A Stochastic Game and Free Boundary Problem

Renyuan Xu

University of California, Berkeley

Joint work with Xin Guo (UC Berkeley) and Wenpin Tang (UCLA)

USC Math Finance Seminar 2018

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

N players in the system

- N players in the system
- Dynamics of each player i:

$$dX_t^i = b^i(\boldsymbol{X}_t)dt + \boldsymbol{\sigma_i}(\boldsymbol{X}_t)d\boldsymbol{B}_t, \ X_{0-}^i = x^i$$

- N players in the system
- Dynamics of each player i:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, \ X_{0-}^i = x^i$$

- N players in the system
- Dynamics of each player i:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, X_{0-}^i = x^i$$

- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi^i_t < \infty$, where $\xi^i_t = \xi^{i,+}_t + \xi^{i,-}_t$

- N players in the system
- Dynamics of each player *i*:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, X_{0-}^i = x^i$$

- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi^i_t < \infty$, where $\xi^i_t = \xi^{i,+}_t + \xi^{i,-}_t$
 - Resource allocation constraint (RAC):

$$F(\xi^1,\cdots,\xi^N)\leq C$$

- N players in the system
- Dynamics of each player i:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, X_{0-}^i = x^i$$

- Admissibility:
 - $(\xi^{i,+}, \xi^{i,-}) \in \mathcal{U}$: measurability, adaptiveness, non-decreasing càdlàg, $\int_0^\infty e^{-\alpha_i t} d\xi^i_t < \infty$, where $\xi^i_t = \xi^{i,+}_t + \xi^{i,-}_t$
 - Resource allocation constraint (RAC):

$$F(\xi^1,\cdots,\xi^N) \leq C$$

Objective (cost) :

$$J^i(\mathbf{x}, \mathbf{\xi}) = \mathbb{E} \int_0^\infty e^{-\alpha^i t} \left[h^i(X_t^1, \cdots, X_t^N) dt + \lambda^i d \check{\xi}_t^i \right]$$

- N players in the system
- Dynamics of each player i:

$$dX_t^i = b^i(X_t)dt + \sigma_i(X_t)dB_t + d\xi_t^{i,+} - d\xi_t^{i,-}, X_{0-}^i = x^i$$

- Admissibility:
 - $(\xi^+, \xi^-) \in \mathcal{U}_N^i$: non-decreasing càdlàg, measurability, adaptiveness, $\int_0^\infty e^{-\alpha_i t} d\xi_t^i < \infty$, where $\xi^i = \xi^{i,+} + \xi^{i,-}$
 - Resource allocation constraint (RAC):

$$F(\xi^1,\cdots,\xi^N) \leq C$$

Objective:

$$J^{i}(\mathbf{x},\boldsymbol{\xi}) = \mathbb{E} \int_{0}^{\infty} e^{-\alpha^{i}t} \left[h^{i}(X_{t}^{1},\cdots,X_{t}^{N}) dt + \lambda^{i} d\xi_{t}^{i} \right]$$

• Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d \check{\xi}_{t}^{i} \leq y$
- Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i=1,2,\cdots,N)$

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d \check{\xi}_{t}^{i} \leq y$
- Dividing game: $\int_0^\infty d \check{\xi}_t^i \leq y^i \ (i=1,2,\cdots,N)$
- Sharing game: N players M resources:

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d \check{\xi}_{t}^{i} \leq y$
- Dividing game: $\int_0^\infty d \xi_t^i \le y^i \ (i = 1, 2, \dots, N)$
- Sharing game: N players M resources:
 - Adjacent matrix: $\mathbf{A} = (a_{ij})_{1 \leq i \leq N, 1 \leq j \leq M}$, $a_{ij} = 0$ or 1

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\check{\xi}_{t}^{i} \leq y$
- Dividing game: $\int_0^\infty d \xi_t^i \le y^i \ (i=1,2,\cdots,N)$
- Sharing game: N players M resources:
 - Adjacent matrix: special cases

$$A = \boxed{1 \mid 1 \mid 1 \mid 1}$$

(b) Dividing

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$, $\Delta \leq y^{1} + y^{2}$
- Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i=1,2,\cdots,N)$
- Sharing game: N players M resources:
 - Adjacent matrix: $\mathbf{A} = (a_{ii})_{1 \leq i \leq N, 1 \leq i \leq M}$, $a_{ii} = 0$ or 1
 - Resource allocation constraint: $(Y_t^1, \dots, Y_t^M; t \ge 0)$

$$Y_t^j = y^j - \sum_{i=1}^N \int_0^t \frac{a_{ij} Y_{s-}^j}{\sum_{j=1}^M a_{ij} Y_{s-}^j} d\check{\xi}_s^i \ge 0, \quad \text{and} \quad Y_{0-}^j = y^j$$

- Pooling game: $\sum_{i=1}^{N} \int_{0}^{\infty} d\xi_{t}^{i} \leq y$, $\Delta \leq y^{1} + y^{2}$
- Dividing game: $\int_0^\infty d\xi_t^i \le y^i \ (i=1,2,\cdots,N)$
- Sharing game: N players M resources:
 - Adjacent matrix: $\mathbf{A} = (a_{ij})_{1 \leq i \leq N, 1 \leq j \leq M}$, $a_{ij} = 0$ or 1
 - Resource constraint: $(Y_t^1, \dots, Y_t^M; t \ge 0)$

$$Y_t^j = y^j - \sum_{i=1}^N \int_0^t \frac{a_{ij} Y_{s-}^j}{\sum_{j=1}^M a_{ij} Y_{s-}^j} d\xi_s^i \ge 0, \quad \text{ and } \quad Y_{0-}^j = y^j$$

