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Casino gambling

Casino gambling is popular, but a typical casino bet has at most zero
expected value

The popularity of casino gambling cannot be explained by models in
the expected utility framework with concave utility functions
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A Model by Barberis (2012)

Barberis (2012) was the first to employ the cumulative prospect
theory (CPT) of Tversky and Kahneman (1992) to model and study
casino gambling

A gambler comes to a casino at time 0 and is offered a bet with an
equal chance to win or lose $1

If the gambler accepts, the bet is then played out and she either gains
$1 or loses $1 at time 1

Then, the gambler is offered the same bet, and she can choose to
leave the casino or to continue gambling

It is a five-period model: at time 5, the gambler must leave the casino
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A Model by Barberis (2012) (Cont’d)

The gambler decides the optimal exit time to maximize the CPT
value of her cumulative gain and loss at the exit time

Barberis (2012) consider path-independent strategies only

Barberis (2012) finds the optimal exit time by enumeration

In this model, time-inconsistency arises due to probability weighting in
CPT

Barberis (2012) compares the strategies of three types of gamblers:
1 naive gamblers, who do not realize the inconsistency in the future and

thus keeps changing their strategy
2 sophisticated gamblers with pre-commitment, who realize the

inconsistency and commit their future selves to the strategy planned
today

3 sophisticated gamblers without pre-commitment, who realize the
inconsistency but fail to commit their future selves
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A Model by Barberis (2012) (Cont’d)

With reasonable parameter values, Barberis (2012) finds

sophisticated gamblers with pre-commitment tend to take loss-exit
strategies
naive gamblers, by contrast, end up with gain-exit strategies
sophisticated agents without pre-commitment choose not to play at all

CPT is a descriptive model for individuals’ preferences

A crucial contribution in Barberis (2012): show that the optimal
strategy of a gambler with CPT preferences is consistent with several
commonly observed gambling behaviors such as the popularity of
casino gambling and the implementation of gain-exit and loss-exit
strategies
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Motivation

Can CPT also explain other commonly observed gambling patterns?

Gamblers become more risk seeking in the presence of a prior gain, a
phenomenon referred to as house money effect (Thaler and Johnson,
1990)
Individuals may use a random device, such as a coin flip, to aid their
choices in various contexts (Dwenger, Kübler, and Weizsacker, 2013)

Can we solve the casino gambling problem with CPT preferences
analytically?
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Contributions

We consider the casino gambling problem without additional
restrictions on time-horizon or set of available strategies

We find that the gambler may strictly prefer path-dependent
strategies over path-independent strategies, and may further strictly
improve her preference value by tossing random coins

We study theoretically the issue of why the gambler prefers
randomized strategies

We show that any path-dependent strategy is equivalent to a
randomization of path-independent strategies

We develop a systematic approach to solving the casino gambling
problem
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CPT

Suppose an individual experiences a random gain/loss X. Then, in
CPT, the preference value of X is

V (X) :=

∫ ∞
0

u(x)d[−w+(1− FX(x))] +
∫ 0

−∞
u(x)d[w−(FX(x))],

FX is the CDF of X
u is an S-shaped utility function
w± are two inverse-S-shaped probability weighting functions
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Casino Gambling Model

At time 0, a gambler is offered a fair bet: win or lose one dollar with
equal probability

If she declines this bet, she does not enter the casino to gamble

Otherwise, she starts the game and the outcome of the bet is played
out at time 1, at which time she either wins or loses one dollar

The gambler is then offered the same bet and she can again choose
to play or not, and so forth

At time 0, the gambler decides whether to enter the casino and, if
yes, the optimal time to leave the casino

The decision criterion is to maximize the CPT value of her cumulative
gain and loss at the time when she leaves the casino
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Binomial Tree Representation

 

 

 

 

 

  

  

 

  

  

(0,0) 

(1,1) 

(2,2) 

  

(1,-1) 

(2,-2) 

(2,0) 

