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Outline of the Talk

Motivation: Sub-Riemannian Structure <> Math Finance.
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Motivation of the talk.



Motivation |: Greek evaluation with Malliavin calculus
For Black-Scholes model: dS) = rS}dt + 0S5;dB; (GBM).
Consider the European option with payoff function: ¢ = f(S7).
The option price is: Vo = EQ(e~"Tf(S7)).

The Delta is: A := 9% = VE(e T f(S7))

05
% _ 7rT ! dST _ frT ST
V&E 1.B.P
E(f'(F)G) = E(f(F)H(F, G)). H(H. G) = (Gh:(D,F)™")
DS —/TDS dt = o5, T, BT _5T 5(1)=B
T — 0 toT =oorl, dSo - 507 — DT
e—rT
A= SOJTE(f(ST)BT) = Monte Carlo.

Elliptic case (BS): Fournié-Lasry-Lebuchoux-Lions-Touzi, 99', 01’
Finance and Stochastics.
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777 dXF = b(XX)dt + > oi(X) o dBl, XX € R [o1,00] =
i=1

0



Motivation |I: More application with Malliavin calculus

Integration by parts formula <> Clark-Ocone formula.

T
F=E[F]+ | EIDFIF]dW(0
0
F=1f(Xy, - ,Xt,), what if X; is the solution of the Purple SDE.?

Application of Clark-Ocone formula.

» Karatzas-Ocone-Li, 1991. extension of Clark-Ocone formula.

» Karatzas-Ocone, 1991. Optimal portfolio.

d

what about? dX} = b(X})dt + > oi(X)odB{, X;€E€R".
i=1

Span{al, o, 0d, [O-I'vo-j]a [O-I'7 [ T [Uj7 Uk]]]} = ]Rn‘

d < n.



Motivation IlI: large deviation principle (variational
representation)

Variational representation: Boué-Dupuis, 98'. Ann. Prob.

1t '
—logEe W) = infE{z/ | vs||2ds + f(W+/ vsds)}
v 0 0

Replace W with X = we have LDP, explicit rate function obtained.



Motivation IlI: large deviation principle (variational
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Variational representation: Boué-Dupuis, 98'. Ann. Prob.

1/t '
—logEe fW) = infE{E/ | vs||2ds + f(W—i—/ vsds)}
v 0 0

Replace W with X = we have LDP, explicit rate function obtained.

Idea of the proof

» Girsanov theorem
> Relative entropy function.
» what about the soluiton to Purple SDE? i.e. hypoelliptic.

» Ben Arous-Deuschel 94" CPAM.(Hypoelliptic).
Baxendale-Strook, 88" PTRF. (manifold)

» Deuschel-Friz-Jacquier-Violante, 13’, 14" CPAM. Stochastic
Volatility, hypoelliptic.



sub-Riemannian Geometry.



What is a foliation?

Course description from IHP (07') for Steven Hurder

A foliation is like an onion: you just peel space back layer by layer
to see what's there. The word foliation is related to the French
term feuilletage as in the very tasty pastry mille feuilles.




Riemannian submersion

Definition

A smooth surjective map 7 : (M, g) — (B, ) is called a
Riemannian submersion if its derivative maps Tyw : T,M — T,B
are orthogonal projections, i.e. for every x € M, the map
(To)m) T ™ & Tpx)B — Tpx)B is the identity. A Riemannian
submersion is said to have totally geodesic fibers if fore every
b € B, the set 7~1(b) is a totally geodesic submanifold of M.

M '(b)




Totally geodesic foliations.
In general, for a manifold M"*™ we can have m-dimensional
totally geodesic leaves and n-dimensional horizontal direction. The
sub-Riemannian structure is (g3, H)

Hopf fibration U(1) — §?*1 — CP".

» Riemannian submersion, 7 : M"*™ — B”.

» K-contact manifold, foliated by Reeb vector field.

» Sasakian manifold

| 4

>

v

Generalized Hopf fibration.

