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Motivation and Examples

Motivation

In many applications one needs to compute conditional expectations of the form

E
(
e−cτ f

(
X̂τ
) ∣∣Xs

)
, s ≥ 0, c ∈ (0,∞),

where X is a Markov process, defined on a stochastic basis (Ω,F ,F,P), X̂ is a

process related to X (usually X̂ = X ), and τ is an F-stopping time.

Monte Carlo method: slow and inaccurate, curse of dimensionality.

Feynman-Kac representation (for Rd -valued X ): not easy in practice,

especially if d is large or the associated integro-PDE is highly nonlinear.

Wiener-Hopf Factorization: pure analytic method.
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Motivation and Examples

Example: A Simple Fluid Model (Rogers’ 94)

Yt open pipes
Water Tank,

capacity a
Zt open taps

rate θ rate ρ

The water volume in the tank at time t, ξt , satisfies

dξt

dt
= θYt − ρZt , if 0 < ξt < a.

We model Xt = (Yt ,Zt) by a finite-state time-homogeneous Markov chain.

Let v(y , z) := θy − ρz 6= 0. Then ξ(t) = ξ0 +
∫ t

0
v(Xs )ds, t ≥ 0. Let

τ+
` := inf

{
u ≥ 0 : ξ(u) > `

}
, τ−` := inf

{
u ≥ 0 : ξ(u) < `

}
, ` ≥ 0.

τ+
` (` ∈ (ξ0, a]) is the first time the tank has ` amount of water.

If a =∞, τ−` (` ∈ [0, ξ0)) is the first time the tank has ` water amount left.

The problem of interest is to find the joint distribution of (τ±` ,Xτ±
`

), or

E
(
e−cτ±

` 1{X
τ
±
`

=x′}

∣∣∣X0 = x
)
, c > 0.
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Motivation and Examples

Example: Two Barrier Ruin Problem (Avram, Pistorius & Usabel’ 03)

The reserve process U of an insurance company is modeled by

Ut = u −
Nt∑

k=1

Zk + pt, t ≥ 0,

where u > 0 is the initial capital, p > 0 is the premium rate.

The claims (Zk )k∈N are i.i.d. random variables with common phase-type

(n, β,B) distribution.

N is an independent renewal process with inter-arrival distribution of

phase-type (m, α,A).

Let τK := inf{t > 0 : Ut /∈ [0,K)}, K > 0. The ruin problem is to find

expressions for

E
(
e−δτK 1{Uτk

=K}

∣∣∣U0 = u
)

and E
(
e−δτK 1{Uτk

≤0}

∣∣∣U0 = x
)
,

for any δ > 0.

Ruoting Gong (Applied Math, IIT) Time-Inhomogeneous Wiener-Hopf Factorization USC Math Finance Colloquium 6 / 47



Motivation and Examples

Example: CDS on Defaultable Stock in Markov-Modulated Models

Let Z be a continuous-time Markov chain with finite state space E ∪ ∂,

where ∂ is an absorbing cemetery state. Let ζ := inf{t ≥ 0 : Zt = ∂}.

Consider a defautable stock with pre-default dynamics St = eXt , where

Xt = X0 +

∫ t

0

b
(
Zs

)
ds +

∫ t

0

σ
(
Zs

)
dWs , t ≥ 0.

W is a standard Brownian motion, and is independent of Z .

The default occurs when Xt reaches the barrier ` < X0.

Consider a credit default swap written on S . The expected payment when

default occurs is then given by

E
(
h
(
Z
τ−
`

)
1{τ−

`
<ζ}

∣∣∣Z0 = i , X0 = x
)
.
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Motivation and Examples

Literature on Applications

Fluid Flow Models: Rogers ’94, Rogers & Shi ’94, Asmussen ’95

Ruin Problem: Avram, Pistorius, & Usabel ’03, Avram & Usabel’ 04

Option Pricing: Guo & Zhang’ 04, Jobert & Rogers ’06, Jiang & Pistorius

’08, Levendorskǐi ’08, Mijatović & Pistorius ’11

Optimal Control: Jiang & Pistorius ’12

Battery Charges, Network Loading, etc.

