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Motivation and Examples

Motivation

In many applications one needs to compute conditional expectations of the form
E(eF(X)[X), 20, ce(0,),

where X is a Markov process, defined on a stochastic basis (Q2,.7,F, P), X is a
process related to X (usually X = X), and 7 is an F-stopping time.

@ Monte Carlo method: slow and inaccurate, curse of dimensionality.

o Feynman-Kac representation (for R%-valued X): not easy in practice,
especially if d is large or the associated integro-PDE is highly nonlinear.

@ Wiener-Hopf Factorization: pure analytic method.
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Motivation and Examples

Example: A Simple Fluid Model (Rogers' 94)

. rate 0 Water Tank, rate p
Y: open pipes . Z: open taps
capacity a

@ The water volume in the tank at time t, &;, satisfies

%Z@Yt—pzh |f0<€t<a

We model X; = (Y;, Z;) by a finite-state time-homogeneous Markov chain.

Let v(y,z) := 0y — pz # 0. Then &(t) = & + [, v(Xs)ds, t > 0. Let

=inf{u>0:¢&u)>¢}, 7, :=inf{u>0: &)<}, £>0.

7,7 (£ € (&, a]) is the first time the tank has £ amount of water.

If a=o00, 7, (£€0,%)) is the first time the tank has £ water amount left.

The problem of interest is to find the joint distribution of (7,7, X_+), or
4
7C7'j:
(e 1ix ooy [ Xo = x), >0,
Te
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Motivation and Examples

Example: Two Barrier Ruin Problem (Avram, Pistorius & Usabel' 03)

@ The reserve process U of an insurance company is modeled by

Ne

Ue=u—Y Zc+pt, t>0,

k=1
where u > 0 is the initial capital, p > 0 is the premium rate.

@ The claims (Zi)ken are i.i.d. random variables with common phase-type
(n, 8, B) distribution.

@ N is an independent renewal process with inter-arrival distribution of
phase-type (m, a, A).

o Let 7y :=inf{t >0: U: ¢ [0,K)}, K> 0. The ruin problem is to find
expressions for

E(ei(STKl{UTk:K} ’ UO = u) and E(eiﬁﬂ(l{uﬂ_k <0} ‘ Uo = X),
for any § > 0.
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Example: CDS on Defaultable Stock in Markov-Modulated Models

Let Z be a continuous-time Markov chain with finite state space E U 0,
where 9 is an absorbing cemetery state. Let ( :=inf{t > 0: Z, = 0}.

o Consider a defautable stock with pre-default dynamics S; = X, where

ot
MLﬁk+/<ﬂLMW@ £>0.
J0

"t

&=%+/

0

o W is a standard Brownian motion, and is independent of Z.
@ The default occurs when X; reaches the barrier £ < Xp.

Consider a credit default swap written on S. The expected payment when

default occurs is then given by

E(h(Z, )1, o |20 =1, Xo = x).
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Motivation and Examples

Literature on Applications

o Fluid Flow Models: Rogers '94, Rogers & Shi '94, Asmussen '95
@ Ruin Problem: Avram, Pistorius, & Usabel '03, Avram & Usabel' 04

@ Option Pricing: Guo & Zhang' 04, Jobert & Rogers '06, Jiang & Pistorius
'08, Levendorskii '08, Mijatovi¢ & Pistorius '11

Optimal Control: Jiang & Pistorius '12

Battery Charges, Network Loading, etc.
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Motivation and Examples

Theoretical Significance

o A significant aspect of the Wiener-Hopf factorization theory for Markov
processes is the probabilistic interpretation of purely algebraic factorizations
of linear operators that are related to these processes.

@ The results of the factorization are interpreted in terms of functionals of
appropriately time-changed processes that are related to the underlying

Markov process.

@ The Wiener-Hopf factorization is a vital component in the theory of Markov

processes path decomposition or splitting time theorems.
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Motivation and Examples

Time-Inhomogeneous Wiener-Hopf Factorization

@ The various existing forms of the Wiener-Hopf factorization for Markov

chains, strong Markov processes, Lévy processes, and Markov additive

process, have been obtained and applied only in the time-homogeneous case.

@ However, there are abundant real life dynamical systems that are modeled in
terms of time-inhomogeneous processes, and yet the corresponding

Wiener-Hopf factorization theory is not available for those models.