73 Vertical Direction

@)

="

Figure: Hopf fibration: Wikipedia




Brownian motion on totally geodesic
foliations.



Construction of BM on a Riemannian manifold.
Isometry u: (R™™ (. )) = (TxM, g): e — u(e;)
Orthonormal frame bundle O(M) = UyepmO(M)y.

Canonical projection 7 : O(M) — M with 7u = x.
Horizontal lift 7, : H,O(M) — T,M, m.H;(x, u) = u(e;).

vy v vy

V direction

Figure: Rolling without slipping by B. K. Driver



Construction of horizontal Brownian motion on foliations.

n+m
dUs = Y Hi(Ut) 0 dB], Up = (x,u) € O(M), with u = x
i=1
7(U¢) = X¢: a Brownian motion on Riemannian manifold M. An
isometry u : (R™™ (. -)) — (TxM], g) will be called horizontal if
u(R" x {0}) C Hy;  u({0} xR™) C V.
e, - ,en f1, -+, fm canonical basis of R"™
u(er), - ,u(en),u(fr), -, u(fy) basis for TM.
Aty S AR Vi, Vi o lift of u(e), u(fi) on TO(M).
Horizontal frame bundle: Oy(M).

v

v

v

v

v

dUs = > Ai(Ug) o dB], Uy € Oy(M),
i=1

W; = m(U;) is a horizontal Brownian motion on foliation M.



Construction of horizontal BM on Heisenberg group: |.

t t
B — (B B2, (| Bl,d6? - [ E2,d6})
p—> " dBy=XodBl+ Y odB?
“ X =0y — -y,
& | e
Y = 8}/ + EX(?Z

o1 =X, 02 =Y and [01,02] = 0102 — 0202 = O,. Purple SDE.



Construction of horizontal BM on Heisenberg group: Il.




Horizontal BM on Totally geodesic foliations. (Hopf
fibration)

—if
Xe= ——(w(t),1), (Baudoin-Wang, PTRF17’)

VIt ()P

23 Vertical Direction

G st
' Horizontal Direction
;A

. Figure: Hopf fibration: Wikipedia




Quasi-invariance of Horizontal
Wiener Measure.



General idea of quasi-invariance of Wiener measure

Let 1 be the Wiener measure on the path space W, and
T : W — W a transformation of W. The image measure pr is
defined by

pr(B)=pu(T*B)

In general, the transformation T can be represented as a flow, and
the flow is generated by a vector field Z on the path space W.

dUZ (x)

£ = Z(UF (). UG = x

If (U#)«p and 1 are mutually absolutely continuous, we say i is
quasi-invariant under Z.
Radon-Nikodym derivative: d(U#).u/du="?



Quasi-invariance of Wiener measure: progress

» R.H Cameron, W.T Martin, C-M Thm Ann. of Math. 1944.
I.V Girsanov Girsanov Thm Theory Probab. Appl, 1960.
L Gross Hilbert space Trans. AMS, 94 (1960).

» Bruce K. Driver Compact Riemannian manifold for C C-M
functions. JFA, (1992), pp. 272-376

» B.K Driver For pinned Brownian motion Trans. AMS 1994.

» Elton. P. Hsu Compact Riemannian manifold for all C-M
paths. JFA (1995).

> Bruce K. Driver Heat kernel measures on loop groups, JFA
(1997).

» E. P. Hsu Noncompact case JFA (2002).

» E. P. Hsu, C. Ouyang, complete case. JFA (2009).

» heat kernel measure and finite dimensional approximation

v

v

» F. Baudoin, M. Gordina and T. Melcher, heat kernel measures
on infinite-dimensional Heisenberg groups. (Trans. AMS 13").



Cameron-Martin Theorem

Theorem (CM Thm: we have U?(x) = x + tZ.)

Let i denote the Wiener measure on the path space
W = Co([0,1],R"). Let h = (hy,--- , h,) be a path in L2[0,1] and
define the translation T : R” — R" by

T(w)=w +/ hds,
0

w—>(w1+/ hlds,-‘-,wn#—/ hnds)
0 0

Then pt is absolutely continuous w.r.t. i and

dMT ) = exp Z/ s)dwi(s Z/ h2 )ds)



Cameron-Martin Theorem and horizontal Wiener measure.