Ruoting Gong (Applied Math, IIT) Time-Inhomogeneous Wiener-Hopf Factorization USC Math Finance Colloquium 8 / 47



Motivation and Examples

Theoretical Significance

A significant aspect of the Wiener-Hopf factorization theory for Markov

processes is the probabilistic interpretation of purely algebraic factorizations

of linear operators that are related to these processes.

The results of the factorization are interpreted in terms of functionals of

appropriately time-changed processes that are related to the underlying

Markov process.

The Wiener-Hopf factorization is a vital component in the theory of Markov

processes path decomposition or splitting time theorems.
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Motivation and Examples

Time-Inhomogeneous Wiener-Hopf Factorization

The various existing forms of the Wiener-Hopf factorization for Markov

chains, strong Markov processes, Lévy processes, and Markov additive

process, have been obtained and applied only in the time-homogeneous case.

However, there are abundant real life dynamical systems that are modeled in

terms of time-inhomogeneous processes, and yet the corresponding

Wiener-Hopf factorization theory is not available for those models.

Our research is aimed at developing and applying the Wiener-Hopf

factorization framework for a large class of time-inhomogeneous processes.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Setup of the Problem

Spaces of Matrices

For any n ∈ N, let Q(n) be the set of n × n generator matrices, i.e.,

Q(i , j) ≥ 0, i 6= j ;
∑
j∈E

Q(i , j) ≤ 0, for Q ∈ Q(n).

Let Q0(n) ⊂ Q(n) be the set of irreducible n × n generator matrices.

Q ∈ Q0(n) is called recurrent if all its rows sum up to zero; otherwise, Q is

called transient.

For any n, n′ ∈ N, let P(n, n′) be the set of n × n′ matrices whose rows are

sub-probability vectors.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Setup of the Problem

The Partition of State Space

Let E be a finite state space with cardinality m, and let ∂ be a coffin state.

Let v : E∪ {∂} → R and σ : E∪ {∂} → R with v(∂) = σ(∂) = 0. Denote by

V := diag
{
v(i), i ∈ E

}
, Σ := diag

{
σ(i), i ∈ E

}
.

Assume that v and σ are NOT equal to zero simultaneously on E.

The state space E is partitioned into E = E0 ∪ E+ ∪ E−, where

E0 :=
{
i ∈ E : σ(i) 6= 0

}
, E± :=

{
i ∈ E : σ(i) = 0, ±v(i) > 0

}
.

The cardinalities of E0 and E± are denoted respectively by m0 and m±.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Setup of the Problem

The Probabilistic Model

Let (Ω,F ,F,P) be a stochastic basis, where F is the augmented filtration

generated by X and W .

Let X = (Xt)t≥0 be a continuous-time Markov chain taking values in

E ∪ {∂}, with generator Q ∈ Q(m).

Let W = (Wt)t≥0 be a standard Brownian motion, independent of X .

Define the additive functional with noise

ϕt :=

∫ t

0

v(Xs ) ds +

∫ t

0

σ(Xs ) dWs , t ≥ 0.

For any ` ≥ 0, define the passage times

τ±` := inf
{
t ≥ 0 : ±ϕt > `

}
.

The time-changed processes (Xτ+
`

)`≥0 and (X
τ−
`

)`≥0 are continuous-time

Markov chains with respective state spaces E+ ∪E0 ∪{∂} and E− ∪E0 ∪{∂}.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Matrix Wiener-Hopf Factorization without Noise

An Algebraic Factorization for Generator Matrices

Consider first the case when σ ≡ 0. Then v 6= 0 on E, and

E0 = ∅, E± =
{
i ∈ E : ±v(i) > 0

}
.

Theorem 2.1 (Barlow, Rogers, & Williams ’80)

Let Q ∈ Q(m) and c > 0. Then, there exists a unique quadruple of matrices

(Π+
c , Q̃

+
c ,Π

−
c , Q̃

−
c ), where Π±c ∈ P(m∓,m±) and Q̃±c ∈ Q(m±), such that

V−1(Q− cI) =

(
I+ Π−c

Π+
c I−

)(
Q̃+

c 0

0 −Q̃−c

)(
I+ Π−c

Π+
c I−

)−1

, (2.1)

where I (respectively, I±) is the m×m (respectively, m± ×m±) identity matrix.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Matrix Wiener-Hopf Factorization without Noise

Probabilistic Interpretation of Matrix Wiener-Hopf

Theorem 2.2 (Barlow, Rogers, & Williams ’80)

Π±c (i , j) = E
(
e−cτ±0 1{X

τ
±
0

=j}

∣∣∣X0 = i
)
, i ∈ E∓, j ∈ E±, (2.2)

e` Q̃±c (i , j) = E
(
e−cτ±

` 1{X
τ
±
`

=j}

∣∣∣X0 = i
)
, i , j ∈ E±, ` > 0. (2.3)

Q̃±c is the generator matrix of the Markov chain obtained by first killing X at

rate c, and then applying the time-change (τ±` )`≥0.

