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Stochastic Game: Set-up

N players in the system
Dynamics of each player /:

dX! = b'(X¢)dt 4+ 0i(X:)dB + debt —dei™, Xi_ =X
Admissibility:

o (&£F,£7) € U),: non-decreasing cadlag, measurability,

adaptiveness, [ e~®*d¢l < oo, where £ = &/t 4 ¢~
o Resource allocation constraint (RAC):
F(&, &)y <c

Objective:

Ji(x,6) =E / e o't [hf(xtl, o XNdt + X’dg“;’]
0
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e Pooling game: SN | Joodéi<y
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@ Sharing game: N players M resources:

o Adjacent matrix: special cases
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Stochastic Game: Choice of RAC

e Pooling game: Z, 1f d§t<y A<y + y?

o Dividing game: [° d§t <y (i=12,---,N)

e Sharing game: N players M resources:
o Adjacent matrix: A = (aj)i<i<n,1<j<m, aj =0or 1
o Resource allocation constraint: (Y},..., YM; t >0)
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Game Set-up

Stochastic Game: Choice of RAC

e Pooling game: "N | Joodél <y, A<yl +y?
o Dividing game: [ d{l <y' (i=1,2,---,N)
@ Sharing game: N players M resources:

° Adjacent matrix: A = (aU)1§;§N71§-§M, ajj = Oorl
o Resource constraint: (Y},...,YM: t >0)

N .
Jo_ ‘ ainsj— déi oo
Yt_y—z 75520, and Yj_ =y

o Well-definedness: ZJM1 aj >1
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Stochastic Game: Set-up

Sharing game

Fooyi€) = E [ e O X+ N
dX; = b’(X )dt +0'(X,)dB, + déit —dei=, X[ =X
. a: YJ o g .
day!; = - g = de&;, Yé_:yl
ZZk 1 /kyk

o £eS(y) = {g: geld, Y >0, v;,j}

°
U:={(ET,67): € and € are FXY _progressively measurable,

cadlag, and non-decreasing, with £ =&, = 0},

@ h': convex, symmetric, 0 < k < " < K, o' > 0: discount factor

10/55



Game Set-up

Stochastic Game: Special Case (N = 1)

@ Two-dimensional control problem:

o0

vix,y) = inf et [h(X;)dt + \dE,

(x,¥) ¢e5(y) Jo [( t) ft]
dX; = u(Xp)dt +o(X)dB: +d&f —dé;, Xoo = x
dY:y = —d&f —d¢;, Yoo =y

o Partial references:

o Finite fuel problem: Bene$, Shepp & Witsenhausen (1980),
Karatzas (1983), Ma (1993)

o Transaction cost analysis: Davis & Norman (1990), Soner &
Shreve (1994), Dai & Yi (2009), Kallsen & Muhle-Karbe
(2010)

o Optimal execution/price impact: Guo & Zervos (2015),
Motairi & Zervos (2017)
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Game Set-up

Stochastic Game: Measure of Performance

@ Nash Equilibrium: Stability
o Pareto Optimality: Efficiency

Definition (Nash equilibrium)

A tuple of admissible controls £* := (£*,...£N*) is a Markovian
Nash equillibrium strategy (NES) of the N-player game with the
cost functions (JX(x,y;£), ..., V(x,y;£)) if for each
i=1,...,N, and each £ such that (£, ¢') is admissible,

J(x,y;€) < J (%, y; (€77%,€7).

Here the strategies £* and ¢’ are deterministic functions of time t
and X; = (X2,..., XN) with Xo_ = x.

12/55



Game Set-up

Stochastic Game: Different Regions

Definition (Action and waiting regions)
The it" player's action region is
A; = {(x,y) e RV x R : d¢’(x,y) # 0},

and the waiting region is W, := (RN x RM)\ A;.

e W_; :=N;xW,: common waiting region other than player /
@ Wye: common waiting region of all players
° Wre(y) == {x e R : (x,y) € Wne}

13 /55



Game Set-up

Stochastic Game: Free Boundary Problem

Boundary?

Action 1 Action 2

Equation 1 Equation 2

14 /55
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Foreachi=1,...,N, if ™" ¢ U satisfies the following conditions, then
&* is an NES with game value v'(-) = J'(-;£*).

