# Integration by parts and Quasi-invariance of Horizontal Wiener Measure on a foliated compact manifold

Qi Feng

(Based on joint works with Fabrice Baudoin and Maria Gordina)

University of Connecticut

Mathematical Finance Colloquium USC, 04/23/2018

#### Outline of the Talk

- ▶ Motivation: Sub-Riemannian Structure ↔ Math Finance.
  - ► Greek evaluation with Malliavin calculus.
  - Large Deviation Principle. (variational representation)
- ▶ Totally geodesic Riemannian foliations.
- Quasi-invariance of horizontal Wiener measure.
  - General idea.
  - Main theorem.
  - Examples.
- Clark-Ocone formula and Integration by parts formulas.
- Functional inequalities.
- Applications and future work.

## Motivation of the talk.

#### Motivation I: Greek evaluation with Malliavin calculus

For Black-Scholes model:  $dS_t^{\times} = rS_t^{\times} dt + \sigma S_t^{\times} dB_t$  (GBM). Consider the European option with payoff function:  $\phi = f(S_T)$ .

The option price is:  $V_0 = \mathbb{E}^Q(e^{-rT}f(S_T))$ .

The Delta is:  $\Delta := \frac{\partial V_0}{\partial S_0} = \nabla \mathbb{E}(e^{-rT}f(S_T))$ 

$$\frac{\partial V_0}{\partial S_0} \underbrace{=}_{\nabla \leftrightarrow \mathbb{E}} \mathbb{E}(e^{-rT} f'(S_t) \frac{dS_T}{dS_0}) \underbrace{=}_{I.B.P} e^{-rT} \mathbb{E}(f(S_T) \delta(\frac{dS_T}{dS_0} (DS_T)^{-1}))$$

$$\mathbb{E}(f'(F)G) = \mathbb{E}(f(F)H(F,G)), \ H(H,G) = \delta(Gh_t(D_{\gamma}F)^{-1})$$

$$DS_T = \int_0^T D_t S_T dt = \sigma S_T T, \quad \frac{dS_T}{dS_0} = \frac{S_T}{S_0}, \quad \delta(1) = B_T$$

$$\Delta = \frac{e^{-rI}}{S_0 \sigma T} \mathbb{E}(f(S_T)B_T) \Rightarrow \text{Monte Carlo.}$$

Elliptic case (**BS**): Fournié-Lasry-Lebuchoux-Lions-Touzi, 99', 01' Finance and Stochastics.

#### Motivation I: Greek evaluation with Malliavin calculus

For Black-Scholes model:  $dS_t^x = rS_t^x dt + \sigma S_t^x dB_t$  (GBM).

Consider the European option with payoff function:  $\phi = f(S_T)$ .

The option price is:  $V_0 = \mathbb{E}^Q(e^{-rT}f(S_T))$ .

The Delta is:  $\Delta := \frac{\partial V_0}{\partial S_0} = \nabla \mathbb{E}(e^{-rT}f(S_T))$ 

$$\frac{\partial V_0}{\partial S_0} \underbrace{=}_{\nabla \leftrightarrow \mathbb{E}} \mathbb{E}(e^{-rT} f'(S_t) \frac{dS_T}{dS_0}) \underbrace{=}_{I.B.P} e^{-rT} \mathbb{E}(f(S_T) \delta(\frac{dS_T}{dS_0} (DS_T)^{-1}))$$

$$\mathbb{E}(f'(F)G) = \mathbb{E}(f(F)H(F,G)), \ H(H,G) = \delta(Gh_t(D_{\gamma}F)^{-1})$$

$$DS_T = \int_0^T D_t S_T dt = \sigma S_T T, \quad \frac{dS_T}{dS_0} = \frac{S_T}{S_0}, \quad \delta(1) = B_T$$

$$\Delta = \frac{e^{-rT}}{S_0 \sigma T} \mathbb{E}(f(S_T)B_T) \Rightarrow \text{Monte Carlo.}$$

Elliptic case (**BS**): Fournié-Lasry-Lebuchoux-Lions-Touzi, 99', 01' Finance and Stochastics.

??? 
$$dX_t^{\mathsf{x}} = b(X_t^{\mathsf{x}})dt + \sum_{i=1}^2 \sigma_i(X_t^{\mathsf{x}}) \circ dB_t^i, \quad X_t^{\mathsf{x}} \in \mathbb{R}^3, [\sigma_1, \sigma_2] = \frac{\partial}{\partial z}.$$

## Motivation II: More application with Malliavin calculus

Integration by parts formula  $\leftrightarrow$  Clark-Ocone formula.

$$F = \mathbb{E}[F] + \int_0^T \mathbb{E}[D_t F | \mathcal{F}_t] dW(t)$$

 $F = f(X_{t_1}, \dots, X_{t_n})$ , what if  $X_t$  is the solution of the Purple SDE.?

Application of Clark-Ocone formula.