If c = 0, the factorization (2.1) still holds true, but not necessarily unique

when row sums of Q are all zero. In this case, the quadruple

(Π+
0 , Q̃

+
0 ,Π

−
0 , Q̃

−
0 ) given in Theorem 2.2 is not the only solution to (2.1).

By Theorems 2.1 and 2.2, in order to compute expectation of the form (2.2)

or (2.3), one only needs to solve the algebraic equation (2.1).
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Matrix Wiener-Hopf Factorization without Noise

Computing Π±
c and Q̃±

c

The “plus” and “minus” parts in (2.1) can be separated as

V−1(Q− cI
)( I+

Π+
c

)
=

(
I+

Π+
c

)
Q̃+

c , (2.4)

V−1(Q− cI
)( I−

Π−c

)
= −

(
I−

Π−c

)
Q̃−c . (2.5)

Hence, (Π+
c , Q̃

+
c ) and (Π−c , Q̃

−
c ) can be computed independently.

Write Q and V in their respective block forms:

Q =

(
A B

C D

)
and V =

(
V+ 0

0 V−

)
.

Then, Q̃+
c = (V+)−1((A− cI+) + BΠ+

c ), and Π+
c satisfies following algebraic

Riccati equation

−(V−)−1(D−cI−
)
Π+

c +Π+
c (V+)−1(A−cI+)+Π+

c (V+)−1BΠ+
c −(V−)−1C = 0.

Similar computation can be done for (Π−c , Q̃
−
c ).
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Existence and Uniqueness

Consider the general case when σ is any function on E. Let Q ∈ Q0(m),

namely, Q is irreducible.

Theorem 2.3 (Jiang & Pistorius ’08)

Let Q ∈ Q0(m) be transient. Then there exists a unique quadruple of matrices

(Π+, Q̃+,Π−, Q̃−), where Π± ∈ P(m∓,m± + m0) and Q̃± ∈ Q(m± + m0),

such that

1

2
Σ2

 I+ 0

0 I0

Π+

(Q̃+)2 − V

 I+ 0

0 I0

Π+

Q̃+ + Q

 I+ 0

0 I0

Π+

= 0, (2.6)

1

2
Σ2

 Π−

I0 0

0 I−

(Q̃−)2
+ V

 Π−

I0 0

0 I−

Q̃− + Q

 Π−

I0 0

0 I−

= 0. (2.7)
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Probabilistic Interpretation

Theorem 2.4 (Jiang & Pistorius ’08)

Π±(i , j) = P
(
X
τ±0

= j , τ±0 <∞
∣∣∣X0 = i

)
, i ∈ E∓, j ∈ E± ∪ E0,

e` Q̃±(i , j) = P
(
X
τ±
`

= j , τ±` <∞
∣∣∣X0 = i

)
, i , j ∈ E±, ` > 0.

When σ ≡ 0 (so that E0 = ∅ and E = E+ ∪ E−), (2.6)−(2.7) reduce to the

“plus” and “minus” part of (2.1), given as in (2.4)−(2.5), respectively.

When σ is constant (so that E+ = E− = ∅ and E = E0), (2.6)−(2.7) reduce

to Kennedy & Williams ’90.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Application: Two-Sided Exit Problem

The two-sided exit problem of ϕ from the interval [k, `], −∞ < k < ` <∞,

is to find the joint distribution of the position (Xτ , ϕτ ) at the first-exit time

τ = τk,` := inf
{
t ≥ 0 : ϕt /∈ [k, `]

}
.

Such problem can be solved explicitly in terms of the output of the

Wiener-Hopf factorization (Π+, Q̃+,Π−, Q̃−).