(1) AinA; =0 fori#j,

(2) & :=(g",...,6") € S(y),

(3) V() satisfies the HJB equation

M .
. . . ETv . .
min {—av’—l—h’—i—ﬁv’,— E __ Ay + v,

3 M k )’j X
(<) ERXRY ' = D k=1 AikY
aiij . .
— E WV}’M — V)’(,' = 0, for (X,y) € Wfi,
i— —1 9iky
j=1 k=1 I
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Foreachi=1,...,N, if ™" ¢ U satisfies the following conditions, then
&* is an NES with game value v'(-) = J'(-;£*).

(1) AinA; =0 fori#j,

(2) & :=(g",...,6") € S(y),

(3) V() satisfies the HJB equation

M .
. . . ETv . .
min {—av’—l—h’—i—ﬁv’,— E __ Ay + v,

3 M k )’j X
(<) ERXRY ' = D k=1 AikY
a’-ij . .
— E WV}’M — V)’(,' = 0, for (X,y) € Wfi,
i— —1 9iky
j=1 k=1 I

(4) vi(-) satisfies

M R yk
- 'jk i i
min { = E =M VY + Vi,

i M
M . S
(¥ .y)ERXRY k=1 D oe1 sy

k
ajk ;
J ,y VI

- =V} =0, for (x,y) € A,
o e Asy®



Theorem (Verification Theorem (cont’))

Foreach i=1,...,N, if & € U satisfies the following conditions, then
&* is an NES with game value v'(-) = J'(-;£*).

(5) vi(x,y) satisfies limsupe *TEv/ (X1,Y 1) =0,

T—o0
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Theorem (Verification Theorem (cont’))

Foreach i=1,...,N, if & € U satisfies the following conditions, then
&* is an NES with game value v'(-) = J'(+;£*).
(5) vi(x,y) satisfies limsupe *TEv/ (X1,Y 1) =0,
T—o0
(6) vi(x,y) € C](W_;), and there exists u'(x,y) € C>(RN x RM)
convex such that u'(x,y) = vi(x,y) for all (x,y) € W_;,
(7) Vi, is bounded in W_; for each j =1,2,--- N,

(8) & €U such that (£-*,¢) € S(y),
P((X ™, X!, Y:) eW_;, Vt >0) =1
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We focus on:

1

=== -

(a) Sharing game N = M

1]1(1]1
1]1]1]1
1[1]1]1
11111

(b) Special case: pooling game (c) Special case: dividing game

1

1
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Different Games P)oollng Grame(

ne

Sharin

Pooling: Set-up

Pooling game (on RV x R, )

Ji(x,y;€) = IE/ e th(X] — X;)dt
0

dX] = dBI+deit —deim, X{ =X
N

dv. = =Y d¢ Yoo =y
=1

_ N yi
o X; = # mean position
@ h: convex, symmetric, 0 < k < b < K

@ « > 0: discount factor

o Constraints:
e Zero-borrowing: Y; > 0 for all t a.s.

o No simultaneous jump: P(d¢ide] #£0) =1, #

20 /55



Pooling Game
Divid ame
Shari

Different Games

Pooling: Solution Derivation

Step 1: HJB system for N players

Step 2: Candidate solution of game value
Step 3: NE strategies via

e Skorokhod problem
e Sequential jumps at time 0

21 /55



Pooling Game

Different Games

Dividin e

Shari

Step 1: HJB System

HJB system (on RYN x R)

N
. i 1 i i i
min —Qav +h~|—§ E Viixis —Vy T Vi

(x7,y)ERXR . =1

i i\ _
Vy — Vi =0

in W_;

@ First equation. Player i solves a usual control problem with three

choices

22 /55



Pooling Game

Different Games

Step 1: HJB System

HJB system (on RYN x R)

min {—v}’,—i—v)’d,—v}’,—vﬁd}:O

(,y) ERXR
in Aj,j#i

@ Second equation. If player j intervenes, by the definition of Nash
equilibrium, we expect that player i has no incentive to move
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Different Games Bt

Step 1: HJB System

HJB system (on RYN x R)

A;ﬂAj:[b

@ Third equation. No simultanuous jump
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Different Games Pooling Gamep