• Well-definedness: $\sum_{j=1}^{M} a_{ij} \geq 1$

Sharing game

$$J^{i}(\mathbf{x}, \mathbf{y}; \boldsymbol{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha^{i}t} (h^{i}(X_{t}^{1}, \cdots, X_{t}^{N}) dt + \lambda_{i} d\xi_{t}^{i})$$

$$dX_{t}^{i} = b^{i}(\boldsymbol{X}_{t}) dt + \boldsymbol{\sigma}^{i}(\boldsymbol{X}_{t}) d\boldsymbol{B}_{t} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \qquad X_{0-}^{i} = x^{i}$$

$$dY_{t}^{j} = -\sum_{i=1}^{N} \frac{a_{ij} Y_{t-}^{j}}{\sum_{k=1}^{M} a_{ik} Y_{t-}^{k}} d\xi_{t}^{i}, \qquad Y_{0-}^{j} = y^{j}$$

$$\bullet \ \boldsymbol{\xi} \in \mathcal{S}(\boldsymbol{y}) := \left\{ \boldsymbol{\xi} : \ \xi^i \in \mathcal{U}, \ Y_t^j \ge 0, \ \forall i, j \right\}$$

- $\mathcal{U} := \{ (\xi^+, \xi^-) : \xi^+ \text{ and } \xi^- \text{ are } \mathcal{F}^{\mathbf{X}, \mathbf{Y}} \text{-progressively measurable,}$ càdlàg, and non-decreasing, with $\xi_{0-}^+ = \xi_{0-}^- = 0 \}$,
- h^i : convex, symmetric, $0 < k \le h'' < K$, $\alpha^i > 0$: discount factor

Stochastic Game: Special Case (N = 1)

Two-dimensional control problem:

$$v(x,y) = \inf_{\xi \in S(y)} \int_{0}^{\infty} e^{-\alpha t} \left[h(X_{t}) dt + \lambda d \xi_{t} \right]$$

$$dX_{t} = \mu(X_{t}) dt + \sigma(X_{t}) dB_{t} + d\xi_{t}^{+} - d\xi_{t}^{-}, \quad X_{0-} = x$$

$$dY_{t} = -d\xi_{t}^{+} - d\xi_{t}^{-}, \quad Y_{0-} = y$$

Partial references:

- Finite fuel problem: Beneš, Shepp & Witsenhausen (1980), Karatzas (1983), Ma (1993)
- Transaction cost analysis: Davis & Norman (1990), Soner & Shreve (1994), Dai & Yi (2009), Kallsen & Muhle-Karbe (2010)
- Optimal execution/price impact: Guo & Zervos (2015), Motairi & Zervos (2017)

Stochastic Game: Measure of Performance

• Nash Equilibrium: Stability

• Pareto Optimality: Efficiency

Definition (Nash equilibrium)

A tuple of admissible controls $\boldsymbol{\xi}^* := (\xi^{1*}, \dots \xi^{N*})$ is a Markovian Nash equillibrium strategy (NES) of the *N*-player game with the cost functions $(J^1(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\xi}), \dots, J^N(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\xi}))$ if for each $i=1,\dots,N$, and each ξ^i such that $(\boldsymbol{\xi}^{-i*}, \xi^i)$ is admissible,

$$J^{i}\left(\boldsymbol{x},\boldsymbol{y};\boldsymbol{\xi}^{*}\right)\leq J^{i}\left(\boldsymbol{x},\boldsymbol{y};\left(\boldsymbol{\xi}^{-i*},\xi^{i}\right)\right).$$

Here the strategies ξ^{i*} and ξ^{i} are deterministic functions of time t and $\boldsymbol{X}_{t}=(X_{t}^{1},\ldots,X_{t}^{N})$ with $\boldsymbol{X}_{0-}=\boldsymbol{x}$.

Stochastic Game: Different Regions

Definition (Action and waiting regions)

The i^{th} player's action region is

$$\mathcal{A}_i := \{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^N \times \mathbb{R}_+^M : d\xi^i(\boldsymbol{x}, \boldsymbol{y}) \neq 0 \},$$

and the waiting region is $W_i := (\mathbb{R}^N \times \mathbb{R}_+^M) \setminus \mathcal{A}_i$.

- $\mathcal{W}_{-i} := \cap_{j \neq i} \mathcal{W}_j$: common waiting region other than player i
- ullet $\mathcal{W}_{\mathit{NE}}$: common waiting region of all players
- $\bullet \ \mathcal{W}_{NE}(\boldsymbol{y}) := \{\boldsymbol{x} \in \mathbb{R}^{N} : (\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{W}_{NE}\}$

Stochastic Game: Free Boundary Problem

(1)
$$A_i \cap A_j = \emptyset$$
 for $i \neq j$,

- (1) $A_i \cap A_j = \emptyset$ for $i \neq j$,
- (2) $\boldsymbol{\xi}^* := (\xi^{1*}, \dots, \xi^{N*}) \in \mathcal{S}(\boldsymbol{y}),$