- ► Karatzas-Ocone-Li, 1991. extension of Clark-Ocone formula.
- ► Karatzas-Ocone, 1991. Optimal portfolio.

what about? 
$$dX_t^{\times} = b(X_t^{\times})dt + \sum_{i=1}^d \sigma_i(X_t^{\times}) \circ dB_t^i, \quad X_t^{\times} \in \mathbb{R}^n.$$
  $span\{\sigma_1, \cdots, \sigma_d, [\sigma_i, \sigma_j], [\sigma_i, [\cdots [\sigma_j, \sigma_k]]]\} = \mathbb{R}^n.$   $d < n.$ 

## Motivation III: large deviation principle (variational representation)

Variational representation: Boué-Dupuis, 98'. Ann. Prob.

$$-\log \mathbb{E} e^{-f(W)} = \inf_{v} \mathbb{E} \{ \frac{1}{2} \int_{0}^{1} \|v_{s}\|^{2} ds + f(W + \int_{0}^{\cdot} v_{s} ds) \}$$

Replace W with  $X \Rightarrow$  we have LDP, explicit rate function obtained.

## Motivation III: large deviation principle (variational representation)

Variational representation: Boué-Dupuis, 98'. Ann. Prob.

$$-\log \mathbb{E} e^{-f(W)} = \inf_{v} \mathbb{E} \{ \frac{1}{2} \int_{0}^{1} \|v_{s}\|^{2} ds + f(W + \int_{0}^{\cdot} v_{s} ds) \}$$

Replace W with  $X \Rightarrow$  we have LDP, explicit rate function obtained.

#### Idea of the proof

- Girsanov theorem
- Relative entropy function.
- what about the soluiton to Purple SDE? i.e. hypoelliptic.
- ► Ben Arous-Deuschel 94' CPAM.(Hypoelliptic). Baxendale-Strook, 88' PTRF. (manifold)
- ► Deuschel-Friz-Jacquier-Violante, 13', 14' CPAM. Stochastic Volatility, hypoelliptic.

## sub-Riemannian Geometry.

#### What is a foliation?

#### Course description from IHP (07') for Steven Hurder

A foliation is like an onion: you just peel space back layer by layer to see what's there. The word foliation is related to the French term feuilletage, as in the very tasty pastry mille feuilles.

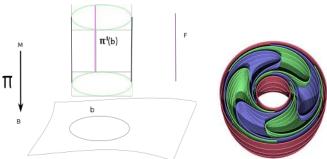




#### Riemannian submersion

#### Definition

A smooth surjective map  $\pi:(\mathbb{M},g)\to(\mathbb{B},j)$  is called a Riemannian submersion if its derivative maps  $T_x\pi:T_x\mathbb{M}\to T_x\mathbb{B}$  are orthogonal projections, i.e. for every  $x\in\mathbb{M}$ , the map  $(T_{p(x)\pi})^*T_{p(x)}\pi:T_{p(x)}\mathbb{B}\to T_{p(x)}\mathbb{B}$  is the identity. A Riemannian submersion is said to have **totally geodesic fibers** if fore every  $b\in\mathbb{B}$ , the set  $\pi^{-1}(b)$  is a totally geodesic submanifold of  $\mathbb{M}$ .



### Totally geodesic foliations.

In general, for a manifold  $\mathbb{M}^{n+m}$ , we can have m-dimensional totally geodesic leaves and n-dimensional horizontal direction. The sub-Riemannian structure is  $(g_{\mathcal{H}}, \mathcal{H})$ 

- ▶ Hopf fibration  $U(1) \to \mathbb{S}^{2n+1} \to \mathbb{C}P^n$ .
- ▶ Riemannian submersion,  $\pi : \mathbb{M}^{n+m} \to \mathbb{B}^n$ .
- ▶ K-contact manifold, foliated by Reeb vector field.
- Sasakian manifold
- Generalized Hopf fibration.
- **...**

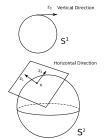




Figure: Hopf fibration: Wikipedia



Brownian motion on totally geodesic foliations.

#### Construction of BM on a Riemannian manifold.

- ▶ Isometry  $u: (\mathbb{R}^{n+m}, \langle \cdot, \cdot \rangle) \to (T_{\times}M, g): e_i \longmapsto u(e_i)$
- ▶ Orthonormal frame bundle  $\mathcal{O}(\mathbb{M}) = \cup_{x \in \mathbb{M}} \mathcal{O}(\mathbb{M})_x$ .
- ▶ Canonical projection  $\pi : \mathcal{O}(\mathbb{M}) \to \mathbb{M}$  with  $\pi u = x$ .
- ▶ Horizontal lift  $\pi_*: H_u\mathcal{O}(\mathbb{M}) \to T_x\mathbb{M}, \ \pi_*H_i(x,u) = u(e_i).$

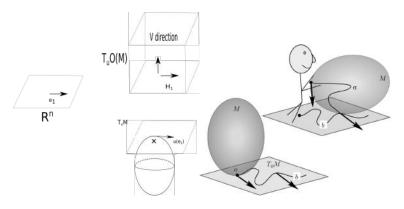


Figure: Rolling without slipping by B. K. Driver

#### Construction of horizontal Brownian motion on foliations.

$$dU_t = \sum_{i=1}^{n+m} H_i(U_t) \circ dB_t^i, U_0 = (x, u) \in \mathcal{O}(\mathbb{M}), \text{ with } \pi u = x$$

 $\pi(U_t) = X_t$ : a Brownian motion on Riemannian manifold  $\mathbb{M}$ . An isometry  $u: (\mathbb{R}^{n+m}, \langle \cdot, \cdot \rangle) \longrightarrow (\mathcal{T}_x \mathbb{M}, g)$  will be called *horizontal* if

- ▶  $u(\mathbb{R}^n \times \{0\}) \subset \mathcal{H}_x$ ;  $u(\{0\} \times \mathbb{R}^m) \subset \mathcal{V}_x$ .
- $e_1, \dots, e_n, f_1, \dots, f_m$  canonical basis of  $\mathbb{R}^{n+m}$
- $u(e_1), \dots, u(e_n), u(f_1), \dots, u(f_m)$  basis for TM.
- $ightharpoonup A_1, \dots, A_n, V_1, \dots, V_m$ : lift of  $u(e_i), u(f_i)$  on  $T\mathcal{O}(\mathbb{M})$ .
- ▶ Horizontal frame bundle:  $\mathcal{O}_{\mathcal{H}}(\mathbb{M})$ .