‘s 5
i;a h(x) “:;;
-y = th
x(s) —1? —::l X{S}“' (5]
> -
R > S
A £ A

.
H={hc W(R")|his a.c. and h(0) =0, / |H (s)?ds < oo}
0

(Wt)o<e<1 is the horizontal Brownian motion and the law pwy
of W; on M will be referred to as the horizontal Wiener measure
on M. Therefore, pyy is a probability measure on the space

Cy, (M) of continuous paths w : [0,1] — M, w(0) = xo.



Quasi-invariance of Wiener measure on a Riemannian
manifold.

> ux: Wiener measure on W/(M).
> //;: stochastic parallel translation along X, //, : .M — Tx,M.

v € W(M) IS W(M) > ¢ty Not Diagram Proof
d d
w e Wp (R") LGN Wo (R") 3 €tw For Presentation Only!

Ct’}/:IOStwOI_l

d¢ty
dt

= Z(¢'y) whatis Z?



Quasi-invariance of Wiener measure on Riemannian
manifolds.

Theorem (B. Driver 1992, E.P. Hsu 1995 )

Let h € H(T, M), and Z" be the j1x — a.e. well defined vector field
on W (M) given by

Z{(v) = Jls{()hs, for s € [0,1]

Then Z" admits a flow 2" on W(M) and the Wiener measure
lx is quasi-invariant under the this flow.

i glephis)=XYa)

Figure: From: Bruce K. Driver, Curved Wiener Space Analysis



Quasi-invariance on compact foliated manifolds.

Theorem (Baudoin,F. and Gordina, 2017 )
Let h € CMy(R™™). Consider the }-a.e. defined process given
by

t
vi(w) = h(t) +/0 Tr, (), (Ao dwlt, Ah(s)).

martingale part in vertical direction.
and Z" be the u% — a.e. well defined vector field on W (M"+™)
given by
Z{(v) = O fors € [0,1]
Then Z" admits a flow e2" on W(M"+™) and the horizontal
Wiener measure ,u% is quasi-invariant under this flow.



Outline of the proof

>

Recall that: (fy =Z o &fwoZ71: Wy (M) — Wy (M), is
generated by D, := Directional Derivative.

> Ehw =W+ [T po(E)(w))dA.
> py(t):= I A

VH(t) + b fo mlc'H)Us(AVH( ) -1 fot JVv(s)(Ade{)Us
+ [t <f0 5, (Ao dw, Av(7) + Vv( ))) dw?t.

For every f|xed t € R, the law P¢: of ¢! is equivalent to the
horizontal Wiener measure Px with Radon-Nikodym
derivative :

dpct dPgt 1
r = “(Z Wa (M).
T (W)= L), w e Wi(b)

dP.: T 1 /7
& (W) = exp / al(¢tw) dwl — = / |ab(¢tw)[?ds | -
dPy 0 2 Jo

where af = v},t + [ c(€))d\ + [ b(€})ardA,



Quasi-invariance on foliated manifold: example

No Diagram Proof At All. For Presentation Only!

v e Wwrtmy POy ygatmy 5 ¢ty  Pa(y) = et
I] 4

o € W(B") S EN W(B") 3 nto , Br(c) = etls(@)hs
z] 1|

we Wo (R7) 20, W (&) 5 gt pn(w) =w+ th

Heisenberg group : v/(B) = (hy(s), hz(s),/ hl(T)dB,E—/ hy(7)dBY).
0 0

Hopf fibration : v/ = (hy(s), ha(s), / ((82)*R)(JBE h(T), ©0dB;, ) ).
0



Quasi-invariance of horizontal Wiener measure on
Heisenberg group.