- (1) $A_i \cap A_j = \emptyset$ for $i \neq j$,
- (2) $\boldsymbol{\xi}^* := (\xi^{1*}, \dots, \xi^{N*}) \in \mathcal{S}(\boldsymbol{y}),$
- (3) $v^{i}(\cdot)$ satisfies the HJB equation

$$\min_{(\mathbf{x}^i, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_+^M} \left\{ -\alpha \mathbf{v}^i + \mathbf{h}^i + \mathcal{L} \mathbf{v}^i, -\sum_{j=1}^M \frac{a_{ij} \mathbf{y}^j}{\sum_{k=1}^M a_{ik} \mathbf{y}^k} \mathbf{v}^i_{\mathbf{y}^i} + \mathbf{v}^i_{\mathbf{x}^i}, -\sum_{j=1}^M \frac{a_{ij} \mathbf{y}^j}{\sum_{k=1}^M a_{ik} \mathbf{y}^k} \mathbf{v}^i_{\mathbf{y}^j} - \mathbf{v}^i_{\mathbf{x}^i} \right\} = 0, \text{ for } (\mathbf{x}, \mathbf{y}) \in \mathcal{W}_{-i},$$

For each $i=1,\ldots,N$, if $\xi^{i*}\in\mathcal{U}$ satisfies the following conditions, then ξ^* is an NES with game value $v^i(\cdot)=J^i(\cdot;\xi^*)$.

- (1) $A_i \cap A_i = \emptyset$ for $i \neq i$,
- (2) $\boldsymbol{\xi}^* := (\xi^{1*}, \dots, \xi^{N*}) \in \mathcal{S}(\boldsymbol{y}),$
- (3) $v^{i}(\cdot)$ satisfies the HJB equation

$$\min_{\substack{(\mathbf{x}^i, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_+^M \\ -\sum_{i=1}^M \frac{a_{ij}y^j}{\sum_{k=1}^M a_{ik}y^k} v_{y^i}^i + v_{\mathbf{x}^i}^i, \\ -\sum_{i=1}^M \frac{a_{ij}y^j}{\sum_{k=1}^M a_{ik}y^k} v_{y^i}^i - v_{\mathbf{x}^i}^i \right\} = 0, \text{ for } (\mathbf{x}, \mathbf{y}) \in \mathcal{W}_{-i},$$

(4) $v^i(\cdot)$ satisfies

$$\min_{(\mathbf{x}^{j},\mathbf{y})\in\mathbb{R}\times\mathbb{R}_{+}^{M}} \left\{ -\sum_{k=1}^{M} \frac{a_{jk}y^{k}}{\sum_{s=1}^{M} a_{js}y^{s}} v_{y^{k}}^{i} + v_{x^{j}}^{i}, -\sum_{k=1}^{M} \frac{a_{jk}y^{k}}{\sum_{s=1}^{M} a_{is}y^{s}} v_{y^{k}}^{i} - v_{x^{j}}^{i} \right\} = 0, \text{ for } (\mathbf{x},\mathbf{y}) \in \mathcal{A}_{j},$$

(5)
$$v^{i}(\mathbf{x}, \mathbf{y})$$
 satisfies $\limsup_{T \to \infty} e^{-\alpha T} \mathbb{E} v^{i}(\mathbf{X}_{T}, \mathbf{Y}_{T}) = 0$,

- (5) $v^{i}(\mathbf{x}, \mathbf{y})$ satisfies $\limsup_{T \to \infty} e^{-\alpha T} \mathbb{E} v^{i}(\mathbf{X}_{T}, \mathbf{Y}_{T}) = 0$,
- (6) $v^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\overline{\mathcal{W}_{-i}})$, and there exists $u^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\mathbb{R}^N \times \mathbb{R}_+^M)$ convex such that $u^i(\mathbf{x}, \mathbf{y}) = v^i(\mathbf{x}, \mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in \overline{\mathcal{W}_{-i}}$,

- (5) $v^{i}(\mathbf{x}, \mathbf{y})$ satisfies $\limsup_{T \to \infty} e^{-\alpha T} \mathbb{E} v^{i}(\mathbf{X}_{T}, \mathbf{Y}_{T}) = 0$,
- (6) $v^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\overline{\mathcal{W}_{-i}})$, and there exists $u^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\mathbb{R}^N \times \mathbb{R}_+^M)$ convex such that $u^i(\mathbf{x}, \mathbf{y}) = v^i(\mathbf{x}, \mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in \overline{\mathcal{W}_{-i}}$,
- (7) $v_{x^j}^i$ is bounded in $\overline{\mathcal{W}_{-i}}$ for each $j=1,2,\cdots,N$,

- (5) $v^{i}(\mathbf{x}, \mathbf{y})$ satisfies $\limsup_{T \to \infty} e^{-\alpha T} \mathbb{E} v^{i}(\mathbf{X}_{T}, \mathbf{Y}_{T}) = 0$,
- (6) $v^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\overline{\mathcal{W}_{-i}})$, and there exists $u^i(\mathbf{x}, \mathbf{y}) \in \mathcal{C}^2(\mathbb{R}^N \times \mathbb{R}_+^M)$ convex such that $u^i(\mathbf{x}, \mathbf{y}) = v^i(\mathbf{x}, \mathbf{y})$ for all $(\mathbf{x}, \mathbf{y}) \in \overline{\mathcal{W}_{-i}}$,
- (7) $v_{x^j}^i$ is bounded in $\overline{\mathcal{W}_{-i}}$ for each $j=1,2,\cdots,N$,
- (8) $\xi^i \in \mathcal{U}$ such that $(\boldsymbol{\xi}^{-i*}, \xi^i) \in \mathcal{S}(\boldsymbol{y}),$ $\mathbb{P}((\boldsymbol{X}_t^{-i*}, X_t^i, \boldsymbol{Y}_t) \in \overline{\mathcal{W}_{-i}}, \ \forall t \geq 0) = 1.$

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

Stochastic Game: Different Scenarios

We focus on:

1		1	1
	1		1
		1	1
1		1	1

(a) Sharing game N = M

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- Discussion

Pooling: Set-up

Pooling game (on $\mathbb{R}^N \times \mathbb{R}_+$)

$$J^{i}(\mathbf{x}, y; \boldsymbol{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha t} h(X_{t}^{i} - \overline{X}_{t}) dt$$

$$dX_{t}^{i} = dB_{t}^{i} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \quad X_{0-}^{i} = x^{i}$$

$$dY_{t} = -\sum_{i=1}^{N} d\xi_{t}^{i}, \qquad Y_{0-} = y$$

- $\overline{X}_t = \frac{\sum_{i=1}^N X_t^i}{N}$: mean position
- h: convex, symmetric, $0 < k \le h'' < K$
- $\alpha > 0$: discount factor
- Constraints:
 - **Zero-borrowing:** $Y_t > 0$ for all t a.s.
 - No simultaneous jump: $\mathbb{P}(d\xi_t^i d\xi_t^j \neq 0) = 1, i \neq j$

Pooling: Solution Derivation

- **Step 1**: HJB system for N players
- **Step 2**: Candidate solution of game value
- **Step 3**: NE strategies via
 - Skorokhod problem
 - Sequential jumps at time 0

HJB system (on
$$\mathbb{R}^{N} imes \mathbb{R}_{+}$$
)

$$\min_{(x^{i},y) \in \mathbb{R} \times \mathbb{R}_{+}} \left\{ -\alpha v^{i} + h + \frac{1}{2} \sum_{j=1}^{N} v_{x^{i}x^{j}}^{i}, -v_{y}^{i} + v_{x^{i}}^{i}, -v_{y}^{i} - v_{x^{i}}^{i} \right\} = 0$$
in \mathcal{W}_{-i}

 First equation. Player i solves a usual control problem with three choices

HJB system (on $\mathbb{R}^N \times \mathbb{R}_+$)

$$\begin{aligned} \min_{(x^j,y)\in\mathbb{R}\times\mathbb{R}_+} \left\{ -v^i_y + v^i_{x^j}, -v^i_y - v^i_{x^j} \right\} &= 0 \\ &\quad \text{in } \mathcal{A}_j, j \neq i \end{aligned}$$

 Second equation. If player j intervenes, by the definition of Nash equilibrium, we expect that player i has no incentive to move

HJB system (on
$$\mathbb{R}^N \times \mathbb{R}_+$$
)

$$A_i \cap A_i = \emptyset$$

• Third equation. No simultanuous jump

HJB system (on
$$\mathbb{R}^{N} \times \mathbb{R}_{+}$$
)

$$\min_{(x^{i},y)\in\mathbb{R}\times\mathbb{R}_{+}} \left\{ -\alpha v^{i} + h + \frac{1}{2} \sum_{j=1}^{N} v_{x^{i}x^{j}}^{i}, -v_{y}^{i} + v_{x^{i}}^{i}, -v_{y}^{i} - v_{x^{i}}^{i} \right\} = 0$$

$$\inf_{(x^{i},y)\in\mathbb{R}\times\mathbb{R}_{+}} \left\{ -v_{y}^{i} + v_{x^{i}}^{i}, -v_{y}^{i} - v_{x^{i}}^{i} \right\} = 0$$

$$\inf_{(x^{i},y)\in\mathbb{R}\times\mathbb{R}_{+}} \left\{ -v_{y}^{i} + v_{x^{j}}^{i}, -v_{y}^{i} - v_{x^{j}}^{i} \right\} = 0$$

$$\inf_{(x^{i},y)\in\mathbb{R}\times\mathbb{R}_{+}} \left\{ -v_{y}^{i} + v_{x^{j}}^{i}, -v_{y}^{i} - v_{x^{j}}^{i} \right\} = 0$$

$$\inf_{(x^{i},y)\in\mathbb{R}\times\mathbb{R}_{+}} \left\{ -v_{y}^{i} + v_{x^{j}}^{i}, -v_{y}^{i} - v_{x^{j}}^{i} \right\} = 0$$

$$A_i \cap A_j = \emptyset$$

- First equation. Player i solves a usual control problem with three choices
- Second equation. If player j intervenes, by the definition of Nash equilibrium, we expect that player i has no incentive to move
- Third equation. No simultanuous jump

Step 2: Game Value (Special Case N=1)¹

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x > f_1^{-1}(y) \\ v(x_-, f_1(x_-)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$\frac{2.5}{f_1(-x)} \qquad \text{fin} \qquad \text{action region}$$

$$\frac{2.5}{1.5} \qquad \text{action region} \qquad \text{action region}$$

$$\frac{2.5}{1.5} \qquad \text{action region} \qquad \text{action region}$$

$$\frac{45^{\circ}}{x} \qquad \text{on} \qquad \frac{45^{\circ}}{x} \qquad \frac{45^{\circ}}{x} \qquad \frac{1}{x} \qquad$$

¹ Beneš, Shepp and Witsenhausen (1980)

Step 2: Game Value (Special Case N=1)¹

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x > f_1^{-1}(y) \\ v(x_-, f_1(x_-)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } |x| \le f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \\ v(x_+, f_1(x_+)) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha}) & \text{if } x < -f_1^{-1}(y) \end{cases}$$

$$v(x,y) = \begin{cases} \frac{x^2}{\alpha} + \frac{1}{\alpha^2} + A_1(y) \cosh(x\sqrt{2\alpha})$$

¹ Beneš, Shepp and Witsenhausen (1980)