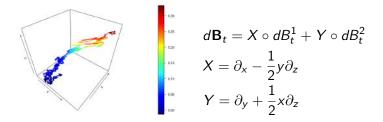
$$dU_t = \sum_{i=1}^n A_i(U_t) \circ dB_t^i, \quad U_0 \in \mathcal{O}_{\mathcal{H}}(\mathbb{M}),$$

 $W_t = \pi(U_t)$  is a horizontal Brownian motion on foliation  $\mathbb{M}$ .



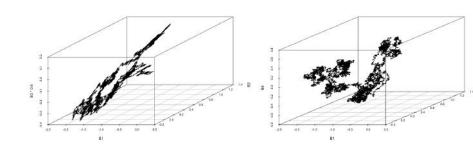
## Construction of horizontal BM on Heisenberg group: I.

$$\mathbf{B} = (B_{s,t}^1, B_{s,t}^2, \frac{1}{2}(\int_s^t B_{s,r}^1 dB_r^2 - \int_s^t B_{s,r}^2 dB_r^1))$$



$$\sigma_1 = X, \ \sigma_2 = Y \ \text{and} \ [\sigma_1, \sigma_2] = \sigma_1 \sigma_2 - \sigma_2 \sigma_2 = \partial_z$$
. Purple SDE.

## Construction of horizontal BM on Heisenberg group: II.



## Horizontal BM on Totally geodesic foliations. (Hopf fibration)

$$X_t = rac{\mathrm{e}^{-i heta}}{\sqrt{1+|\omega(t)|^2}}(\omega(t),1), \quad ext{(Baudoin-Wang, PTRF17')}$$

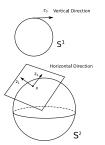




Figure: Hopf fibration: Wikipedia

# Quasi-invariance of Horizontal Wiener Measure.

### General idea of quasi-invariance of Wiener measure

Let  $\mu$  be the Wiener measure on the path space W, and  $T:W\to W$  a transformation of W. The image measure  $\mu_T$  is defined by

$$\mu_T(B) = \mu(T^{-1}B)$$

In general, the transformation T can be represented as a flow, and the flow is generated by a vector field Z on the path space W.

$$\frac{dU_t^Z(x)}{dt} = Z(U_t^Z(x)), \quad U_0^Z(x) = x$$

If  $(U_t^Z)_*\mu$  and  $\mu$  are mutually absolutely continuous, we say  $\mu$  is quasi-invariant under Z.

Radon-Nikodym derivative:  $d(U_t^Z)_*\mu/d\mu=?$ 

## Quasi-invariance of Wiener measure: progress

- ► R.H Cameron, W.T Martin, C-M Thm Ann. of Math. 1944.
- ▶ I.V Girsanov Girsanov Thm Theory Probab. Appl, 1960.
- ▶ L Gross Hilbert space Trans. AMS, 94 (1960).
- ▶ Bruce K. Driver Compact Riemannian manifold for C¹ C-M functions. JFA, (1992), pp. 272-376
- ▶ B.K Driver For pinned Brownian motion Trans. AMS 1994.
- ▶ Elton. P. Hsu Compact Riemannian manifold for all C-M paths. JFA (1995).
- Bruce K. Driver Heat kernel measures on loop groups, JFA (1997).
- ► E. P. Hsu Noncompact case JFA (2002).
- ► E. P. Hsu, C. Ouyang, complete case. JFA (2009).
- ▶ heat kernel measure and finite dimensional approximation
- ► F. Baudoin, M. Gordina and T. Melcher, heat kernel measures on infinite-dimensional Heisenberg groups. (Trans. AMS 13').

#### Cameron-Martin Theorem

## Theorem (CM Thm: we have $U_t^Z(x) = x + tZ$ .)

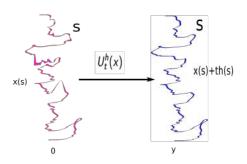
Let  $\mu$  denote the Wiener measure on the path space  $W=C_0([0,1],\mathbb{R}^n)$ . Let  $h=(h_1,\cdots,h_n)$  be a path in  $L^2[0,1]$  and define the translation  $T:\mathbb{R}^n\to\mathbb{R}^n$  by

$$T(\omega) = \omega + \int_0^{\infty} h ds,$$
  $\omega \to (\omega_1 + \int_0^{\infty} h_1 ds, \cdots, \omega_n + \int_0^{\infty} h_n ds)$ 

Then  $\mu_T$  is absolutely continuous w.r.t.  $\mu$  and

$$\frac{d\mu_{T}}{d\mu}(\omega) = \exp(\sum_{i=1}^{n} \int_{0}^{1} h_{i}(s) d\omega_{i}(s) - \frac{1}{2} \sum_{i=1}^{n} \int_{0}^{1} h_{i}^{2}(s) ds)$$

#### Cameron-Martin Theorem and horizontal Wiener measure.



$$H = \{ h \in W(\mathbb{R}^n) | \text{h is a.c. and } h(0) = 0, \ \int_0^T |h'(s)|^2 ds < \infty \}$$

 $(W_t)_{0 \le t \le 1}$  is the **horizontal Brownian motion** and the law  $\mu_W$  of  $W_t$  on  $\mathbb M$  will be referred to as the **horizontal Wiener measure** on  $\mathbb M$ . Therefore,  $\mu_W$  is a probability measure on the space  $C_{x_0}(\mathbb M)$  of continuous paths  $w:[0,1] \to \mathbb M$ ,  $w(0)=x_0$ .