To this end, define

W+ :=

 I+ 0

0 I0

Π+

 , W− :=

 Π−

I0 0

0 I−

 , J+ :=

 I+ 0

0 I0

0

 , J− :=

 0

I0 0

0 I−


Z+ :=

(
0 I0

Π+

)
eQ̃+(`−k), Z− :=

(
Π−

0 I0

)
eQ̃−(`−k).
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Application: Two-Sided Exit Problem (Cont’d)

Ψ+(a) :=
(

W+eQ̃+(`−a) −W−eQ̃−(a−k) Z+
)(

I+
0 − Z−Z+)−1

,

Ψ−(a) :=
(

W−eQ̃−(`−a) −W+eQ̃+(a−k) Z−
)(

I−0 − Z+Z−
)−1

,

Ψ0(s, a) :=
(
esaI− es`Ψ+(a)J+ − esk Ψ−(a)J−

)(
− 1

2
Σ2s2 − Vs − Q

)−1

.

Proposition 2.5 (Jiang & Pistorius ’08)

Let h± and h be real-valued functions on E0 ∪ E± and E, respectively. For any

a ∈ [k, `] and i ∈ E,

E
(
h+(Xτ )1{ϕτ=`}1{τ<ζ}

∣∣∣X0 = i , ϕ0 = a
)

= eT
i Ψ+(a) h+,

E
(
h−(Xτ )1{ϕτ=k}1{τ<ζ}

∣∣∣X0 = i , ϕ0 = a
)

= eT
i Ψ−(a) h−,

E
(
esϕζ−h

(
Xζ−

)
1{ζ<τ}

∣∣∣X0 = i , ϕ0 = a
)

= eT
i Ψ0(s, a) H(−Q)1.

where H := diag{h(i), i ∈ E}.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

Highly Non-trivial Extension to Time-Inhomogeneous Framework

Let X be a time-inhomogeneous Markov chain taking values in E ∪ ∂, with

generator function Qt ∈ Q(m), t ≥ 0.

The factorization of V−1(Qt − cI) can be done for each t ≥ 0 separately,

exactly as described in Theorem 2.1.

However, the resulting matrices Π±c (t) and Q̃±c (t), t ≥ 0, do not have similar

probabilistic interpretations as shown in Theorem 2.2.

In particular, they are not useful for computing expectations of the form

E
(
e−cτ±

`
(s)1{X

τ
±
`

(s)
=j}

∣∣∣Xs = i

)
, (3.1)

where

τ±` (s) := inf

{
t ≥ s :

∫ t

s

v(Xu) du > `

}
.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

First Attempt: Piecewise Constant Generator

Bielecki, Cialenco, Gong, & Huang ’18: Wiener-Hopf Factorization for

time-inhomogeneous Markov chain X with piecewise-constant generator Λ:

Λt = Λk , sk−1 ≤ t < sk , k = 1, . . . , n; Λt = Λn+1, t ≥ sn,

where Λ1, . . . ,Λn+1 ∈ Q(m), n ∈ N, 0 = s0 < s1 < . . . < sn.

Time-inhomogeneous Markov chains with piecewise-constant generators are

adequate models for, among others, seasonal phenomena, Erlang loss

systems with moving boundaries, or structural breaks in credit migrations.

The main goal is to apply the Wiener-Hopf factorization technique to

compute expectations of the form (3.1).

This special setup allows to use some appropriately tailored and original

randomization techniques.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Setup and the Main Objective

The Time-Inhomogeneous Generator

In Bielecki, Cheng, Cialenco, & Gong ’19, we study Wiener-Hopf Factorization

for time-inhomogeneous Markov chain with continuous bounded generators.

Let E be a finite set with |E| = m > 1.

Let (Λs )s∈R+ , R+ := [0,∞), where Λs ∈ Q(m).

Main Assumptions:

� ∃K ∈ (0,∞), such that |Λs (i , j)| ≤ K , for all i , j ∈ E and s ∈ R+;

� (Λs )s∈R+ , considered as a mapping from R+ to the set of m ×m

generator matrices, is continuous with respect to s on R+.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Setup and the Main Objective

The Partition of State Space

Recall v : E→ R \ {0}, V := diag{v(i) : i ∈ E}.

Assume that both E+ and E− are non-empty, where

E+ := {i ∈ E : v(i) > 0} and E− := {i ∈ E : v(i) < 0}.

