{+}=s_{1}$, $s^{*}_{-}=m$ for some integer m			
$\delta_+ > \alpha_+$	1 114			and $y_1^*=ar{y}(s_+^*,s^*)$			
	$\lambda \leq M_4$	Yes	No	gain-exit			

Sang Hu (NUS)

<mark>:▶☆</mark> 置▶ 置 少へで Jan 25, 2016 29 / 40

Image: A mathematical states of the state

- After finding the optimal solution $(\mathbf{x}^*, \mathbf{y}^*)$ to the infinite-dimensional problem, we establish a new Skorokhod embedding result to recover the optimal stopping time τ^*
- Randomized, path-independent strategy: For example, toss coins
- Randomized, path-dependent strategy: For example, randomized Azéma-Yor (AY) stopping time
 - Exit when relative loss (difference between cumulative gains and its running maximal) is large enough to exceed the bound
 - Possible to toss coins to determine exit or not when relative loss is very close to the bound

Randomized AY Stopping Time

Figure: Two paths are drawn for illustrating randomized AY stopping rules. Black nodes mean stop. White nodes mean continue. Grey nodes mean randomization.

Numerical Examples

• Suppose
$$\alpha_{+} = 0.6$$
, $\alpha_{-} = 0.8$, $\delta_{\pm} = 0.7$, $\lambda = 1.05$
• The probability distribution function of $S_{\tau^{*}}$ is
$$p_{n}^{*} = \begin{cases} 0.4465((n^{0.6} - (n-1)^{0.6})^{1/0.3} - ((n+1)^{0.6} - n^{0.6})^{1/0.3}), & n \ge 2, \\ 0.3297, & n = 1, \\ 0.6216, & n = -1 \end{cases}$$

Note $p_n^* := \mathbb{P}(S_{\tau^*} = n)$. Recover the optimal stopping time τ^* ,

Numerical Examples (Cont'd)

Figure: Randomized path-independent strategy (left-panel) and randomized AY strategy (right panel)

Sang Hu (NUS)

Jan 25, 2016 33 / 40

- If a gambler revisits the gambling problem in the future, she may find the initial strategy is no longer optimal
 - If she cannot commit herself to following the initial strategy, she may change to a new strategy that can be totally different
 - Such type of gamblers are called *naive* gamblers

- Under some conditions, while a pre-committed gambler who follows the initial strategy after time 0 stops for sure before the loss hits a certain level, the naive gambler continues to play with a positive probability at any loss level
 - Either she simply continues, or else she might want to toss a coin to decide whether to continue to play or not

• Why?

• At time 0:

- The probability of having losses strictly larger than certain level L is small from time 0's perspective
- This small probability is exaggerated due to probability weighting
- $\bullet\,$ The gambler decides to stop when the loss reaches level L in the future
- At some time t when the naive gambler actually reaches loss level L:
 - The probability of having losses strictly larger than L is no longer small from time t's perspective
 - This large loss is not overweighted
 - The naive gambler chooses to take a chance and not to stop gambling

Naive Gamblers (Cont'd)

H	$n \leq -7$	-6	-5	-4	-3	$^{-2}$	-1	0	1	2	$n \ge 3$
-5	0	0.977	0	0	0	0	0	0	0	0.0096	$0.1477q_{n}$
$^{-4}$	0	0	0.971	0	0	0	0	0	0.0063	$0.1453q_{n}$	$0.1453q_{n}$
-3	0	0	0	0.961	0	0	0	0	0.0161	$0.1424q_{n}$	$0.1424q_{n}$
-2	0	0	0	0	0.947	0	0	0	0.0308	$0.1393q_{n}$	$0.1393q_{n}$
-1	0	0	0	0	0	0.924	0	0	0.0543	$0.1364q_{n}$	$0.1364q_{n}$
0	0	0	0	0	0	0	0.885	0	0.0933	$0.1360q_{n}$	$0.1360q_{n}$
1	0	0	0	0	0	0	0	0.850	$0.1501q_{n}$	$0.1501q_{n}$	$0.1501q_{n}$
2	0	0	0	0	0	0	0	0.700	$0.3003q_{n}$	$0.3003q_{n}$	$0.3003q_{n}$
3	0	0	0	0	0	0	0	0.550	$0.4504q_{n}$	$0.4504q_{n}$	$0.4504q_{n}$
4	0	0	0	0	0	0	0	0.400	$0.6006q_{n}$	$0.6006q_{n}$	$0.6006q_{n}$
5	0	0	0	0	0	0	0	0.250	$0.7507q_{n}$	$0.7507q_{n}$	$0.7507q_{n}$

Table: Optimal distribution for $H = \pm 1, \pm 2, \dots, \pm 5$. Suppose $\alpha_+ = 0.5$, $\alpha_- = 0.9$, $\delta_{\pm} = 0.52$, and $\lambda = 2.25$. The gambler does not change the reference point. Let $q_n = (n^{0.5} - (n-1)^{0.5})^{1/0.48} - ((n+1)^{0.5} - n^{0.5})^{1/0.48}$, $n \ge 1$

.

- We considered a casino gambling problem with CPT preferences, and found that path-dependent stopping strategies and randomized stopping strategies strictly outperform path-independent strategies
- We showed that the improvement in performance brought by these strategies in the casino gambling problem is a consequence of lack of quasi-convexity of CPT preferences
- We developed a systematic approach to solving the casino gambling problem analytically
 - Change the decision variable
 - Solve an infinite-dimensional optimization problem
 - Establish a new Skorokhod embedding result

Randomized, path-independent stopping time

2 Randomized Azéma-Yor stopping time

- We have found the conditions under which the pre-committed gambler takes essentially loss-exit (stop-loss), gain-exit (disposition effect), and non-exit strategies
- We have also revealed that, under some conditions the initial optimal strategy and the actual strategy implemented by the naive gambler are totally different
 - While the pre-commitment strategy (initial one) is to stop if her cumulative loss reaches a certain level, the naive gambler continues to play with a positive probability at any loss level

- BARBERIS, N. (2012): "A Model of Casino Gambling," *Management Sci.*, 58(1), 35–51.
- DWENGER, N., D. KÜBLER, AND G. WEIZSACKER (2013): "Flipping a Coin: Theory and Evidence," Working Paper.
- THALER, R. H., AND E. J. JOHNSON (1990): "Gambling with the house money and trying to break even: The effects of prior outcomes on risky choice," *Management Sci.*, 36(6), 643–660.
- TVERSKY, A., AND D. KAHNEMAN (1992): "Advances in Prospect Theory: Cumulative Representation of Uncertainty," J. Risk Uncertainty, 5(4), 297–323.
- XU, Z. Q., AND X. Y. ZHOU (2012): "Optimal Stopping under Probability Distortion," Ann. Appl. Probab., 23(1), 251–282.

・ 何 ト ・ ヨ ト ・ ヨ ト