@ Our research is aimed at developing and applying the Wiener-Hopf

factorization framework for a large class of time-inhomogeneous processes.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains EESISITTORG RN )]

Spaces of Matrices

e For any n € N, let Q(n) be the set of n x n generator matrices, i.e.,

Q(i,j) >0, i#ji > Q(i,j)<0, forQe Q(n).

J€E
o Let Qo(n) C Q(n) be the set of irreducible n X n generator matrices.
@ Q € Qo(n) is called recurrent if all its rows sum up to zero; otherwise, Q is

called transient.

@ For any n,n" € N, let P(n, n") be the set of n x n’ matrices whose rows are
sub-probability vectors.
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St o dhe Pisliem
The Partition of State Space

o Let E be a finite state space with cardinality m, and let 0 be a coffin state.
o Let v: EU{90} > R and o : EU {0} — R with v(9) = 0(9) = 0. Denote by
V :=diag{v(i), i € E}, ¥ :=diag{o(i), i€ E}.
Assume that v and o are NOT equal to zero simultaneously on E.
@ The state space E is partitioned into E = Eoc U E; UE_, where
Eo:={i€E:o(i)#0}, E:r:={i€E:o(i)=0, £v(i)>0}.

The cardinalities of Eg and E1 are denoted respectively by mg and m...
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Setup of the Problem
The Probabilistic Model

o Let (2,7 ,F,P) be a stochastic basis, where F is the augmented filtration
generated by X and W.

o Let X = (X:)e>0 be a continuous-time Markov chain taking values in
E U {9}, with generator Q € Q(m).

o Let W = (W;)i>0 be a standard Brownian motion, independent of X.

o Define the additive functional with noise
o = /t v(Xs)ds—o—/t(r(Xs)dWs, £>0.
0 0
o For any ¢ > 0, define the passage times
TZE = inf{t >0: £pr > F}

@ The time-changed processes (XTZ)DO and (X -)e>o are continuous-time
> T
Markov chains with respective state spaces E; UEqU {0} and E_ UEoU{0}.
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Matrix Wiener-Hopf Factorization without Noise

An Algebraic Factorization for Generator Matrices

Consider first the case when 0 = 0. Then v # 0 on E, and

Eo=0, Er={i€E: £v(i)>0}.

Theorem 2.1 (Barlow, Rogers, & Williams '80)

Let Q € Q(m) and ¢ > 0. Then, there exists a unique quadruple of matrices
(g, Q, I'I;,é;), where NE € P(mx, m4) and Qf € Q(mx), such that

(5 (% )5 ) e

where | (respectively, Ii) is the m x m (respectively, m+ x m4) identity matrix.
v
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Matrix Wiener-Hopf Factorization without Noise
Probabilistic Interpretation of Matrix Wiener-Hopf
Theorem 2.2 (Barlow, Rogers, & Williams '80)

=+
n@,j) = E(e_ﬁo 1ix =y ’XO = i), i€Eg, jeEy, (2.2)
0

S+ +
L9 (i ) :E(efw Lix . ’XO . ,-), i,jeEs, £>0. (23)
e

° (~QCi is the generator matrix of the Markov chain obtained by first killing X at
rate ¢, and then applying the time-change (Tei)gzo.

o If ¢ =0, the factorization (2.1) still holds true, but not necessarily unique
when row sums of Q are all zero. In this case, the quadruple
(Mg, Q¢, My, Qg ) given in Theorem 2.2 is not the only solution to (2.1).

@ By Theorems 2.1 and 2.2, in order to compute expectation of the form (2.2)
or (2.3), one only needs to solve the algebraic equation (2.1).
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Matrix Wiener-Hopf Factorization without Noise

Computing M and (3?

@ The “plus” and “minus” parts in (2.1) can be separated as

v-(Q- d) <r|.> - (é) a:, (24)
Vil(Q —cl) (FIIC> =— <F|1C> Q. (2.5)

Hence, (M, Qf) and (N7, Q:) can be computed independently.

