Supply Chain Finance: The Operational Benefits

Rong Li
Nankai University

Joint work with Ling Dong at Washington University in St Louis

Motivation

- As business expands (e.g., globalization), working capital is tight within its supply chains
- Financial institutes use Supply Chain Finance (SCF) to provide short-term credit to optimize working capital for both seller and buyer
- In the US, SCF is defined as Reverse Factoring
- Buyer (with better credit rating) helps seller to obtain cheaper finance than under factoring-seller sells its receivables
- In China, SCF also includes Inventory Finance
- Seller (with better credit rating) helps buyer to obtain (cheaper) finance by committing to buyback excess inventory

Practice Example

- A Chinese commercial bank provides Difference Repurchase (DR) contract to car dealers with car maker buys back unsold cars (difference) at time T , where $[0, \mathrm{~T}]$ is the sales period

1. Dealer sets order quantity and pays deposit to the bank, usually $30-40 \%$ of total cost (at time 0)
2. Bank issues commercial draft to car maker with maturity time T (at time 0)
3. Car maker sends cars to the dealer and certificates to the bank (at time 0)
4. Dealer redeems certificates after sales during $(0, T)$
5. Car maker buys back unsold cars and collects money from bank (at time T)

An Example (wholesale price=\$10k, retail price=\$15k, dealer's initial wealth=\$200k)

- Trade credit
- Car maker sends 100 cars (of cost \$1M) to a dealer
- Dealer sells for a month
- If 100 sold
- Dealer earns $\$ 500 \mathrm{k}$ profit, pays car maker in full
- Car maker receives $\$ 1 \mathrm{M}$
- If 30 sold
- Dealer earns 0, pays \$450k+200k (< \$1M)
- Car maker receives \$650k
- DR (SCF)
- Dealer pays 30\% deposit of \$300k, bank issues car maker commercial draft of $\$ 1 \mathrm{M}$
- Car maker sends 100 cars to dealer and the car certificates to bank
- If 100 sold
- Dealer earns $\$ 500 k$ profit, pays bank \$700k (in addition to deposit)
- Car maker receives $\$ 1 \mathrm{M}$
- If 30 sold
- Dealer earns $\$ 150 k$ profit, pays bank 0
- Car maker buys back 70 unsold and pays $\$ 700 \mathrm{k}$ to bank, receiving $\$ 300 \mathrm{k}$ net

Research Question

- It's known SCF provides unique financial benefits to core enterprises in supply chains
- Improved on-book financial performances and affordable finance to their small supply chain partners (upstream and downstream)
- Any operational benefits? Earn more profit?
- How should supplier choose financing schemes, internal finance (trade credit) or SCF?

Single-Period Model I: Trade Credit

- 1-supplier (big, principle) and 1-retailer (small and capital constrained, agent)
- Supplier: sets wholesale price w_{t} (paid at the end)
- Retailer: set order quantity q, responding to w_{t}
- Initial wealth η
- Face uncertain demand D
- Sell at unit price p (sales volume $=\min \{D, q\}$)
- Holding cost and salvage value are assumed 0
- Payment of $w_{t} q$ with probability β (assumed binary, pay or no pay, independent of its revenue earned)

Model I: Trade Credit

Step 1: Retailer sets optimal order quantity $q^{*}\left(w_{t}\right)$

$$
\max _{q \geq 0} \pi_{r}\left(q \mid w_{t}\right)=\frac{1}{1+r_{r}}\left\{p E[D \wedge q]-\beta E\left[w_{t} q \wedge\left(\eta\left(1+r_{r}\right)+p D\right)\right]\right\} .
$$