Step 1: HJB System

. i i i i i\ _
o yr)glnng —av' + h+ 5 vXJXJ, Vy + Vi, =V, — Vi p =0
), ar

in W_;
min v + v, v —v,;=0
(¥,y)ERXR L { XJ }
in Aj,j#i
AN Aj = 0
@ First equation. Player i solves a usual control problem with three
choices

@ Second equation. If player j intervenes, by the definition of Nash
equilibrium, we expect that player i has no incentive to move

@ Third equation. No simultanuous jump
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Pooling Game

Different Games Divit

Shari

);—2 + é + A1(y) cosh(xv2a) if |x| < ffl(y)
v(x.y) = V(% A(xs)) if x> (y)
v(x_, fi(x-)) if x<—f'(y)

15 action region action region

>
o 45°
05 waiting region
ool N\ e
-2 -1 0 1 2

! Benes, Shepp and Witsenhausen (1980)
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Different Games P)oollng Grame(

Div ne
Sharin

Step 2: Game Value (Special Case N = 1)?

v(x,y) = v(xi. fi(xp)) if x>y
v(x_, fi(x_)) if x<—f (y)

25

2.0

15 action region

1.0 45°

0.5

0.0

! Benes, Shepp and Witsenhausen (1980)

23 /55



Pooling Game
Dividing Game
Sharing Game

Different Games

Step 2: Boundary of Free Boundary Problem

Figure: Wne(y) when N =3

24 /55



Pooling Game
Dividing Game
Shari

Different Games

Step 2: Candidate Game Value

Candidate game value (Guo, Tang & X. (2018))

pn(X") 4+ An(y) cosh(X’ 2('\’—&1&) in Wi

Vi xTxl + Z—,gi%k fu(x) in AF

vi(x,y) = v (x7, Z,\,L_:k —x_, fu(x1) in A
vi (x5 4+ Ze g in Af,j# i
vi(xd, Bl () in AT, j # i

o X =x' —

z,:\;#’ , x!.: unique positive root of zFfy(z) =x' Fy
o fy(-): threshold function

25 /55



Pooli
Divid
Sharing

Different Games

Step 3: NE via Skorokhod

A heuristic description of Skorokhod: Given a domain D with a
vector field v(.) on the boundary 9D, obliquely reflecting Brownian
motion behaves infinitesimally like Brownian motion in the interior.
Every time it hits 0D , there will be a "minimum push” to keep it
within the closure D of the domain and spends zero Lebesgue time
on the boundary.

26 /55



Pooling Game
Dividing Game
Sharing Game

Different Games

Step 3: NE via Skorokhod

Partial references on Skorokhod problem
o Region:
o Smooth region: Lions and Sznitman (1984)
o Polyhedron: Ruth (1987), Dai & Ruth (1996), Dupuis & Ishii
(1991)
o Nonsmooth region: Taska (1992)

o Time-dependent domain: Burdzy, Kang & Ramanan (2007),
Burdzy, Chen & Sylvester (2004)

@ Reflection direction:

o Oblique reflection: Constantini (1991), Burdzy, Chen,
Marshall, Ramanan (2015)

@ Dynamics:

o BSDE: Ma & Zhang (2005)
o Discontinuous dynamic: Ma (1994)

27 /55



Pooli
Divid
Sharir

Different Games

Step 3: NE via Skorokhod

Ingredient 1: common waiting region (unbounded)

Whe(y) = {x e RV : |X'| < ' (y) for 1 < i < N}
1

Fily) = {x € R": o= (=1+ Ney) - x = fiy (y)} N Wae(y)

Fnii(y) ={x eR": o1+ Nei)-x= —f ()} N Whe(y)

Figure: Wne(y) when N =3

28 /55



Pooling Game
Dividing Game
Sharing Game

Different Games

Step 3: NE via Skorokhod

Ingredient 2: reflection direction

¥(x) = —e; on Fi(y)
’Y(X) = é€; on I:;+N(y), = 1727"' 7N

Figure: Reflection direction when N =3

29 /55



Different Games Pooling Gramer
Dividir ne

Sharing

Step 3: NE via Skorokhod

Ingredient 1: common waiting region (unbounded)