@ Write Q and V in their respective block forms:

A B v+
Q= and V= 07 )
cC D 0o Vv
Then, QF = (V) "((A — cI*) + BMY), and M satisfies following algebraic
Riccati equation
—(V) (D= )NE+NL (V) T (A=) +nE(vh) TIBRE — (V) TIC =0.
Similar computation can be done for (M, 6:)
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Existence and Uniqueness

Consider the general case when o is any function on E. Let Q € Qo(m),
namely, Q is irreducible.

Theorem 2.3 (Jiang & Pistorius '08)

Let Q € Qo(m) be transient. Then there exists a unique quadruple of matrices
(N*,Q",N~,Q"), where M* € P(m=x, ms + mo) and Q* € Q(ma+ + mp),
such that

) T 0 " 0 ™ 0
ST 0 10 [(@)-V] 0 K |QT+Qf 0 1 |=0, (26)
|-|+ |-|+ |-|+
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Wiener-Hopf Factorization for Time-Homogeneous Markov Chains Noisy Wiener-Hopf Factorization

Probabilistic Interpretation

Theorem 2.4 (Jiang & Pistorius '08)

n(i,j) = ]P’(XTOi =, < oo‘Xo

Il
N

I.EE3F3 jeEj:UEo,

At
elQ (i,j):P(Xni :j,r}<oo‘xo . i,j€Es, £>0.

Il
N

@ When o =0 (so that Eo = () and E = E; UE_), (2.6)—(2.7) reduce to the
“plus” and “minus” part of (2.1), given as in (2.4)—(2.5), respectively.

@ When o is constant (so that Ex = E_ = () and E = Ey), (2.6)—(2.7) reduce
to Kennedy & Williams '90.
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Application: Two-Sided Exit Problem

@ The two-sided exit problem of ¢ from the interval [k, £], —oco < k < £ < o0,
is to find the joint distribution of the position (X-, ©;) at the first-exit time

T=Tie:=inf{t>0: ¢ & [k, (]}

@ Such problem can be solved explicitly in terms of the output of the
Wiener-Hopf factorization (M, Q", M, Q).
@ To this end, define
™ 0 n- ™ 0 0
Wo=10 lo|, W=[1l 0], J:=]0 lo|,J7:=|1l 0
nt 0 I~ 0 0 I~

zZt = 0 b eév(l_k)7 7" = m e (R,
n+ 0 1o
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Application: Two-Sided Exit Problem (Cont'd)

w+(a) = (W+e(3+(£—a) _W*eéi(a k) Z+) _ 7 Z+ 17

W (a) = (eré—(zfa) _WreQ ek 7 ) _7t7- 1,
sa s+ + skypp— - 1 2 2 -
Wo(s,a) := (e | — eV (a)J" — W (a)J ) —525 -Vs—-Q) .

Proposition 2.5 (Jiang & Pistorius '08)

Let h* and h be real-valued functions on Eo U E+ and E, respectively. For any
a€[k,f] and i € E,

E<h+(XT)1{:pT:£}1{T<C} ‘Xo = I', Yo = a) = e,-T\IJ+(a) h+
E(hi(X‘r)l{@T:k}l{T<§} ‘Xo = I', $Yo = a) = e,ﬂT\Ilf(a) hi,

E<esw<fh(X47)1{c<T} Xo=1i, o= a) = e/ Wo(s, a) H(—Q)L.

where H := diag{h(/), i € E}.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

Highly Non-trivial Extension to Time-Inhomogeneous Framework

@ Let X be a time-inhomogeneous Markov chain taking values in E U 0, with
generator function Q: € Q(m), t > 0.

@ The factorization of V™!(Q; — cl) can be done for each t > 0 separately,
exactly as described in Theorem 2.1.

o However, the resulting matrices NM¥(t) and QX (t), t > 0, do not have similar
probabilistic interpretations as shown in Theorem 2.2.

@ In particular, they are not useful for computing expectations of the form

—cri(s .
E<e £ ( )I{Xﬂ-ei(s):j} Xs = I), (31)

where

7(s) = inf{tzs: /stV(Xu)du>€}.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains

First Attempt: Piecewise Constant Generator

o Bielecki, Cialenco, Gong, & Huang '18: Wiener-Hopf Factorization for

time-inhomogeneous Markov chain X with piecewise-constant generator A:
ANe =N, ske1 <t<sk, k=1,....n, Nt =Npy1, t> sp,

where A1, ...,Ap1 € Q(m), neN, 0=5 < s <...<sp.