## Quasi-invariance of Wiener measure on a Riemannian manifold.

- $\mu_X$ : Wiener measure on  $W(\mathbb{M})$ .
- $ightharpoonup /\!\!/_t$ : stochastic parallel translation along X,  $/\!\!/_t$ :  $T_x\mathbb{M} o T_{X_t}\mathbb{M}$ .

## Quasi-invariance of Wiener measure on Riemannian manifolds.

Theorem (B. Driver 1992, E.P. Hsu 1995)

Let  $h \in H(T_x\mathbb{M})$ , and  $Z^h$  be the  $\mu_X$  – a.e. well defined vector field on  $W(\mathbb{M})$  given by

$$Z_s^h(\gamma) = //_s(\gamma)h_s$$
, for  $s \in [0,1]$ 

Then  $Z^h$  admits a flow  $e^{tZ^h}$  on  $W(\mathbb{M})$  and the Wiener measure  $\mu_X$  is quasi-invariant under the this flow.

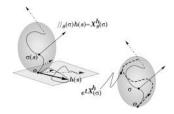


Figure: From: Bruce K. Driver, Curved Wiener Space Analysis

### Quasi-invariance on compact foliated manifolds.

#### Theorem (Baudoin, F. and Gordina, 2017)

Let  $h \in \mathcal{CM}_{\mathcal{H}}(\mathbb{R}^{n+m})$ . Consider the  $\mu_X^{\mathcal{H}}$ -a.e. defined process given by

$$v_t^h(\omega) = h(t) + \underbrace{\int_0^t T_{\mathcal{I}_{\mathcal{H}}(\omega^{\mathcal{H}})_s}(A \circ d\omega_s^{\mathcal{H}}, Ah(s)).}_{martingale\ part\ in\ vertical\ direction.}$$

and  $Z^h$  be the  $\mu_X^{\mathcal{H}}$  – a.e. well defined vector field on  $W(\mathbb{M}^{n+m})$  given by

$$Z_s^h(\gamma) = \hat{\Theta}_s^{\varepsilon}(\gamma)v_s^h$$
, for  $s \in [0,1]$ 

Then  $Z^h$  admits a flow  $e^{tZ^h}$  on  $W(\mathbb{M}^{n+m})$  and the horizontal Wiener measure  $\mu_X^{\mathcal{H}}$  is quasi-invariant under this flow.

## Outline of the proof

- ▶ Recall that:  $\zeta^t \gamma = \mathcal{I} \circ \xi^t \omega \circ \mathcal{I}^{-1} : W_{\mathcal{H}}(\mathbb{M}) \to W_{\mathcal{H}}(\mathbb{M})$ , is generated by  $\mathbf{D}_{v} :=$  *Directional Derivative*.
- $\blacktriangleright \xi_{\nu}^{t}\omega = \omega^{\mathcal{H}} + \int_{0}^{t} p_{\nu}(\xi_{\nu}^{\lambda}(\omega)) d\lambda.$
- $p_{v}(t) := \mathcal{I}_{*}^{-1} \mathcal{Z}^{\tilde{h}} =$   $v_{\mathcal{H}}(t) + \frac{1}{2} \int_{0}^{t} (\mathfrak{Ric}_{\mathcal{H}})_{U_{s}} (Av_{\mathcal{H}}(s)) ds \frac{1}{\varepsilon} \int_{0}^{t} J_{Vv(s)} (Ad\omega_{s}^{\mathcal{H}})_{U_{s}}$   $+ \int_{0}^{t} \left( \int_{0}^{s} \widehat{\Omega}_{U_{\tau}}^{\varepsilon} (A \circ d\omega_{\tau}^{\mathcal{H}}, Av(\tau) + Vv(\tau)) \right) d\omega_{s}^{\mathcal{H}}.$
- ▶ For every fixed  $t \in \mathbb{R}$ , the law  $\mathbb{P}_{\zeta_{\nu}^{t}}$  of  $\zeta_{\nu}^{t}$  is equivalent to the horizontal Wiener measure  $\mathbb{P}_{X}$  with Radon-Nikodym derivative :

$$\frac{d\mathbb{P}_{\zeta_{v}^{t}}}{d\mathbb{P}_{X}}(w) = \frac{d\mathbb{P}_{\xi_{v}^{t}}}{d\mathbb{P}_{\mathcal{H}}}(\mathcal{I}^{-1}w), \quad w \in W_{\mathcal{H}}(\mathbb{M}).$$

$$\frac{d\mathbb{P}_{\xi_v^t}}{d\mathbb{P}_{\mathcal{H}}}(\omega^{\mathcal{H}}) = \exp\left[\int_0^T a_s^t(\xi^{-t}\omega)^* d\omega_s^{\mathcal{H}} - \frac{1}{2}\int_0^T |a_s^t(\xi^{-t}\omega)|^2 ds\right].$$

where 
$$a^t=v_{\mathcal{H}}'t+\int_0^t c(\xi^\lambda)d\lambda+\int_0^t b(\xi^\lambda)a^\lambda d\lambda,$$