Step 2: Supplier sets optimal $\mathrm{w}^{*}{ }_{\mathrm{t}}$, knowing retailer's $\mathrm{q}^{*}\left(\mathrm{w}_{\mathrm{t}}\right)$
$\max _{w_{t} \in\left(\frac{\left.c\left(1+r_{s}\right), p\right)}{\beta} \pi_{s}\left(w_{t}\right)=\frac{\beta}{1+r_{s}}\left[\eta\left(1+r_{r}\right)+p \int_{0}^{d_{t}^{*}\left(w_{t}\right)} \bar{F}(x) d x\right]-c q^{*}\left(w_{t}\right) . . ~ . ~ . ~ . ~\right.}^{\text {. }}$
Supply chain's profit evaluated at time T (rather than time 0) is:

$$
\pi_{c}=\pi_{r}+\pi_{s}=p E[D \wedge q]-c\left(1+r_{s}\right) q .
$$

Model II: SCF (DR)

- 1-supplier (big, principle), 1-retailer (small and capital constrained, agent), and 1 bank
- Bank: requires deposit of $\alpha w_{d} q$ from retailer
- Supplier: sets wholesale price w_{d} (paid by bank)
- Payment of $w_{d}(q-S)$ to bank
- Retailer: set order quantity q, responding to w_{d}
- Initial wealth η (must be enough to pay deposit $\alpha w_{d} q$)
- Face uncertain demand D
- Sell at unit price p (sales volume $S=\min \{D, q\}$)
- Payment of $w_{d} S$

Model II: DR

Step 1: Retailer sets optimal order quantity $\mathrm{q}^{*}\left(\mathrm{w}_{\mathrm{d}}\right)$
$\max _{q \leq \frac{\eta}{\alpha w_{d}}} \pi_{r}\left(q \mid w_{d}\right)=\frac{1}{1+r_{r}}\left\{\left(p-w_{d}\right) E[D \wedge q]+\alpha w_{d} q\left(1+r_{f}\right)\right\}-\alpha w_{d} q$.
Step 2: Supplier sets optimal $w^{*}{ }_{d}$, knowing retailer's $q^{*}\left(w_{d}\right)$

$$
\max _{w_{d} \in\left(c\left(1+r_{s}\right), \frac{p}{1+\alpha\left(r_{r}-r_{f}\right)}\right)} \pi_{s}\left(w_{d}\right)=\frac{1}{1+r_{s}} E\left[w_{d}\left(D \wedge q^{*}\left(w_{d}\right)\right)\right]-c q^{*}\left(w_{d}\right)
$$

Bought back inventory has no value!
(consistent with the Trade credit model)

Model III: Reverse DR

Step 1: Retailer sets optimal order quantity $\mathrm{q}^{*}\left(\mathrm{w}_{\mathrm{d}}\right)$

$$
\max _{q \leq \frac{\eta}{\alpha w_{r}}} \pi_{r}\left(q \mid w_{r}\right)=\frac{1}{1+r_{r}}\left\{\left(p-w_{r}\right) E[D \wedge q]+\alpha w_{r} q\left(1+r_{f}\right)-\gamma w_{r} E\left[(q-D)^{+}\right]\right\}-\alpha w_{r} q .
$$

Step 2: Supplier sets optimal $w^{*}{ }_{d}$, knowing retailer's $q^{*}\left(w_{d}\right)$

$$
\max _{w_{r} \in\left(c\left(1+r_{s}\right), \frac{p}{1+\alpha\left(r_{r}-r_{f}\right)}\right)} \pi_{s}\left(w_{r}\right)=\frac{1}{1+r_{s}} E\left[w_{r}\left(D \wedge q^{*}\left(w_{r}\right)\right)+\gamma w_{r}\left(q^{*}\left(w_{r}\right)-D\right)^{+}\right]-c q^{*}\left(w_{r}\right) .
$$

Equivalent to buyback at a discounted price, $(1-\gamma) \mathrm{w}_{\mathrm{r}}$!