Figure: Gain/loss process represented as a binomial tree
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Types of Feasible Stopping Strategies

Denote St, t ≥ 0 as the cumulative gain/loss of the gambler

Path-independent (Markovian) strategies: for any t ≥ 0, {τ = t}
(conditioning on {τ ≥ t}) is determined by (t, St)

Path-dependent strategies: for any t ≥ 0, {τ = t} is determined by
(u, Su), u ≤ t
Randomized, path-independent strategies:

At each time the gambler tosses a coin and decides whether to leave
the casino (continue with tails and stop with heads)
The coins are tossed independently
The probability that the coin tossed at t turns up tails is determined by
(t, St), and is part of the gambler’s strategy
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Example

Consider the following utility and probability weighting functions

u(x) =

xα+ for x ≥ 0

−λ(−x)α− for x < 0,
w±(p) =

pδ±

(pδ± + (1− p)δ±)1/δ±
.

with α+ = α− = 0.9, δ+ = δ− = 0.4, and λ = 2.25

Consider a 6-period horizon, and compare the CPT values for
different strategies

Sang Hu (NUS) Optimal exit time from casino gambling Jan 25, 2016 12 / 40



Example (Cont’d)
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Figure: Optimal path-independent strategy. The CPT value is V = 0.250440
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Example (Cont’d)
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Figure: Optimal path-dependent strategy. The CPT value is V = 0.250693
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Example (Cont’d)
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Figure: Randomized, path-independent strategy. The CPT value is V = 0.250702

Sang Hu (NUS) Optimal exit time from casino gambling Jan 25, 2016 15 / 40



Obsevations

It is possible to strictly increase the gambler’s CPT value by allowing
for path-dependent strategies

The CPT value can be further improved by switching to randomized,
path-independent strategies

Why?
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A General Optimal Stopping Problem

Consider a general discrete-time Markov chain {Xt}t≥0 taking integer
values

Consider the optimal stopping problem

sup
τ

V (Xτ )

Assume V (·) is law-invariant, i.e., V (X) = V(FX), such as CPT and
EUT
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Randomized Strategies

Lemma

For any randomized, path-independent strategy τ , there exist Markovian
strategies τi’s such that the distribution of (Xτ , τ) is a convex
combination of the distributions of (Xτi , τi)’s, i.e.,

FXτ ,τ =
∑
i

αiFXτi ,τi

for some αi ≥ 0 such that
∑

i αi = 1.

Proposition

For any path-dependent strategy τ , there exists a randomized,
path-independent strategy τ̃ such that (Xτ , τ) has the same distribution
as (Xτ̃ , τ̃). More generally, for any randomized, path-dependent strategy
τ ′, there exists a randomized, path-independent strategy τ̃ such that
(Xτ ′ , τ

′) has the same distribution as (Xτ̃ , τ̃).
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Quasi-Convex Preferences

The preference measure V (X) = V(FXτ ) is quasi-convex if

V(pF1 + (1− p)F2) ≤ max{V(F1),V(F2)}, ∀F1, F2, ∀p ∈ [0, 1].

An agent with quasi-convex preferences does not prefer
path-dependent or randomized strategies over Markovian strategies

The gambler in the casino model strictly prefers path-dependent
strategies over Markovian strategies, and strictly prefer randomized,
path-independent strategies over path-dependent strategies because
CPT is not quasi-convex

EUT is quasi-convex
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Casino Gambling in Infinite Horizon

Consider the casino gambling problem on an infinite time horizon

Consider randomized, path-independent strategies τ

Consider uniformly integrable stopping times, i.e., Sτ∧t, t ≥ 0 is
uniformly integrable

Denote the set of feasible stopping times as T
Optimal stopping problem:

sup
τ∈T

V (Sτ )
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Change of Variable

This problem is difficult to solve: Snell envelop and dynamic
programming cannot apply due to probability weighting