@ Time-inhomogeneous Markov chains with piecewise-constant generators are
adequate models for, among others, seasonal phenomena, Erlang loss

systems with moving boundaries, or structural breaks in credit migrations.

@ The main goal is to apply the Wiener-Hopf factorization technique to

compute expectations of the form (3.1).

@ This special setup allows to use some appropriately tailored and original

randomization techniques.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains BESETIENE RN Y T N O] eV

The Time-Inhomogeneous Generator

In Bielecki, Cheng, Cialenco, & Gong '19, we study Wiener-Hopf Factorization
for time-inhomogeneous Markov chain with continuous bounded generators.

o Let E be a finite set with |[E| = m > 1.
o Let (As)ser,, Ry := [0, 00), where As € Q(m).

@ Main Assumptions:

o 3K € (0,00), such that [As(i,j)| < K, forall i,j € E and s € Ry;

o (As)ser, , considered as a mapping from Ry to the set of m x m

generator matrices, is continuous with respect to s on R...
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains BESETIENE RN Y T N O] eV

The Partition of State Space

@ Recall v: E — R\ {0}, V :=diag{v(i): i € E}.

@ Assume that both E; and E_ are non-empty, where

E, ={icE: v(i)>0} and E_:={ic€E: v(i) <0}.

@ Accordingly, we write As and V in the block form :
E. E_ E. E_
As:E+ As  Bs ’ V:E+ Ve 0
E_- \ C Ds E_ \ 0 V_
o Denote by 2" :=R; x Eand 23 =R, x E4.
o Define A : L®(2) — L>®(2), associated with (As)ser,., by

(Ng)(s,i) == (Asg(s,))(i), (s,i) € X,
and similarly for ;&, §, E, and D.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains [SETIENE RN Y T Ne] e A

The Time-Inhomogeneous Markov Family

o Let Q be the collection of E-valued cadlag functions on R..

@ There exists a standard Markov family
= (7, Fo. (X ey, Pe). (5,7) € 271,
such the the associated evolution system U := (Us +)o<s<t<oo, defined by
(Us,ef)(7) == Esi (F(X:)), 0<s<t<oo, i€E,
for any f : E — R, admits the generator A, namely

lim %((us,ﬂ,,f)(i) —£(i) = (AF)(i), forany (s,i) € 2.

hl0

@ Define the passage times

rE(s) = inf{t € [s,00) : :t/stv(Xu)du > K}.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains [SETIENE RN Y T Ne] e A
Main Goal

o Goal: To derive a Wiener-Hopf type method for computing expectations of
the form

_ +
ES-J(g(Té 7X7ﬁi)>7
forg € L(2), £ € Ry, and (s,i) € 2.

@ Note that X_ri(s) € E+ U{9}. Hence, it is sufficient to compute expectations
I3
of the following form

Esﬁi<gi (Tf,xwi)), (3.2)

for g= € L(27%), L €Ry, and (s,i) € 2.
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Some Important Operators

o JEL®(Zx) — L=(2%) is defined as
(Jigi)(s, i):= IES.,-<gi <7’0i,XTOi>>, (s,i) € Z%.
o Forany £ € Ry, Pif: L®(274) — L>(27%) is defined as
(PEE®)(s,1) = Esi(g* (7, X,2 ), (5,1) € 2
e For any (s,i) € 2%, we define

(656%)(s.1) = iy F(PEE(5:) ~ &),

for any gi € Go(Z+) such that the above limit exists and is finite.

@ It can be shown that any expectation of the form (3.2) can be represented in
terms of the operators J* and Pl?t.
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Main Results

Existence and Uniqueness

Theorem 3.1 (Bielecki, Cialenco, Cheng, & Gong '19)

There exists a unique quadruple of operators (ST, H", S~ H™) which solves
the following operator equation: for any g* € C3(2%),

cE (s D E)-E D 26

subject to the conditions below:
(a) S*: Go(2%) — Go(27%) is a bounded operator such that

(i) for any g € C.(2%) with suppg™ C [0, ng+] x E+ for some constant
ng+ € (0,00), we have supp Stg* o, ngt] X Ex;

(ii) for any g € C}(Zx), we have S¥g* € C}(2%).