Model II and III (SCF)

Step 1: Retailer sets optimal order quantity $\mathrm{q}^{*}\left(\mathrm{w}_{\mathrm{d}}\right)$

$$
\max _{q \leq \frac{\eta}{\alpha w_{r}}} \pi_{r}\left(q \mid w_{r}\right)=\frac{1}{1+r_{r}}\left\{\left(p-w_{r}\right) E[D \wedge q]+\alpha w_{r} q\left(1+r_{f}\right)-\gamma w_{r} E\left[(q-D)^{+}\right]\right\}-\alpha w_{r} q .
$$

Step 2: Supplier sets optimal $w^{*}{ }_{d}$, knowing retailer's $q^{*}\left(w_{d}\right)$

$$
\max _{w_{r} \in\left(c\left(1+r_{s}\right), \frac{p}{1+\alpha\left(r_{r}-r_{f}\right)}\right)} \pi_{s}\left(w_{r}\right)=\frac{1}{1+r_{s}} E\left[w_{r}\left(D \wedge q^{*}\left(w_{r}\right)\right)+\gamma w_{r}\left(q^{*}\left(w_{r}\right)-D\right)^{+}\right]-c q^{*}\left(w_{r}\right) .
$$

Supply chain's profit evaluated at time T (rather than time 0) is:

$$
\pi_{c}=\pi_{r}+\pi_{s}=p E[D \wedge q]-c\left(1+r_{s}\right) q-\alpha w q\left(r_{r}-r_{f}\right)
$$

May add salvage value for excess inventory, π_{c} will have an additional positive term

Interesting Results

- What type of retailer would supplier prefer to finance through Trade credit?
- Think from two dimensions: initial wealth (η) and payment probability (β)
- Retailer A with $\eta=500 k, \beta=95 \%$ or Retailer B with $\eta=150 \mathrm{k}, \beta=80 \%$?
- Answer is Retailer B!

Interesting Results

Supplier's profit under Trade Credit with different types of retailer

Interesting Results

- What type of retailer would supplier prefer to finance through Trade credit?
- Prefer poor, but credible retailers
- Insights: Since poor retailers are more likely to default (thus paying $\mathrm{pD}+\eta$, independent of q), they will lower supplier's profit margins, but order more.
- Quantity benefit > profit-margin disadvantage!

TC or SCF?

Supplier's profit under TC/Supplier's profit under SCF

Operational Change: Wholesale Price

Optimal wholesale price for TC vs SCF

Supplier should raise wholesale price!

Operational Change: Order Quantity

$$
q^{*}(T C) / q^{*}(S C F)
$$

How should supplier compare TC with SCF?

- TC (direct finance)
- Bear retailer's default and credibility risks => indirectly bear demand risk
- Pros: encourage a bigger order quantity
- Supplier and retailer share demand risk
- SCF (indirect finance)
- Shield from retailer's default and credibility risks
- Pros: better control of profit margin
- Buyback excess inventory => supplier directly bear demand risk alone

Any questions?

How should supplier compare TC with SCF?

- TC (direct finance)
- Bear retailer's default and credibility risks => indirectly bear demand risk
- Pros: encourage a bigger order quantity
- SCF (indirect finance)
- Shield from retailer's default and credibility risks
- Pros: better control of profit margin
- Buyback excess inventory => directly bear demand risk
- Retailer's default risk and credibility risk have same type of effect on order quantity

$$
\operatorname{sgn}\left(\frac{d q^{*}\left(w_{t}\right)}{d \beta}\right)=\operatorname{sgn}\left(\frac{d q^{*}\left(w_{t}\right)}{d \eta}\right)
$$

Relevant Literature

- Supplier Finance
- Trade credit:
- "...industries with higher dependence on trade credit fiñancing exhibit higher rates of growth in countries with weaker financial institutions." - Fisman and Love (2003)
- "The retailer, if offered an optimally structured trade credit contra't, will always prefer supplier financing to bank financing." - Kouvelis and Zhao (2012)
- Buyback contract:
- It improves supply chain efficiency (increases the supply chain profit) and some buyback prices create win-win situation for supplier and retailer - Pasternack (1985)

Relevant Literature

- SCF
- Buyer intermediated Finance (BIF)
- Use JD.com (the buyer) as an example to analyze the interaction between product defect and BIF -- Tunca and Zhu (2015) working paper
- SCF with Buy-back contracts
- Use Cherry auto (the seller) as an example to analyze the impact of SCF on operational decisions - Tunca and Zhu (2015) working paper