Idea: change the decision variable from τ to the distribution of Sτ

The quantile formulation in Xu and Zhou (2012) cannot apply

The key is the characterization of the set of feasible distributions

Denote

M0(Z) =

{
µ :

∑
n∈Z
|n| · µ({n}) <∞,

∑
n∈Z

n · µ({n}) = 0

}
.
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Skorokhod Embedding

Theorem

For any µ ∈M0(Z), there exists {ri}i∈Z such that Sτ follows µ where

τ := inf{t ≥ 0|ξt,St = 0}

and ξt,i, t ∈ Z+, i ∈ Z are 0-1 random variables independent of each other
and St with P(ξt,i = 0) = ri, i ∈ Z. Furthermore, {Sτ∧t}t≥0 is uniformly
integrable and does not visit states outside any interval that contains the
support of µ. Conversely, for any randomized, path-independent strategy τ
such that {Sτ∧t}t≥0 is uniformly integrable, the distribution of Sτ belongs
to M0(Z).
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Infinite-Dimensional Program

The optimal stopping problem is equivalent to

max
x,y

U(x,y)

subject to 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ ... ≥ 0,

1 ≥ y1 ≥ y2 ≥ ... ≥ yn ≥ ... ≥ 0,

x1 + y1 ≤ 1,∑∞
n=1 xn =

∑∞
n=1 yn.

where
x and y stand for the cumulative gain distribution and decumulative
loss distribution, respectively

U(x,y) :=

∞∑
n=1

(u+(n)− u+(n− 1))w+(xn)

−
∞∑
n=1

(u−(n)− u−(n− 1))w−(yn).
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Infinite-Dimensional Program (Cont’d)

After we find the optimal solution (x∗,y∗) to the infinite-dimensional
problem, we can recover the optimal stopping time τ∗ using
Skorokhod embedding

Difficulties in finding the optimal solution (x∗,y∗):

The objective function is neither concave nor convex in the decision
variable
There are infinitely many constraints, so the standard Lagrange dual
method is not directly applicable even if the objective function were
concave
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Infinite-Dimensional Program (Cont’d)

Procedures to find the optimal (x∗,y∗):
1 Introduce z+ = (z+,1, z+,2, . . . ) with z+,n := xn+1/x1, n ≥ 1

Introduce z− = (z−,1, z−,2, . . . ) with z−,n := yn+1/y1, n ≥ 1
Introduce s+ := (

∑∞
n=2 xn)/x1, and s− := (

∑∞
n=2 yn)/y1

2 Find the optimal z+ and z− with constraint
∑∞
n=1 z±,n = s±

3 Find the optimal x1, y1, and s±
4 After we find optimal z±, x1, y1, and s±, we can compute optimal x

and y as x = (x1, x1z+) and y = (y1, y1z−), respectively

s± imply the conditional expected gain and loss of Sτ , and the
(asymptotically) optimal value s± will dictate whether the gambler
takes a loss-exit, gain-exit, or non-exit strategy
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Stop Loss, Disposition Effect, and Non-Exit

Under some conditions the optimal strategy (asymptotically) is
loss-exit, gain-exit, or non-exit strategy

Parameter Values Exist. Opt. Solution Strategy

α+ > δ+ No loss-exit

α− < δ− No gain-exit

α+ > α− No non-exit

α+ = α−, λ < sup0<p<1
w+(p)/pα+

w−(1−p)/(1−p)α+ No non-exit

Table: Existence of optimal solutions. Utility function is given as
u+(x) = xα+ , u−(x) = λxα− . Probability weighting function is given as

w±(p) =
pδ±

(pδ±+(1−p)δ±)
1/δ±

, or w±(p) = a±p
δ±/(a±p

δ± + (1− p)δ±), or

w±(p) = pδ±
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Stop Loss, Disposition Effect, and Non-Exit (Cont’d)

When α+ > δ+, the optimal strategy is essentially “loss-exit”:

To exit once reaching a fixed loss level and not to stop in gain
Such a strategy produces a highly skewed distribution which is favored
due to probability weighting

When α− < δ−, the optimal strategy is essentially “gain-exit”:

To exit when losing a large amount of dollars or when winning a small
amount of dollars
This type of strategy exhibits disposition effect: sell the winners too
soon and hold the losers too long
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Stop Loss, Disposition Effect, and Non-Exit (Cont’d)

When either (1) α+ > α−, or (2)

α+ = α−, λ < sup
0<p<1

w+(p)/p
α+

w−(1− p)/(1− p)α+
,

the optimal strategy is essentially “non-exit”:

To exit when the gain reaches a sufficiently high level or the loss
reaches another sufficiently high level with the same magnitude
The second condition mean probability weighting on large gains
dominates a combination of weighting on large losses and loss aversion
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Optimal Solution

Gamb. Exist. Strategies

α+ = α− = λ ≥ 1 No Yes not gamble

δ+ = δ− = 1 λ < 1 Yes No non-exit

α+ > δ+ any λ Yes No loss-exit

α− < δ− any λ Yes No gain-exit

α− < α+ any λ Yes No non-exit

α+ = δ+ < 1 any λ Yes No certain asymptotical strategy

δ− ≤ δ+, λ ≥ M1 No Yes not gamble

α+ < δ+, and
λ < M1 Yes Yes

(s∗+, s
∗
−) ∈ argmaxf

(
ŷ(s+, s−), s+, s−

)
α− > max(α+, δ−) y∗1 = ŷ(s∗+, s

∗
−)

δ− ≤ δ+, λ ≥ M1 No Yes not gamble

α+ < δ+, and
λ < M1 Yes No gain-exit

α− = δ− ≥ α+

λ ≥ M1 No Yes not gamble

δ− ≤ δ+,
M2 < λ < M1 Yes Yes

(s∗+, s
∗
−) ∈ argmaxf

(
ŷ(s+, s−), s+, s−

)
α+ < δ+, and y∗1 = ŷ(s∗+, s

∗
−)

α− = α+ > δ− λ = M2 < M1 Yes

λ < M2 Yes No non-exit

α− > δ− > λ ≥ M3 Yes Yes s∗+ = s1, s
∗
− = 0, and y∗1 = ȳ(s∗+, s

∗
−)

δ+ > α+ λ < M3 Yes Yes
(s∗+, s

∗
−) ∈ argmaxf(ȳ(s+, s−), s+, s−)

and y∗1 = ȳ(s∗+, s
∗
−)

α− = δ− >
λ > M4 Yes Yes

s∗+ = s1, s
∗
− = m for some integer m

δ+ > α+ and y∗1 = ȳ(s∗+, s
∗
−)

λ ≤ M4 Yes No gain-exit

Table: Optimal solution when u+(x) = x
α+ and u−(x) = λx

α− , w±(p) = p
δ±
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Recover Optimal Stopping Time

After finding the optimal solution (x∗,y∗) to the infinite-dimensional
problem, we establish a new Skorokhod embedding result to recover
the optimal stopping time τ∗

Randomized, path-independent strategy: For example, toss coins

Randomized, path-dependent strategy: For example, randomized
Azéma-Yor (AY) stopping time

Exit when relative loss (difference between cumulative gains and its
running maximal) is large enough to exceed the bound
Possible to toss coins to determine exit or not when relative loss is very
close to the bound
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Randomized AY Stopping Time
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Figure: Two paths are drawn for illustrating randomized AY stopping rules. Black
nodes mean stop. White nodes mean continue. Grey nodes mean randomization.
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Numerical Examples

Suppose α+ = 0.6, α− = 0.8, δ± = 0.7, λ = 1.05
1 The probability distribution function of Sτ∗ is

p∗n =



0.4465((n0.6 − (n− 1)0.6)1/0.3 − ((n+ 1)0.6 − n0.6)1/0.3), n ≥ 2,

0.3297, n = 1,

0.6216, n = −1,

0, otherwise.