### Quasi-invariance on foliated manifold: example

No Diagram Proof At All. For Presentation Only!

$$\gamma \in \mathcal{W}(\mathbb{M}^{n+m}) \xrightarrow{\hat{p}_{h}(\gamma)} \mathcal{W}(\mathbb{M}^{n+m}) \ni \zeta^{t}\gamma \qquad , \hat{p}_{h}(\gamma) = e^{t\hat{\Theta}_{s}^{\varepsilon}(\gamma)v_{s}^{h}} \\
\downarrow^{\uparrow} \qquad \downarrow^{\uparrow} \qquad \downarrow^{\uparrow} \\
\sigma \in \mathcal{W}(\mathbb{B}^{n}) \xrightarrow{\tilde{p}_{h}(\sigma)} \mathcal{W}(\mathbb{B}^{n}) \ni \eta^{t}\sigma \qquad , \tilde{p}_{h}(\sigma) = e^{t//s}(\sigma)h_{s} \\
\downarrow^{\uparrow} \qquad \downarrow^{\uparrow} \qquad \downarrow^{\uparrow} \\
\omega \in \mathcal{W}_{0}(\mathbb{R}^{n}) \xrightarrow{p_{h}(\omega)} \mathcal{W}_{0}(\mathbb{R}^{n}) \ni \xi^{t}\omega \qquad , p_{h}(\omega) = \omega + th$$

Heisenberg group : 
$$v_s^h(B) = (h_1(s), h_2(s), \int_0^s h_1(\tau) dB_{\tau}^2 - \int_0^s h_2(\tau) dB_{\tau}^1).$$

Hopf fibration : 
$$v_s^h = (h_1(s), h_2(s), \int_0^s ((\widehat{\Theta}_{\tau}^{\varepsilon})^{-1}R) \langle J\widehat{\Theta}_{\tau}^{\varepsilon} h(\tau), \widehat{\Theta}_{\tau}^{\varepsilon} \circ dB_{\tau} \rangle_{\mathcal{H}}).$$

## Quasi-invariance of horizontal Wiener measure on Heisenberg group.

$$\begin{split} \widetilde{p}_{h}(w)_{t} \\ = & w_{t} + \left(h(t), \sum_{i=1}^{n} h^{i}(t)w_{t}^{i+n} - h^{i+n}(t)w_{t}^{i} + \int_{0}^{t} (h^{i}(s) + 2w_{s}^{i})dh^{i+n}(s) - (h^{i+n}(s) + 2w_{s}^{i+n})dh^{i}(s)\right) \end{split}$$

Let  $\mu_{\mathcal{H}}^h$  be the pushforward of  $\mu_{\mathcal{H}}$  under  $\widetilde{p}_h$ . The density is explicitly given by

$$\frac{d\mu_{\mathcal{H}}^h}{d\mu_{\mathcal{H}}} = \exp\left(\sum_{i=1}^{2n} \int_0^T h_i'(s) dw_s^i - \frac{1}{2} \int_0^T |h'(s)|_{\mathbb{R}^{2n}}^2 ds\right).$$

Clark-Ocone formula and Integration by Parts formulas.

#### Various Gradients

#### Definition

For  $F = f(w_{t_1}, ..., w_{t_n}) \in \mathcal{F}C^{\infty}(C_{\kappa}(\mathbb{M}))$  we define

Intrinsic gradient (Intrinsic derivative):

$$D_t^{arepsilon}F=\sum_{i=1}^n \mathbf{1}_{[0,t_i]}(t)\Theta_{t_i}^{arepsilon}d_if(W_{t_1},\cdots,W_{t_n}),\quad 0\leq t\leq 1$$

Damped gradient (Damped Malliavin derivative):

$$\tilde{D}_t^{\varepsilon}F = \sum_{i=1}^n \mathbf{1}_{[0,t_i]}(t)(\tau_t^{\varepsilon})^{-1}\tau_{t_i}^{\varepsilon}d_if(X_{t_1},\cdots,X_{t_n}), \quad 0 \leq t \leq 1.$$

**Directional Derivative** For an  $\mathcal{F}$ -adapted,  $\mathcal{T}_{\times}\mathbb{M}$ -valued semimartingale  $(v(t))_{0 \le t \le 1}$  with v(0) = 0,

$$\mathbf{D}_{v}F = \sum_{i=1}^{n} \left\langle d_{i}f(W_{t_{1}}, \cdots, W_{t_{n}}), \widehat{\Theta}_{t_{i}}^{\varepsilon}v(t_{i}) \right\rangle$$



#### Clark-Ocone formula

Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordina17

Let  $\varepsilon>0$ . Let  $F=f(W_{t_1},\cdots,W_{t_n})$ ,  $f\in C^\infty(\mathbb{M})$ . Then

$$F = \mathbb{E}_{\mathsf{x}}(F) + \int_{0}^{1} \langle \mathbb{E}_{\mathsf{x}}(\tilde{D}_{\mathsf{s}}^{\varepsilon}F|\mathcal{F}_{\mathsf{s}}), \widehat{\Theta}_{\mathsf{s}}^{\varepsilon}dB_{\mathsf{s}} \rangle.$$