Accordingly, we write Λs and V in the block form :

Λs =


E+ E−

E+ As Bs

E− Cs Ds

, V =


E+ E−

E+ V+ 0

E− 0 V−

.
Denote by X := R+ × E and X± := R+ × E±.

Define Λ̃ : L∞(X )→ L∞(X ), associated with (Λs )s∈R+ , by

(Λ̃ g)(s, i) := (Λs g(s, ·))(i), (s, i) ∈ X ,

and similarly for Ã, B̃, C̃, and D̃.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Setup and the Main Objective

The Time-Inhomogeneous Markov Family

Let Ω be the collection of E-valued càdlàg functions on R+.

There exists a standard Markov family

M :=
{(

Ω,F ,Fs , (Xt)t∈[s,∞),Ps,i

)
, (s, i) ∈ X

}
,

such the the associated evolution system U := (Us,t)0≤s≤t<∞, defined by

(Us,t f )(i) := Es,i

(
f (Xt)

)
, 0 ≤ s ≤ t <∞, i ∈ E,

for any f : E→ R, admits the generator Λ, namely

lim
h↓0

1

h

(
(Us,s+hf )(i)− f (i)

)
= (Λs f )(i), for any (s, i) ∈ X .

Define the passage times

τ±` (s) := inf

{
t ∈ [s,∞) : ±

∫ t

s

v
(
Xu

)
du > `

}
.
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Main Goal

Goal: To derive a Wiener-Hopf type method for computing expectations of

the form

Es,i

(
g
(
τ±` ,Xτ±

`

))
,

for g ∈ L∞(X ), ` ∈ R+, and (s, i) ∈ X .

Note that X
τ±
`

(s)
∈ E± ∪ {∂}. Hence, it is sufficient to compute expectations

of the following form

Es,i

(
g±
(
τ±` ,Xτ±

`

))
, (3.2)

for g± ∈ L∞(X±), ` ∈ R+, and (s, i) ∈ X .
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Some Important Operators

J± : L∞(X±)→ L∞(X∓) is defined as(
J±g±

)
(s, i) := Es,i

(
g±
(
τ±0 ,Xτ±0

))
, (s, i) ∈ X∓.

For any ` ∈ R+, P±` : L∞(X±)→ L∞(X±) is defined as(
P±` g±

)
(s, i) := Es,i

(
g±
(
τ±` ,Xτ±

`

))
, (s, i) ∈ X±.

For any (s, i) ∈ X±, we define(
G±g±

)
(s, i) := lim

`→0+

1

`

(
P±` g±(s, i)− g±(s, i)

)
,

for any g± ∈ C0(X±) such that the above limit exists and is finite.

It can be shown that any expectation of the form (3.2) can be represented in

terms of the operators J± and P±` .
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Existence and Uniqueness

Theorem 3.1 (Bielecki, Cialenco, Cheng, & Gong ’19)

There exists a unique quadruple of operators (S+,H+, S−,H−) which solves

the following operator equation: for any g± ∈ C 1
0 (X±),

V−1

(
∂

∂s
+ Λ̃

)(
I+ S−

S+ I−

)(
g+

g−

)
=

(
I+ S−

S+ I−

)(
H+ 0

0 −H−

)(
g+

g−

)
,

subject to the conditions below:

(a) S± : C0(X±)→ C0(X∓) is a bounded operator such that

(i) for any g± ∈ Cc (X±) with supp g± ⊂ [0, ηg± ]× E± for some constant

ηg± ∈ (0,∞), we have suppS±g± ⊂ [0, ηg± ]× E∓;

(ii) for any g± ∈ C 1
0 (X±), we have S±g± ∈ C 1

0 (X∓).

(b) H± is the strong generator of a strongly continuous positive contraction

semigroup (Q±` )`∈R+ on C0(X±) with domain D(H±) = C 1
0 (X±).
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Probabilistic Interpretation

Theorem 3.2 (Bielecki, Cialenco, Cheng, & Gong ’19)

For any g± ∈ C0(X±), we have

S±g± = J±g± and Q±` g
± = P±` g±, for any ` ∈ R+,

Moreover, G± is the strong generator of (P±` )`∈R+ on C0(X±) with domain

D(G±) = C 1
0 (X±).