Whe(y) = {x e RV : [X'| < £ (y) for 1 < i < N}
1 -
Fily) = x e RY: 7 (=14 Nei) - x = (1)} N Wae(y)

Frusi(y) = {x e RY : m—— (=14 Nej) - x = —fi (y)} N Wae(y)

=
||+~
—

Ingredient 2: reflection direction

¥(x) = —e; on Fi(y)
’Y(X):e,' on Fi+N(y)1 ,:1727 7N

Ingredient 3: dynamic without control
Xt = BZ‘

30/55



Different Games Poolmg)Game“

Step 3: NE via Skorokhod

Lemma (Skorokhod solution given y)
For fixed y > 0, there exists a reflected process
R,(t) = (RL(t),..., R)(t)) with R,(0) = x € Wne(y) such that
Ri(t) = x"+ B(t) + nj(t) — n,™M(t) € Whe(y) for1<i<N,
where (j =1,2,--- ,2N)
o (1 (t); t > 0) is the local time process on the boundary
® 1), increases only at times t such that Ri(t) € Fi(y)

Key idea:

@ Skew symmetry condition for bounded polyhedron in Ruth
Williams (1987)

@ Localization argument

31/55



Pooling Game
Dividing Game
Sharing Game

Different Games

Step 3: NE via Skorokhod

Wi (Yr,)

Wne(Yr)

Figure: Pooling: evolving domain when N =3
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Pooling Game
Dividing Game
Shari

Different Games

Step 3: NE via Skorokhod

Theorem (Skorokhod solution (Guo, Tang & X. 2018))
Inductively, for k > 2, let

Tk := inf {t >T7k-1: Ry, (t—7k1) € 3WNE(YTk,1)} ,
where Ry, _ is a copy of the reflected process in Wye(Yx, ), starting

at X,,_, and driven by B, = (B}, ...,BY). Then we have for
Tk—1 < t < 7,
i+N

X =X 4+ Bi(t—Ti1)+ n';/Tkil(t —Tk-1) =y, (t—Tk1),

Th—1 q

and ) N
Yo=Y, —ny,  (t—7-1) —ny " (t—7i1)

1

are the NE strategies.
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Pooling Game

Different Games Bt

Step 3: Sequential Jumps at Time 0

A; is defined in the way
o Player who is furtherest away controls

o Player with the largest index will control if ties occur

34 /55
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Different Games

Dividing Game: Set-up

Dividing game
Ji(x,y;6) = E / e “th(X] — X;)dt
0

dX! = dBj+d&" —dem, X =
dyi = —dél, Yo =y

_ Ny
o X; = # mean position

@ h: convex, symmetric, 0 < k < b < K
@ « > 0: discount factor

e Constraints: _
o Zero-borrowing: Y/ >0 for all t a.s. and i

o No simultaneous jump: P(dSidel £0)=1,i#]

36 /55



Pooling Game
Dividing Game
Sharing Game

Different Games

Dividing Game: HJB System

Dividing: HJB system

N
oo, {01453 i~} =0
for (x,y) € W_;,
min(Xijj)eRXR*_ { v + vXj, yj — v)’;j} =0,
for (x,y) € Aj,j # i,

A;ﬂAjZ@.

Pooling: HJB system

N
) 1 ) . )
min {—av’—l—h—i—i E Vigisd» —Vy + Vyi, — vy—v }:0,

(x7,y)ERXR =
for (x,y) € W_;,
mln(Xj y)ERXR, { v +v XJ,—V — V) } =0,
for (x,y) € Aj,j #1i,
AinN .Aj = 0. 37/55



Pooling Game
Dividing Game
Sharing Game

Different Games

Dividing Game: NE Strategies

I (v
— WYL

e Wre(¥r) -
e A(Y))
Ve, %

Wye(Yr,)

Fy(Y})

Fi(Y)