Step 2: Boundary of Free Boundary Problem

Figure: $W_{NE}(y)$ when N=3

Step 2: Candidate Game Value

Candidate game value (Guo, Tang & X. (2018))

$$v^{i}(\mathbf{x}, y) = \begin{cases} p_{N}(\widetilde{x}^{i}) + A_{N}(y) \cosh(\widetilde{x}^{i} \sqrt{\frac{2(N-1)\alpha}{N}}) & \text{in } \mathcal{W}_{i} \\ v^{i} \left(\mathbf{x}^{-i}, x_{+}^{i} + \frac{\sum_{k \neq i} x^{k}}{N-1}, f_{N}(x_{+}^{i})\right) & \text{in } \mathcal{A}_{i}^{+} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-i}, \frac{\sum_{k \neq i} x^{k}}{N-1} - x_{-}^{i}, f_{N}(x_{-}^{i})\right) & \text{in } \mathcal{A}_{i}^{-} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, x_{+}^{j} + \frac{\sum_{k \neq j} x^{k}}{N-1}, f_{N}(x_{+}^{j})\right) & \text{in } \mathcal{A}_{j}^{+}, j \neq i \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, \frac{\sum_{k \neq j} x^{k}}{N-1} - x_{-}^{j}, f_{N}(x_{-}^{j})\right) & \text{in } \mathcal{A}_{j}^{-}, j \neq i \end{cases}$$

- $\widetilde{x}^i = x^i \frac{\sum_{j \neq i} x^j}{N-1}$, x^i_{\pm} : unique positive root of $z \mp f_N(z) = \widetilde{x}^i \mp y$
- $f_N(\cdot)$: threshold function

A heuristic description of Skorokhod: Given a domain D with a vector field $\gamma(.)$ on the boundary ∂D , obliquely reflecting Brownian motion behaves infinitesimally like Brownian motion in the interior. Every time it hits ∂D , there will be a "minimum push" to keep it within the closure \bar{D} of the domain and spends zero Lebesgue time on the boundary.

Partial references on Skorokhod problem

- Region:
 - Smooth region: Lions and Sznitman (1984)
 - Polyhedron: Ruth (1987), Dai & Ruth (1996), Dupuis & Ishii (1991)
 - Nonsmooth region: Taska (1992)
 - Time-dependent domain: Burdzy, Kang & Ramanan (2007), Burdzy, Chen & Sylvester (2004)
- Reflection direction:
 - **Oblique reflection**: Constantini (1991), Burdzy, Chen, Marshall, Ramanan (2015)
- Dynamics:
 - **BSDE**: Ma & Zhang (2005)
 - Discontinuous dynamic: Ma (1994)

Ingredient 1: common waiting region (unbounded)

$$\mathcal{W}_{NE}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : |\widetilde{\boldsymbol{x}}^{i}| < f_{N}^{-1}(y) \text{ for } 1 \leq i \leq N \}$$

$$F_{i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

$$F_{N+i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = -f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

Figure: $W_{NE}(y)$ when N=3

Ingredient 2: reflection direction

$$\gamma(\mathbf{x}) = -\mathbf{e}_i$$
 on $F_i(y)$
 $\gamma(\mathbf{x}) = \mathbf{e}_i$ on $F_{i+N}(y)$, $i = 1, 2, \dots, N$

Figure: Reflection direction when N=3

Ingredient 1: common waiting region (unbounded)

$$\mathcal{W}_{NE}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : |\widetilde{\boldsymbol{x}}^{i}| < f_{N}^{-1}(y) \text{ for } 1 \leq i \leq N \}$$

$$F_{i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

$$F_{N+i}(y) = \{ \boldsymbol{x} \in \mathbb{R}^{N} : \frac{1}{N-1}(-1 + N\boldsymbol{e}_{i}) \cdot \boldsymbol{x} = -f_{N}^{-1}(y) \} \cap \overline{\mathcal{W}_{NE}(y)}$$

Ingredient 2: reflection direction

$$\gamma(\mathbf{x}) = -\mathbf{e}_i$$
 on $F_i(y)$
 $\gamma(\mathbf{x}) = \mathbf{e}_i$ on $F_{i+N}(y)$, $i = 1, 2, \dots, N$

Ingredient 3: dynamic without control

$$\boldsymbol{X}_t = \boldsymbol{B}_t$$

Lemma (Skorokhod solution given y)

For fixed y > 0, there exists a reflected process

$$m{R}_y(t) = (R_y^1(t), \dots, R_y^N(t))$$
 with $m{R}_y(0) = m{x} \in \overline{\mathcal{W}_{NE}(y)}$ such that $R_y^i(t) = x^i + B^i(t) + \eta_y^i(t) - \eta_y^{i+N}(t) \in \overline{\mathcal{W}_{NE}(y)}$ for $1 \le i \le N$, where $(j = 1, 2, \cdots, 2N)$

- $(\eta_{\nu}^{j}(t); t \geq 0)$ is the local time process on the boundary
- η_y^j increases only at times t such that $R_y^j(t) \in F_j(y)$

Key idea:

- Skew symmetry condition for bounded polyhedron in Ruth Williams (1987)
- Localization argument

Figure: Pooling: evolving domain when N=3

Theorem (Skorokhod solution (Guo, Tang & X. 2018))

Inductively, for $k \geq 2$, let

$$au_k := \inf \left\{ t > au_{k-1} : extbf{ extit{R}}_{ extit{Y}_{ au_{k-1}}}(t - au_{k-1}) \in \partial \mathcal{W}_{ extit{NE}}(extit{Y}_{ au_{k-1}})
ight\},$$

where $\mathbf{R}_{Y_{\tau_{k-1}}}$ is a copy of the reflected process in $\mathcal{W}_{NE}(Y_{\tau_{k-1}})$, starting at $\mathbf{X}_{\tau_{k-1}}$ and driven by $\mathbf{B}_k = (B_k^1, \dots, B_k^N)$. Then we have for $\tau_{k-1} < t < \tau_k$.