From Theorems 3.1 and 3.2, we see that (J+,G+, J−,G−) is the unique

quadruple of operators, subject to conditions (a) and (b), that solves the

operator equation: for any g± ∈ C 1
0 (X±),

V−1

(
∂

∂s
+ Λ̃

)(
I+ J−

J+ I−

)(
g+

g−

)
=

(
I+ J−

J+ I−

)(
G+ 0

0 −G−

)(
g+

g−

)
.(3.3)
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Remarks

∂/∂s + Q̃ is the generator of the following time-homogenized process X̃ on

the enlarged probability space Ω̃ := R+ × Ω:

X̃t(ω̃) = X̃t((s, ω)) =
(
s + t,Xt+s (ω)

)
.

The equations (3.3) can be regarded as the Wiener-Hopf factorization

corresponding to the time-homogeneous Markov process X̃ . Note that this is

not a direct application of Barlow, Rogers, & Williams ’80 since the state

space of X̃ is no longer a finite space.

The operators J± and G± are counterparts of the matrices Π±c and Q̃±c in

Theorem 2.1. When X is a time-homogeneous Markov chain with generator

matrix Q, by taking g±(s, i) = e−cs 1{i=k}, for c ≥ 0 and k ∈ E±, we reduce

(3.3) to the time-homogeneous factorization (2.1).
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Computing the Operators J± and G±

By Theorems 3.1 and 3.2, for any g± ∈ C 1
0 (X±), J±g± and G±g± (and

thus P±` g±, for any ` ∈ R+) can be computed from the Wiener-Hopf

equation (3.3) subject to conditions (a) and (b).

Note that (3.3) can be decomposed into:

V−1

(
∂

∂s
+ Λ̃

)(
I+

J+

)
g+=

(
I+

J+

)
G+g+, g+ ∈ C 1

0 (X+), (3.4)

V−1

(
∂

∂s
+ Λ̃

)(
I−

J−

)
g+= −

(
I−

J−

)
G−g−, g− ∈ C 1

0 (X−).

Hence, one can compute J+g+ and G+g+ (and thus P+
` g

+) separately from

J−g− and G−g− (and thus P−` g−).
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Computing the Operators J± and G± (Cont’d)

Using the block form of Λ̃ and V, (3.4) can be written as

(
V+)−1

(
∂

∂s
+ Ã + B̃J+

)
g+= G+g+, (3.5)

(
V−
)−1
(
∂

∂s
J+ + C̃ + D̃J+

)
g+= J+G+g+. (3.6)

From (3.5), we see that G+ is determined by J+.

Furthermore, from (3.5) and (3.6) we deduce the following operator Riccati

equation for J+:(
J+(V+)−1B̃J+ +J+(V+)−1

(
∂

∂s
+Ã

)
−(V−)−1

(
∂

∂s
+D̃

)
J+−(V−)−1C̃

)
g+ = 0.

In conclusion, solving (3.4) for G+ and J+ boils down to solving the above

Ricatti equation for J+ .
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Computing the Operators J± and G± (Cont’d)

In practice, take g±j ∈ C 1
0 (X±) with

g±j (s, i) := e−cs 1{j}(i), (s, i) ∈ X±,

for any c > 0 and j ∈ E±.

By solving J±g± and G±g± for such g±, we obtain the Laplace transform

for the pair (τ±` ,Xτ±
`

).

We then perform the inverse Laplace transform with respect to c to obtain

the join distribution of (τ±` ,Xτ±
`

) under Ps,i , which enables us to compute

the expectations (3.2) for any g± ∈ L∞(X±).
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Future Research

Noisy Wiener-Hopf factorization for time-inhomogeneous Markov chains

Wiener-Hopf factorization for time-homogeneous/inhomogeneous strong

Markov processes with general state space

The Wiener-Hopf factorization for time-homogeneous strong Markov

processes, with general state spaces, was studied by Williams ’08, but only

for the associated resolvent operators.

Connection with the classical Wiener-Hopf factorization for Lévy processes

and Markov additive processes

Wiener-Hopf factorization for time-homogeneous Lévy processes

Wiener-Hopf factorization for time-homogeneous Markov additive processes

Ultimate Goal: a unifying framework in terms of functional of time-changed

processes and in terms of algebraic factorizations of linear operators, which

encompasses all the processes above.
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