(a) Pooling (b) Dividing

Figure: Comparison of NE Strategies when N =3

38 /55



Different Games

ne
Sharing Game

Table of Contents

© Game Set-up

© Different Games

@ Sharing Game

© Connections

@ Discussion

39 /55



Different Games .
Sharing Game

Sharing Game: Set-up

Sharing game

J(x,y;6) = E /0 e “th(X] — X;)dt
dX{ = dB" +d&t - del, X§ =x
. a:Y! o , .
dyl o o JItt— dgj7 Y’_ — yl
' Z Zk 1 3k Y ‘

o X; = Zk 1 £: mean position
: convex, symmetric, 0 < k < h' < K

e h:
@ o > 0: discount factor
o C

onstraints:
o Zero-borrowing: Y/ >0 for all t a.s. and i

o No simultaneous jump: P(d¢idél #0)=1,i#

40 /55



Different Games

Sharlng Game

Sharing Game: HJB

N N ]
min { — OéV’ + h + 5 E V)’(jxj’ — E %V}Iﬂ' + V)’(,‘,

i N ..
(x,y)ERXRY = = Zj:l ajy!
N gyl i
ZJ:]_ ZJN:1 pRY: Vy VX; = 07
for (x,y) € W_;,

MiN( y)eRxRY { Tl Eajkl}; s Vi + v
o Za,ky Vie— v)’;j} —0
for (x y) € Aj,j#i,

A,‘ﬂ.Aj:[Z).
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Different Games

Sharing Game

Sharing Game: Game Value

pN()?i)—I—AN( ) cosh(xy/ 21y iy,
vi (xi X+ Ze () in AF
vilx,y) = vi(x, E,G%X —xL, fu(xD) in A~
i i X" j : oy
v XJ + S v Xt Ajﬁ]#’
Vi *J Z“#_X/ f'N(XJ) in AJ_,J#I
o X' =x"— X,:\;#’ , xh: umque positive root of

zFfy(z) =X F Zj:1 ajy’
@ fy(-): threshold function
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Game Comparison
Connections Connection to Rank-dependent SDEs

Game Comparison: NE Strategies

(a) Pooling (b) dividing (c) Sharing

44 /55



Game Comparison
Connections Connection to Rank-dependent SDEs

Comparison: Game Values

Proposition (Game value comparison (Guo & Tang and X. 2018) )

V(Xa}’) S RN x R_IX, when y = ZJ,V:]_ yJ" (X,y) c W,POOI, and
(X,y) c Wishare N W,-Cﬁ"ider foreachi=1,2,--- N,

Vpl;ool(x7}/) < Vsihare(x7y) < Vcilivide(xﬂy)'

@ Sharing has lower cost than playing selfishly

@ Among all sharing strategies, pooling provides the lowest cost
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Controlled Rank-dependent SDEs

Controlled rank-dependent SDE (Guo, Tang & X. (2018))

N
X = D Leix, vamropc, vy (bidt + ojdBL+ N el — ¥ delT)
j=1
Yi = Yj-gT-&™ forl<i<N
H . i _ Zj#ij
@ Pooling game: F'(x,y) = |xi — S#+

@ Dividing game: Fi(x,y) = |x; — % — ')
@ Sharing game: Fi(x,y) = |x; — M RO PN

o FU < ... < FN): the order statistics of (F')1<j<n
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Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

N
X = Y Lpix.v -y (bjdt +0;dBl + X depT — /\j”dﬁi’_)
j=1
Y] = Yj-&t - for1<i<N

@ F': rank function depends on both X and Y

o F() < ... < FIN): the order statistics of (F')ij<i<n
bieR,0;>0
(&F,€57): the controls
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Controlled Rank-dependent SDEs

Controlled rank-dependent SDEs

N
dXE = 3 Lrux,vo—rox,v, (0jdt + oydBl + del™ — dél™)
=1
Yi = Y-t -& forl<i<N

@ FI(X:,Y:)=x"and A'* = A"~ = 0: rank-dependent SDE

e “Up the River problem”: Aldous (2002)

o Stochastic portfolio: Fernholz (2002)

o Atlas model (¢! =1, 6% = --- = §N = 0): Banner, Fernholz
and Karatzas (2005), Ichiba, Karatzas and Shkolnikov (2013),
Pal and Pitman (2008), Cabezas, Dembo and Sarantsev
(2017), Tang and Tsai (2018)
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No Resource Alocation Constraint

e Single agent (fuel follower): Benes, Shepp and
Witsenhausen (1980), Karatzas (1983), Bayraktar (2007)
@ Stochastic games:

o NE with finite players and MFG: Guo & X. (2018)
o Pareto optimality: Guo & X. (2018)
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