Ph(w)e

n

—we + (h(t), > R (W = K (t)wi+

i=1

/o t(hi(s) +2w/)dh™"(s) — (h+"(s) + 2ws"+")dh"(s)>

Let ,ué’{ be the pushforward of uy under py. The density is
explicitly given by

Iy _ exp i/Th’(s)dwi —:L/T|h’(s)|2 ds
dpy —~Jo 2o R



Clark-Ocone formula and Integration
by Parts formulas.



Various Gradients

Definition
For F = f (wt,, ..., ws,) € FC(C(M))) we define

» Intrinsic gradient (Intrinsic derivative):
DiF = ZI[Ot )05 dif (Wy, -+, W,,), 0<t<1
» Damped gradient (Damped Malliavin derivative):
DiF = Zl[o () i dif (X, -, Xy,), 0<t< 1

» Directional Derivative For an F-adapted, T,M-valued
semimartingale (v(t))o<t<1 with v(0) =0,

D.F=Y" <d,-f(Wt1, W), égv(t,-)>

i=1



Clark-Ocone formula

Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordinal7?
Lete > 0. Let F = (W, -, W,,), f € C=(M). Then

1
F =E«(F) —i—/ (Ex(D; F|Fs),©5dBs).
0



Clark-Ocone formula

Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordinal7?
Lete > 0. Let F = (W, -, W,,), f € C=(M). Then

1
F =E«(F) +/ (Ex(D; F|Fs),©5dBs).
0

Gradient Representation.
Let F = f(Wy, -, W) € FC®(C(M)). We have

n
dEx(F) = Ex (ZT;d,’f(th,' cr th)> .
i=1

Baudoin 14, sub-Rie transverse symmetry dP:f(x) = E(r; df (X))



Integration by parts formula for the damped gradient

Theorem (Baudoin-F.15, Baudoin-F.-Gordinal7)
Suppose F € FC*® (Cx(M)) and v € CMy (M, Q), then

. ([ BF0(snes) =5 (F [ /908w ) . @)

Definition

An Fi-adapted absolutely continuous H-valued process
(7(£))o<<1 such that 4(0) = 0 and E, (fol ||7'(t)||;dt) < o0 wil
be called a horizontal Cameron-Martin process. The space of
horizontal Cameron-Martin processes will be denoted by

C M3 (M, Q).

Recall the Cameron-Martin space.

)
H = {h e W(R"|his ac. and h(0) = 0, / I (s)Pds < oo}
0



Integration by parts formula for directional derivative

Theorem (Baudoin-F.-Gordinal7)
Suppose F € FC*® (C(M)) and v € TWy(M, Q), then

E.(D,F) = E, (F/Ol <V7’_L(t) + %(éi)*lmicﬁéivﬂ(t), dBt>H> .

Definition
An Fi-adapted T M-valued continuous semimartingale
(v(t))o<r<1 such that v(0) = 0 and E, (fo Iv( y2dt) < oo will

be called a tangent process if the process

v(t) - /0 (62) 1T (85 o dB., 6(s))

is a horizontal Cameron-Martin process. The space of tangent
processes will be denoted by TWjy (M, Q).



Functional inequalities.



Functional inequalities

Theorem (Baudoin-F,15',)

For every cylindric function G € FC* (C,(M)) we have the
following log-Sobolev inequality.

.
E,(G2In G2) — Ex(G2) InEx(G2) < 2e3TK+5)E, (/ ||D§G||§ds> ,
0



Functional inequalities

Theorem (Baudoin-F,15',)

For every cylindric function G € FC* (C,(M)) we have the
following log-Sobolev inequality.

.
E,(G2In G2) — Ex(G2) InEx(G2) < 2e3TK+5)E, (/ ||D§G||§ds> ,
0

Yang-Mills conditiondy T(-) = > .71 Vx, T(X;,-) =0
Theorem (Baudoin-F,15',)

» Improved Log-Sobolev inequality

» Equivalent conditions: two-sided uniform Ricci curvature
bound <+ Log-Sobolev inequality <+ Poincare inequality <>
gradient estimates.