Note p∗n := P(Sτ∗ = n).
2 Recover the optimal stopping time τ∗
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Numerical Examples (Cont’d)
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Figure: Randomized path-independent strategy (left-panel) and randomized AY
strategy (right panel)
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Naive Gamblers

If a gambler revisits the gambling problem in the future, she may find
the initial strategy is no longer optimal

If she cannot commit herself to following the initial strategy, she may
change to a new strategy that can be totally different
Such type of gamblers are called naive gamblers
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Naive Gamblers (Cont’d)

Under some conditions, while a pre-committed gambler who follows
the initial strategy after time 0 stops for sure before the loss hits a
certain level, the naive gambler continues to play with a positive
probability at any loss level

Either she simply continues, or else she might want to toss a coin to
decide whether to continue to play or not

Why?
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Naive Gamblers (Cont’d)

At time 0:

The probability of having losses strictly larger than certain level L is
small from time 0’s perspective
This small probability is exaggerated due to probability weighting
The gambler decides to stop when the loss reaches level L in the future

At some time t when the naive gambler actually reaches loss level L:

The probability of having losses strictly larger than L is no longer small
from time t’s perspective
This large loss is not overweighted
The naive gambler chooses to take a chance and not to stop gambling
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Naive Gamblers (Cont’d)

H n ≤ −7 −6 −5 −4 −3 −2 −1 0 1 2 n ≥ 3

−5 0 0.977 0 0 0 0 0 0 0 0.0096 0.1477qn

−4 0 0 0.971 0 0 0 0 0 0.0063 0.1453qn 0.1453qn

−3 0 0 0 0.961 0 0 0 0 0.0161 0.1424qn 0.1424qn

−2 0 0 0 0 0.947 0 0 0 0.0308 0.1393qn 0.1393qn

−1 0 0 0 0 0 0.924 0 0 0.0543 0.1364qn 0.1364qn

0 0 0 0 0 0 0 0.885 0 0.0933 0.1360qn 0.1360qn

1 0 0 0 0 0 0 0 0.850 0.1501qn 0.1501qn 0.1501qn

2 0 0 0 0 0 0 0 0.700 0.3003qn 0.3003qn 0.3003qn

3 0 0 0 0 0 0 0 0.550 0.4504qn 0.4504qn 0.4504qn

4 0 0 0 0 0 0 0 0.400 0.6006qn 0.6006qn 0.6006qn

5 0 0 0 0 0 0 0 0.250 0.7507qn 0.7507qn 0.7507qn

Table: Optimal distribution for H = ±1,±2, . . . ,±5. Suppose α+ = 0.5, α− = 0.9, δ± = 0.52, and λ = 2.25.

The gambler does not change the reference point. Let qn =
(
n0.5 − (n− 1)0.5

)1/0.48 − (
(n + 1)0.5 − n0.5)1/0.48,

n ≥ 1
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Conclusion

We considered a casino gambling problem with CPT preferences, and
found that path-dependent stopping strategies and randomized
stopping strategies strictly outperform path-independent strategies

We showed that the improvement in performance brought by these
strategies in the casino gambling problem is a consequence of lack of
quasi-convexity of CPT preferences

We developed a systematic approach to solving the casino gambling
problem analytically

Change the decision variable
Solve an infinite-dimensional optimization problem
Establish a new Skorokhod embedding result

1 Randomized, path-independent stopping time
2 Randomized Azéma-Yor stopping time
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Conclusion

We have found the conditions under which the pre-committed
gambler takes essentially loss-exit (stop-loss), gain-exit (disposition
effect), and non-exit strategies

We have also revealed that, under some conditions the initial optimal
strategy and the actual strategy implemented by the naive gambler
are totally different

While the pre-commitment strategy (initial one) is to stop if her
cumulative loss reaches a certain level, the naive gambler continues to
play with a positive probability at any loss level
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