$$X_t^i = X_{\tau_{k-1}}^i + B_k^i(t - \tau_{k-1}) + \eta_{Y_{\tau_{k-1}}}^i(t - \tau_{k-1}) - \eta_{Y_{\tau_{k-1}}}^{i+N}(t - \tau_{k-1}),$$

and

$$Y_t = Y_{\tau_{k-1}} - \eta^i_{Y_{\tau_{k-1}}}(t - \tau_{k-1}) - \eta^{i+N}_{Y_{\tau_{k-1}}}(t - \tau_{k-1})$$

are the NE strategies.

Step 3: Sequential Jumps at Time 0

 A_i is defined in the way

- Player who is *furtherest away* controls
- Player with the largest index will control if ties occur

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

Dividing Game: Set-up

Dividing game

$$J^{i}(\mathbf{x}, \mathbf{y}; \boldsymbol{\xi}) = \mathbb{E} \int_{0}^{\infty} e^{-\alpha t} h(X_{t}^{i} - \overline{X}_{t}) dt$$

$$dX_{t}^{i} = dB_{t}^{i} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \quad X_{0-}^{i} = x^{i}$$

$$dY_{t}^{i} = -d\xi_{t}^{i}, \quad Y_{0-}^{i} = y^{i}$$

- ullet $\overline{X}_t = rac{\sum_{i=1}^N X_t^i}{N}$: mean position
- h: convex, symmetric, $0 < k \le h'' < K$
- $\alpha > 0$: discount factor
- Constraints:
 - **Zero-borrowing:** $Y_t^i \ge 0$ for all t a.s. and i
 - No simultaneous jump: $\mathbb{P}(d\xi_t^i d\xi_t^j \neq 0) = 1, i \neq j$

Dividing Game: HJB System

Dividing: HJB system

$$\begin{cases} \min_{(\mathbf{x}^i, \mathbf{y}^i) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -\alpha \mathbf{v}^i + h + \frac{1}{2} \sum_{j=1}^N \mathbf{v}^i_{\mathbf{x}^j \mathbf{x}^j}, -\mathbf{v}^i_{\mathbf{y}^i} + \mathbf{v}^i_{\mathbf{x}^i}, -\mathbf{v}^i_{\mathbf{y}^i} - \mathbf{v}^i_{\mathbf{x}^i} \right\} = 0, \\ \min_{(\mathbf{x}^j, \mathbf{y}^j) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -\mathbf{v}^i_{\mathbf{y}^j} + \mathbf{v}^i_{\mathbf{x}^j}, -\mathbf{v}^i_{\mathbf{y}^j} - \mathbf{v}^i_{\mathbf{x}^j} \right\} = 0, \\ \min_{(\mathbf{x}^j, \mathbf{y}^j) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -\mathbf{v}^i_{\mathbf{y}^j} + \mathbf{v}^i_{\mathbf{x}^j}, -\mathbf{v}^i_{\mathbf{y}^j} - \mathbf{v}^i_{\mathbf{x}^j} \right\} = 0, \\ \mathcal{A}_i \cap \mathcal{A}_j = \emptyset. \end{cases}$$
for $(\mathbf{x}, \mathbf{y}) \in \mathcal{A}_j, j \neq i$,

Pooling: HJB system

$$\begin{cases} \min_{(x^i,y) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -\alpha v^i + h + \frac{1}{2} \sum_{j=1}^N v^i_{x^j x^j}, -v^i_y + v^i_{x^i}, -v^i_y - v^i_{x^i} \right\} = 0, \\ \min_{(x^i,y) \in \mathbb{R} \times \mathbb{R}_+} \left\{ -v^i_y + v^i_{x^j}, -v^i_y - v^i_{x^j} \right\} = 0, \\ \mathcal{A}_i \cap \mathcal{A}_j = \emptyset. \end{cases}$$
 for $(\mathbf{x},y) \in \mathcal{W}_{-i},$ for $(\mathbf{x},y) \in \mathcal{A}_j, j \neq i,$

Dividing Game: NE Strategies

Figure: Comparison of NE Strategies when N=3

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

Sharing Game: Set-up

Sharing game

$$J^{i}(\mathbf{x}, \mathbf{y}; \boldsymbol{\xi}) := \mathbb{E} \int_{0}^{\infty} e^{-\alpha t} h(X_{t}^{i} - \overline{X}_{t}) dt$$

$$dX_{t}^{i} = dB_{t}^{i} + d\xi_{t}^{i,+} - d\xi_{t}^{i-}, \qquad X_{0-}^{i} = x^{i}$$

$$dY_{t}^{i} = -\sum_{j=1}^{N} \frac{a_{ji} Y_{t-}^{i}}{\sum_{k=1}^{N} a_{jk} Y_{t-}^{k}} d\xi_{t}^{j}, \qquad Y_{0-}^{i} = y^{i}$$

- $\overline{X}_t = \frac{\sum_{i=1}^N X_t^i}{N}$: mean position
- h: convex, symmetric, $0 < k \le h'' < K$
- $\alpha > 0$: discount factor
- Constraints:
 - **Zero-borrowing:** $Y_t^i \ge 0$ for all t a.s. and i
 - No simultaneous jump: $\mathbb{P}(d\xi_t^i d\xi_t^j \neq 0) = 1, i \neq i$