Concentration inequalities.
we denote by d. the distance associated with g.

Proposition ( Baudoin-F 15', under curvature bounds )
Let e > 0. We have forevery T >0 and r >0

—r2
+r] <exp (H>
2Te(K+;)T

1
= |lim su InP, | sup do(Xe,x)2>r )| < ——F——~=
Hgor <0§t£T H(Xe,x) > 2 Te(K+5)T

Proposition (Baudoin-F 15’, K=0 and bounds.)

sup_ d(X;, %)

Px ( sup da(Xtyx) Z Ex
0<t<T

0<t<T

1
lim sup L — InPy ( sup d(Xi, x) > r) < ——=

rostoo 12 0<t<T

D
lim inf 1 InPy ( sup d(Xi, x) > r) > -,

r——+ oor2 OStST



Future

work and applicaitons.

Compact = complete;
Rough paths proof of Picard iteration;

Path space on sub-Riemannian manifold = Loop space on
sub-Riemannian manifold;

Totally geodesic foliations = non totally geodesic foliations;

Ricci flow on totally geodesic foliations, F. 17', 18"
differential Harnack inequalities, monotonicity formulas.

Stochastic Ricci flow and random matrices.

Characterization of Ricci flow using Path space and
Wasserstein space on sub-Riemannian manifolds.



Future work and applicaitons.

» Compact = complete;
» Rough paths proof of Picard iteration;

» Path space on sub-Riemannian manifold = Loop space on
sub-Riemannian manifold;

» Totally geodesic foliations = non totally geodesic foliations;

> Ricci flow on totally geodesic foliations, F. 17', 18".
differential Harnack inequalities, monotonicity formulas.

» Stochastic Ricci flow and random matrices.

» Characterization of Ricci flow using Path space and
Wasserstein space on sub-Riemannian manifolds.

» Quasi-invariance of horizontal Wiener measure. Girsanov Thm

> Is there any finance model that satisfies a Heisenberg group
type stochastic differential equation? control problem.

» LDP, SV model, Malliavin calculus application.
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Thanks for your attention!



Technical part: various connections.
Bott connection

mu(VRY), X, Y € (),
m([X, Y]), X € T(V), Y € T(H),
(X, Y]), X € T(H), Y € T*°(V),
m(VRY), X, Y € r=(V),

VxY =

i

Isomorphism
gu(Jz(X),Y)x =gv(Z, T(X,Y))x, Z € T(V),X,Y € *°(H)
Damped connection
VY =VxY -T(X,Y)+ éJyX, X,Y e I*°(M).
Adjoint connection of the damped connection

_ 1
VY = VY = T5(X, Y) = VxY + _JxY,



Technical part: Bochner-Weitzenbock identity

0. = (Vo — T (Vi — Th) — 2+ 26T — Ricw,
» Let f € C(g°(M), x € M and € > 0, then
dLf(x) = O.df(x). (Baudoin-Kim-Wang. 16" CGT)
» Consequence
dPif = Qi df, Py = e, Qf =e'™"

» Clark-Ocone formula

-
F :]EX(F)+/ (Ex(DgF|Fs), ©5 sdBs) -
0



Technical part: stochastic parallel translation.

~

©fF : Tx, M — T{M is a solution to
d[67a(Xo)] = O Viax,a(Xe),
i o Ty M — TZMis a solution of
dria(Xt)] (3.2)
c . 1/1, 1 )
= T¢ VOdXt — TOdXt — 5 EJ — E(S’HT + mlCH dt a(Xt),
o =1Id, 77 =M;05.
MG TiM — T;M, t >0, is the solution to ODE

dME 1 1 1 . -
-~ t _ _EMiei <€J2 — g(SHT + 9%1%) (@)1, (3.3)

°=Id.




Technical part: example.

Given a number p, suppose that G(p) is simply a connected
three-dimensional Lie group whose Lie algebra g admits a basis
{X.,Y,Z} satisfying

[X,Y]=2Z, [X,Z] = —pY, [Y,Z] = pX.
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