#### Clark-Ocone formula

#### Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordina17

Let  $\varepsilon > 0$ . Let  $F = f(W_{t_1}, \cdots, W_{t_n})$ ,  $f \in C^{\infty}(\mathbb{M})$ . Then

$$F = \mathbb{E}_{\mathsf{x}}(F) + \int_{0}^{1} \langle \mathbb{E}_{\mathsf{x}}(\tilde{D}_{\mathsf{s}}^{\varepsilon}F|\mathcal{F}_{\mathsf{s}}), \widehat{\Theta}_{\mathsf{s}}^{\varepsilon}dB_{\mathsf{s}} \rangle.$$

#### Gradient Representation.

Let  $F = f(W_{t_1}, \cdots, W_{t_n}) \in \mathcal{F}C^{\infty}(C_x(\mathbb{M}))$ . We have

$$d\mathbb{E}_{\mathsf{x}}(\mathsf{F}) = \mathbb{E}_{\mathsf{x}}\left(\sum_{i=1}^{n} \tau_{t_{i}}^{\varepsilon} d_{i} f(W_{t_{1}}, \cdots, W_{t_{n}})\right).$$

Baudoin 14, sub-Rie transverse symmetry  $dP_t f(x) = \mathbb{E}(\tau_t^{\varepsilon} df(X_t))$ 

### Integration by parts formula for the damped gradient

#### **Theorem** (Baudoin-F.15, Baudoin-F.-Gordina17)

Suppose  $F \in \mathcal{F}C^{\infty}$  ( $C_x(\mathbb{M})$ ) and  $\gamma \in \mathcal{CM}_{\mathcal{H}}(\mathbb{M}, \Omega)$ , then

$$\mathbb{E}_{x}\left(\int_{0}^{1}\langle \widetilde{D}_{s}^{\varepsilon}F,\widehat{\Theta}_{s}^{\varepsilon}\gamma'(s)\rangle ds\right)=\mathbb{E}_{x}\left(F\int_{0}^{1}\langle \gamma'(s),dB_{s}\rangle_{\mathcal{H}}\right). \quad (2.1)$$

#### Definition

An  $\mathcal{F}_t$ -adapted absolutely continuous  $\mathcal{H}_x$ -valued process  $(\gamma(t))_{0\leqslant t\leqslant 1}$  such that  $\gamma(0)=0$  and  $\mathbb{E}_x\left(\int_0^1\|\gamma'(t)\|_{\mathcal{H}}^2dt\right)<\infty$  will be called a *horizontal Cameron-Martin process*. The space of horizontal Cameron-Martin processes will be denoted by  $\mathcal{CM}_{\mathcal{H}}(\mathbb{M},\Omega)$ .

Recall the Cameron-Martin space.

$$H = \{ h \in W(\mathbb{R}^n) | \text{h is a.c. and } h(0) = 0, \int_0^T |h'(s)|^2 ds < \infty \}$$

## Integration by parts formula for directional derivative

#### **Theorem** (Baudoin-F.-Gordina17)

Suppose  $F\in \mathcal{F}C^{\infty}\left(\mathit{C}_{\mathsf{x}}(\mathbb{M})\right)$  and  $v\in \mathit{TW}_{\mathcal{H}}(\mathbb{M},\Omega)$ , then

$$\mathbb{E}_{x}\left(\mathbf{D}_{v}F\right) = \mathbb{E}_{x}\left(F\int_{0}^{1}\left\langle v_{\mathcal{H}}'(t) + \frac{1}{2}(\widehat{\Theta}_{t}^{\varepsilon})^{-1}\mathfrak{Ric}_{\mathcal{H}}\widehat{\Theta}_{t}^{\varepsilon}v_{\mathcal{H}}(t), dB_{t}\right\rangle_{\mathcal{H}}\right).$$

#### Definition

An  $\mathcal{F}_t$ -adapted  $T_x\mathbb{M}$ -valued continuous semimartingale  $(v(t))_{0\leqslant t\leqslant 1}$  such that v(0)=0 and  $\mathbb{E}_x\left(\int_0^1\|v(t)\|^2dt\right)<\infty$  will be called a *tangent process* if the process

$$v(t) - \int_0^t (\widehat{\Theta}_s^{\varepsilon})^{-1} T(\widehat{\Theta}_s^{\varepsilon} \circ dB_s, \widehat{\Theta}_s^{\varepsilon} v(s))$$

is a horizontal Cameron-Martin process. The space of tangent processes will be denoted by  $TW_{\mathcal{H}}(\mathbb{M}, \Omega)$ .