Sharing Game: HJB

HJB system

$$\begin{cases} \min_{(\mathbf{x}^i, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_+^N} \left\{ -\alpha \mathbf{v}^i + \mathbf{h} + \frac{1}{2} \sum_{j=1}^N \mathbf{v}_{\mathbf{x}^j \mathbf{x}^j}^i, -\sum_{j=1}^N \frac{a_{ij} \mathbf{y}^j}{\sum_{j=1}^N a_{ij} \mathbf{y}^j} \mathbf{v}_{\mathbf{y}^j}^i + \mathbf{v}_{\mathbf{x}^i}^i, \\ -\sum_{j=1}^N \frac{a_{ij} \mathbf{y}^j}{\sum_{j=1}^N a_{ij} \mathbf{y}^j} \mathbf{v}_{\mathbf{y}^i}^i - \mathbf{v}_{\mathbf{x}^i}^i \right\} = 0, \\ \text{for } (\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times \mathbb{R}_+^N \left\{ -\sum_{k=1}^N \frac{a_{jk} \mathbf{y}^k}{\sum_{s=1}^N a_{js} \mathbf{y}^s} \mathbf{v}_{\mathbf{y}^i}^i + \mathbf{v}_{\mathbf{x}^i}^i, \\ -\sum_{k=1}^N \frac{a_{jk} \mathbf{y}^k}{\sum_{s=1}^N a_{js} \mathbf{y}^s} \mathbf{v}_{\mathbf{y}^k}^i - \mathbf{v}_{\mathbf{x}^j}^i \right\} = 0, \\ \mathcal{A}_i \cap \mathcal{A}_i = \emptyset. \end{cases}$$

Sharing Game: Game Value

Game value of sharing(Guo, Tang & X. (2018))

$$v^{i}(\mathbf{x}, y) = \begin{cases} p_{N}(\widetilde{x}^{i}) + A_{N}(y) \cosh(\widetilde{x}^{i} \sqrt{\frac{2(N-1)\alpha}{N}}) & \text{in } \mathcal{W}_{i} \\ v^{i} \left(\mathbf{x}^{-i}, x_{+}^{i} + \frac{\sum_{k \neq i} x^{k}}{N-1}, f_{N}(x_{+}^{i})\right) & \text{in } \mathcal{A}_{i}^{+} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-i}, \frac{\sum_{k \neq i} x^{k}}{N-1} - x_{-}^{i}, f_{N}(x_{-}^{i})\right) & \text{in } \mathcal{A}_{i}^{-} \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, x_{+}^{j} + \frac{\sum_{k \neq j} x^{k}}{N-1}, f_{N}(x_{+}^{j})\right) & \text{in } \mathcal{A}_{j}^{+}, j \neq i \end{cases}$$

$$v^{i} \left(\mathbf{x}^{-j}, \frac{\sum_{k \neq j} x^{k}}{N-1} - x_{-}^{j}, f_{N}(x_{-}^{j})\right) & \text{in } \mathcal{A}_{j}^{-}, j \neq i \end{cases}$$

- $\widetilde{x}^i = x^i \frac{\sum_{j \neq i} x^j}{N-1}$, x^i_{\pm} : unique positive root of $z \mp f_N(z) = \widetilde{x}^i \mp \sum_{j=1}^N a_{ij} y^j$
- $f_N(\cdot)$: threshold function

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- Discussion

Game Comparison: NE Strategies

(c) Sharing

Comparison: Game Values

Proposition (Game value comparison (Guo & Tang and X. 2018))

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^N \times \mathbb{R}_+^N$$
, when $y = \sum_{j=1}^N y^j$, $(\mathbf{x}, y) \in \mathcal{W}_i^{pool}$, and $(\mathbf{x}, \mathbf{y}) \in \mathcal{W}_i^{share} \cap \mathcal{W}_i^{divide}$, for each $i = 1, 2, \dots, N$,

$$v_{pool}^{i}(\mathbf{x}, y) \leq v_{share}^{i}(\mathbf{x}, y) \leq v_{divide}^{i}(\mathbf{x}, \mathbf{y}).$$

- Sharing has lower cost than playing selfishly
- Among all sharing strategies, pooling provides the lowest cost

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

Controlled Rank-dependent SDEs

Controlled rank-dependent SDE (Guo, Tang & X. (2018))

$$dX_{t}^{i} = \sum_{j=1}^{N} 1_{F^{i}(\mathbf{X}_{t}, \mathbf{Y}_{t}) = F^{(j)}(\mathbf{X}_{t}, \mathbf{Y}_{t})} \left(b_{j} dt + \sigma_{j} dB_{t}^{j} + \lambda^{j,+} d\xi_{t}^{j,+} - \lambda^{j,-} d\xi_{t}^{j,-} \right)$$

$$Y_{t}^{i} = Y_{0}^{i} - \xi_{t}^{i,+} - \xi_{t}^{i,-} \quad \text{for } 1 < i < N$$

- Pooling game: $F^i(\mathbf{x}, \mathbf{y}) = |x_i \frac{\sum_{j \neq i} x_j}{N-1}|$
- Dividing game: $F^i(\mathbf{x}, \mathbf{y}) = |x_i \frac{\sum_{j \neq i} x_j}{N-1} f_N^{-1}(y^i)|$
- Sharing game: $F^{i}(\mathbf{x}, \mathbf{y}) = |x_{i} \frac{\sum_{j \neq i} x_{j}}{N-1} f_{N}^{-1}(\sum_{i=1}^{j} a_{ij}y^{j})|$
- $F^{(1)} \leq \ldots \leq F^{(N)}$: the order statistics of $(F^i)_{1 \leq i \leq N}$

Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

$$dX_{t}^{i} = \sum_{j=1}^{N} 1_{F^{i}(\mathbf{X}_{t}, \mathbf{Y}_{t}) = F^{(j)}(\mathbf{X}_{t}, \mathbf{Y}_{t})} \left(b_{j} dt + \sigma_{j} dB_{t}^{j} + \lambda^{j,+} d\xi_{t}^{j,+} - \lambda^{j,-} d\xi_{t}^{j,-} \right)$$

$$Y_{t}^{i} = Y_{0}^{i} - \xi_{t}^{i,+} - \xi_{t}^{i,-} \quad \text{for } 1 \leq i \leq N$$

- \bullet F^i : rank function depends on both X and Y
- $F^{(1)} \leq \ldots \leq F^{(N)}$: the order statistics of $(F^i)_{1 \leq i \leq N}$
- $b_i \in \mathbb{R}$, $\sigma_i \geq 0$
- $(\xi^{i,+},\xi^{i,-})$: the controls

Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

$$dX_{t}^{i} = \sum_{j=1}^{N} 1_{F^{i}(\mathbf{X}_{t},\mathbf{Y}_{t})=F^{(j)}(\mathbf{X}_{t},\mathbf{Y}_{t})} \left(\delta_{j}dt + \sigma_{j}dB_{t}^{j} + d\xi_{t}^{j,+} - d\xi_{t}^{j,-} \right)$$

$$Y_{t}^{i} = Y_{0}^{i} - \xi_{t}^{i,+} - \xi_{t}^{i,-} \quad \text{for } 1 \leq i \leq N$$

- $F^{i}(X_{t}, Y_{t}) = x^{i}$ and $\lambda^{i,+} = \lambda^{i,-} = 0$: rank-dependent SDE
 - "Up the River problem": Aldous (2002)
 - Stochastic portfolio: Fernholz (2002)
 - Atlas model ($\delta^1 = 1$, $\delta^2 = \cdots = \delta^N = 0$): Banner, Fernholz and Karatzas (2005), Ichiba, Karatzas and Shkolnikov (2013), Pal and Pitman (2008), Cabezas, Dembo and Sarantsev (2017), Tang and Tsai (2018)

Table of Contents

- Game Set-up
- 2 Different Games
 - Pooling Game
 - Dividing Game
 - Sharing Game
- 3 Connections
 - Game Comparison
 - Connection to Rank-dependent SDEs
- 4 Discussion

No Resource Alocation Constraint

- Single agent (fuel follower): Beneš, Shepp and Witsenhausen (1980), Karatzas (1983), Bayraktar (2007)
- Stochastic games:
 - NE with finite players and MFG: Guo & X. (2018)
 - Pareto optimality: Guo & X. (2018)

Thank you!

References

Al Motairi, H. and Zervos, M. (2017). Irreversible capital accumulation with economic impact.

Applied Mathematics & Optimization, 75(3), pp.525-551.

Aldous D (2002). "Up the River" game story.

http://www.stat.berkeley.edu/aldous/Research/OP/river.pdf.

Banner, A.D., Fernholz, R. and Karatzas, I. (2005).

Atlas models of equity markets.

The Annals of Applied Probability, 15(4), pp.2296-2330...

Beneš, V.E. and Shepp, L.A. and Witsenhausen, H.S. (1980).

Some solvable stochastic control problemst.

Stochastics: An International Journal of Probability and Stochastic Processes 4.1 (1980): 39-83.

Cabezas, M., Dembo, A., Sarantvev, A. and Sidoravicius, V., (2017). Brownian particles with rank-dependent drifts: out-of-equilibrium behavior. arXiv preprint arXiv:1708.01918.

References

Dai, M. and Yi, F (2009).

Finite-horizon optimal investment with transaction costs: a parabolic double obstacle problem.

Journal of Differential Equations, 246(4), pp.1445-1469.

Davis, M.H. and Norman, A.R. (1990).

Portfolio selection with transaction costs.

Mathematics of operations research, 15(4), pp.676-713.

Fernholz, E.R. (2002).

Stochastic portfolio theory.

In Stochastic Portfolio Theory (pp. 1-24). Springer, New York, NY.

Guo, X. and Zervos, M. (2015).

Optimal execution with multiplicative price impact.

SIAM Journal on Financial Mathematics, 6(1), pp.281-306.

Ichiba, T., Karatzas, I. and Shkolnikov, M., (2013).

Strong solutions of stochastic equations with rank-based coefficients.

Probability Theory and Related Fields, 156(1-2), pp.229-248.

References

Kallsen, J. and Muhle-Karbe, J. (2010).

On using shadow prices in portfolio optimization with transaction costs.

The Annals of Applied Probability, 20(4), pp.1341-1358.

Karatzas, I. (1983).

A class of singular stochastic control problems.

Advances in Applied Probability, 15(2), 225-254.

Pal, S. and Pitman, J., (2008).

One-dimensional Brownian particle systems with rank-dependent drifts.

The Annals of Applied Probability, 18(6), pp.2179-2207.

Shreve, S.E. and Soner, H.M. (1994).

Optimal investment and consumption with transaction costs.

The Annals of Applied Probability, pp.609-692.

Tang, W. and Tsai, L.C., (2018).

Optimal surviving strategy for drifted Brownian motions with absorption.

The Annals of Probability, 46(3), pp.1597-1650.

Williams, R.J. (1987).

Reflected Brownian motion with skew symmetric data in a polyhedral domain. Probability Theory and Related Fields, 75(4), pp.459-485.