(b) H? is the strong generator of a strongly continuous positive contraction
semigroup (QF )eer, on Co(2+) with domain Z(H*) = CJ(2%).
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Main Results

Probabilistic Interpretation

Theorem 3.2 (Bielecki, Cialenco, Cheng, & Gong '19)
For any gi € Go(Z+), we have
STgt =J%g" and Qigt =Plg", forany LeR,,

Moreover, G is the strong generator of (P?:)Zellh on Co(Z+) with domain
2(G*) = CGH(2%).

From Theorems 3.1 and 3.2, we see that (J*, G*,J7, G7) is the unique
quadruple of operators, subject to conditions (a) and (b), that solves the
operator equation: for any g € C3(2%),

e DE)G TG ) )e
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Main Results

Remarks

® 9/0s+ Q is the generator of the following time-homogenized process X on
the enlarged probability space Q= Ry x Q:

Xe(@) = Xe((5,w)) = (5 + t, Xes(w)).

The equations (3.3) can be regarded as the Wiener-Hopf factorization
corresponding to the time-homogeneous Markov process X. Note that this is
not a direct application of Barlow, Rogers, & Williams '80 since the state
space of X is no longer a finite space.

@ The operators J* and G are counterparts of the matrices M and (Ajci in
Theorem 2.1. When X is a time-homogeneous Markov chain with generator
matrix Q, by taking gi(s, i) =e “lf—, for c >0 and k € Ex, we reduce
(3.3) to the time-homogeneous factorization (2.1).
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Main Results

Computing the Operators J* and G*

o By Theorems 3.1 and 3.2, for any g© € C}(2%), J*g* and GTg* (and
thus P,_,igi, for any £ € R.) can be computed from the Wiener-Hopf
equation (3.3) subject to conditions (a) and (b).

o Note that (3.3) can be decomposed into:

v 2 LA MY g (1 G'g', gteq(x 3.4
675+ J+g7J+ ,geo( +)7 ()

V’l(% +K) <3> g =- (i) G g, g €G(2)

Hence, one can compute J"g" and GTg™ (and thus P, g ") separately from
J7g” and G g~ (and thus P, g7).
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Wiener-Hopf Factorization for Time-Inhomogeneous Markov Chains Main Results

Computing the Operators J* and G* (Cont'd)

@ Using the block form of A and V, (3.4) can be written as
+) 1 2 ALRIT ) ot ot T

(v (05+A+BJ )ng , (3.5)

(v)™ (%ﬁ +C+ 6J+>g+: Jietgt. (3.6)

o From (3.5), we see that G is determined by J*.

e Furthermore, from (3.5) and (3.6) we deduce the following operator Riccati
equation for J*:

(ﬁ(v*)*léﬁ+J+(v+)*1(§—S +/K) f(v*)*(% +5) J+7(V’)’IE) gh=o.

@ In conclusion, solving (3.4) for G™ and J* boils down to solving the above
Ricatti equation for J* .
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Computing the Operators J* and G* (Cont'd)

o In practice, take gji € Co(2%) with
g (s.i)i=e “1(i), (s,i) € 2%,
for any ¢ > 0 and j € E+.

@ By solving Jtg® and GTg¥ for such g*, we obtain the Laplace transform
for the pair (Tei,x_rj:).
4

@ We then perform the inverse Laplace transform with respect to ¢ to obtain
the join distribution of (7.5, X_+) under Ps ;, which enables us to compute
4

the expectations (3.2) for any g € L°°(27).
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Future Research

@ Noisy Wiener-Hopf factorization for time-inhomogeneous Markov chains

o Wiener-Hopf factorization for time-homogeneous/inhomogeneous strong
Markov processes with general state space

The Wiener-Hopf factorization for time-homogeneous strong Markov
processes, with general state spaces, was studied by Williams '08, but only
for the associated resolvent operators.

@ Connection with the classical Wiener-Hopf factorization for Lévy processes

and Markov additive processes
@ Wiener-Hopf factorization for time-homogeneous Lévy processes
@ Wiener-Hopf factorization for time-homogeneous Markov additive processes

o Ultimate Goal: a unifying framework in terms of functional of time-changed
processes and in terms of algebraic factorizations of linear operators, which

encompasses all the processes above.
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