## Functional inequalities.

#### Functional inequalities

Theorem (Baudoin-F,15',)

For every cylindric function  $G \in \mathcal{F}C^{\infty}\left(C_{x}(\mathbb{M})\right)$  we have the following log-Sobolev inequality.

$$\mathbb{E}_{x}(G^{2}\ln G^{2}) - \mathbb{E}_{x}(G^{2})\ln \mathbb{E}_{x}(G^{2}) \leq 2e^{3T(K + \frac{\kappa}{\varepsilon})}\mathbb{E}_{x}\left(\int_{0}^{T}\|D_{s}^{\varepsilon}G\|_{\varepsilon}^{2}ds\right).$$

#### Functional inequalities

#### Theorem (Baudoin-F,15',)

For every cylindric function  $G \in \mathcal{F}C^{\infty}(C_x(\mathbb{M}))$  we have the following log-Sobolev inequality.

$$\mathbb{E}_{\mathsf{x}}(\mathsf{G}^2 \mathsf{In}\; \mathsf{G}^2) - \mathbb{E}_{\mathsf{x}}(\mathsf{G}^2) \mathsf{In}\, \mathbb{E}_{\mathsf{x}}(\mathsf{G}^2) \leq 2e^{3T(K + \frac{\kappa}{\varepsilon})} \mathbb{E}_{\mathsf{x}}\left(\int_0^T \|D_s^\varepsilon \mathsf{G}\|_\varepsilon^2 ds\right).$$

Yang-Mills condition 
$$\delta_{\mathcal{H}} T(\cdot) = \sum_{i=1}^{n} \nabla_{X_i} T(X_i, \cdot) = 0$$
  
Theorem (Baudoin-F,15',)

- ► Improved Log-Sobolev inequality
- ► Equivalent conditions: two-sided uniform Ricci curvature bound ↔ Log-Sobolev inequality ↔ Poincare inequality ↔ gradient estimates.

#### Concentration inequalities.

we denote by  $d_{arepsilon}$  the distance associated with  $g_{arepsilon}$ 

Proposition (Baudoin-F 15', under curvature bounds)

Let  $\varepsilon > 0$ . We have for every T > 0 and  $r \ge 0$ 

$$\mathbb{P}_{x}\left(\sup_{0\leq t\leq T}d_{\varepsilon}(X_{t},x)\geq \mathbb{E}_{x}\left[\sup_{0\leq t\leq T}d_{\varepsilon}(X_{t},x)\right]+r\right)\leq \exp\left(\frac{-r^{2}}{2Te^{\left(K+\frac{\kappa}{\varepsilon}\right)T}}\right)$$

$$\Longrightarrow \lim\sup_{r\to\infty}\frac{1}{r^{2}}\ln \mathbb{P}_{x}\left(\sup_{0\leq t\leq T}d_{\varepsilon}(X_{t},x)\geq r\right)\leq -\frac{1}{2Te^{\left(K+\frac{\kappa}{\varepsilon}\right)T}}$$

Proposition (Baudoin-F 15', K=0 and bounds.)

$$\lim \sup_{r \to +\infty} \frac{1}{r^2} \ln \mathbb{P}_x \left( \sup_{0 \le t \le T} d(X_t, x) \ge r \right) \le -\frac{1}{2T},$$

$$\lim \inf_{r \to +\infty} \frac{1}{r^2} \ln \mathbb{P}_x \left( \sup_{0 \le t \le T} d(X_t, x) \ge r \right) \ge -\frac{D}{2nT},$$

## Future work and applications.

- ▶ Compact ⇒ complete;
- Rough paths proof of Picard iteration;
- ▶ Path space on sub-Riemannian manifold ⇒ Loop space on sub-Riemannian manifold;
- ► Totally geodesic foliations ⇒ non totally geodesic foliations;
- Ricci flow on totally geodesic foliations, F. 17', 18'. differential Harnack inequalities, monotonicity formulas.
- Stochastic Ricci flow and random matrices.
- Characterization of Ricci flow using Path space and Wasserstein space on sub-Riemannian manifolds.

## Future work and applications.

- ▶ Compact ⇒ complete;
- Rough paths proof of Picard iteration;
- ► Path space on sub-Riemannian manifold ⇒ Loop space on sub-Riemannian manifold;
- ► Totally geodesic foliations ⇒ non totally geodesic foliations;
- Ricci flow on totally geodesic foliations, F. 17', 18'. differential Harnack inequalities, monotonicity formulas.
- Stochastic Ricci flow and random matrices.
- Characterization of Ricci flow using Path space and Wasserstein space on sub-Riemannian manifolds.
- Quasi-invariance of horizontal Wiener measure. Girsanov Thm
- Is there any finance model that satisfies a Heisenberg group type stochastic differential equation? control problem.
- ▶ LDP, SV model, Malliavin calculus application.



## **Bibliography**

- F. Baudoin and Q. Feng, Log-sobolev inequalities on the horizontal path space of a totally geodesic foliation, arXiv:1503.08180 (2015). Revision for ECP.
- F. Baudoin, Q. Feng, and M. Gordina, *Quasi-invariance of horizontal wiener measure on a compact foliated riemannian manifold*,arXiv:1706.07040 (2017). Revision for JFA.

## Thanks for your attention!

#### Technical part: various connections.

#### **Bott connection**

$$\nabla_X Y = \begin{cases} \pi_{\mathcal{H}}(\nabla_X^R Y), X, Y \in \Gamma^{\infty}(\mathcal{H}), \\ \pi_{\mathcal{H}}([X, Y]), X \in \Gamma^{\infty}(\mathcal{V}), Y \in \Gamma^{\infty}(\mathcal{H}), \\ \pi_{\mathcal{V}}([X, Y]), X \in \Gamma^{\infty}(\mathcal{H}), Y \in \Gamma^{\infty}(\mathcal{V}), \\ \pi_{\mathcal{V}}(\nabla_X^R Y), X, Y \in \Gamma^{\infty}(\mathcal{V}), \end{cases}$$

#### Isomorphism

$$g_{\mathcal{H}}(J_Z(X), Y)_x = g_{\mathcal{V}}(Z, T(X, Y))_x, Z \in \Gamma^{\infty}(\mathcal{V}), X, Y \in \Gamma^{\infty}(\mathcal{H})$$

#### Damped connection

$$abla_X^{\varepsilon}Y = 
abla_XY - T(X,Y) + \frac{1}{\varepsilon}J_YX, \quad X,Y \in \Gamma^{\infty}(\mathbb{M}).$$

#### Adjoint connection of the damped connection

$$\widehat{\nabla}_X^\varepsilon Y := \nabla_X^\varepsilon Y - T^\varepsilon (X,Y) = \nabla_X Y + \frac{1}{\varepsilon} J_X Y,$$

## Technical part: Bochner-Weitzenböck identity

$$\square_{\varepsilon} = -(\nabla_{\mathcal{H}} - \mathfrak{T}_{\mathcal{H}}^{\varepsilon})^* (\nabla_{\mathcal{H}} - \mathfrak{T}_{\mathcal{H}}^{\varepsilon}) - \frac{1}{\varepsilon} \mathbf{J}^2 + \frac{1}{\varepsilon} \delta_{\mathcal{H}} T - \mathfrak{Ric}_{\mathcal{H}},$$

▶ Let  $f \in C_0^{\infty}(\mathbb{M})$ ,  $x \in \mathbb{M}$  and  $\varepsilon > 0$ , then

$$dLf(x) = \Box_{\varepsilon} df(x)$$
. (Baudoin-Kim-Wang. 16' CGT)

Consequence

$$dP_t f = Q_t^{\varepsilon} df, \ P_t = e^{tL}, \ Q_t^{\varepsilon} = e^{t\square_{\varepsilon}}$$

► Clark-Ocone formula

$$F = \mathbb{E}_{\mathsf{x}}(F) + \int_0^T \langle \mathbb{E}_{\mathsf{x}}(\tilde{D}^{\epsilon}_{\mathsf{s}}F|\mathcal{F}_{\mathsf{s}}), \widehat{\Theta}^{\epsilon}_{0,\mathsf{s}}dB_{\mathsf{s}} \rangle_{\mathcal{H}}.$$



## Technical part: stochastic parallel translation.

 $\widehat{\Theta}_t^arepsilon: T_{X_t}^*\mathbb{M} o T_{ imes}^*\mathbb{M}$  is a solution to

$$d[\widehat{\Theta}_t^{\varepsilon}\alpha(X_t)] = \widehat{\Theta}_t^{\varepsilon}\widehat{\nabla}_{\circ dX_t}^{\varepsilon}\alpha(X_t),$$

 $au_t^arepsilon: T_{X_t}^*\mathbb{M} o T_x^*\mathbb{M}$  is a solution of

$$d[\tau_t^{\varepsilon}\alpha(X_t)] \qquad (3.2)$$

$$= \tau_t^{\varepsilon} \left( \nabla_{\circ dX_t} - \mathfrak{T}_{\circ dX_t}^{\varepsilon} - \frac{1}{2} \left( \frac{1}{\varepsilon} \mathbf{J}^2 - \frac{1}{\varepsilon} \delta_{\mathcal{H}} T + \mathfrak{Ric}_{\mathcal{H}} \right) dt \right) \alpha(X_t),$$

$$\tau_0 = \mathbf{Id}, \quad \tau_t^{\varepsilon} = \mathcal{M}_t^{\varepsilon} \Theta_t^{\varepsilon}.$$

 $\mathcal{M}_t^{\varepsilon}: T_x^*\mathbb{M} \to T_x^*\mathbb{M}$ ,  $t \geqslant 0$ , is the solution to ODE

$$\frac{d\mathcal{M}_{t}^{\varepsilon}}{dt} = -\frac{1}{2}\mathcal{M}_{t}^{\varepsilon}\Theta_{t}^{\varepsilon}\left(\frac{1}{\varepsilon}\mathbf{J}^{2} - \frac{1}{\varepsilon}\delta_{\mathcal{H}}T + \mathfrak{Ric}_{\mathcal{H}}\right)(\Theta_{t}^{\varepsilon})^{-1}, \qquad (3.3)$$

$$\mathcal{M}_{0}^{\varepsilon} = \mathbf{Id}.$$

## Technical part: example.

Given a number  $\rho$ , suppose that  $G(\rho)$  is simply a connected three-dimensional Lie group whose Lie algebra  $\mathfrak g$  admits a basis  $\{X,Y,Z\}$  satisfying

$$[X, Y] = Z, [X, Z] = -\rho Y, [Y, Z] = \rho X.$$

$$\rho=0, \varepsilon=\infty \Rightarrow \hat{\Theta}^{\varepsilon}_t = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tau^{\infty}_t = \begin{pmatrix} 1 & 0 & B_t^2 \\ 0 & 1 & -B_t^1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rho \neq 0 \Rightarrow \tau_t^{\infty} = \begin{pmatrix} e^{-\frac{\rho}{2}t} & 0 & \int_0^t e^{-\frac{\rho}{2}s} dB_s^2 \\ 0 & e^{-\frac{\rho}{2}t} & -\int_0^t e^{-\frac{\rho}{2}s} dB_s^1 \\ 0 & 0 & 1 \end{pmatrix}$$