Integration by parts and Quasi-invariance of Horizontal Wiener Measure on a foliated compact manifold

Qi Feng

(Based on joint works with Fabrice Baudoin and Maria Gordina)
University of Connecticut

> Mathematical Finance Colloquium
> USC, 04/23/2018

Outline of the Talk

- Motivation: Sub-Riemannian Structure \leftrightarrow Math Finance.
- Greek evaluation with Malliavin calculus.
- Large Deviation Principle. (variational representation)
- Totally geodesic Riemannian foliations.
- Quasi-invariance of horizontal Wiener measure.
- General idea.
- Main theorem.
- Examples.
- Clark-Ocone formula and Integration by parts formulas.
- Functional inequalities.
- Applications and future work.

Motivation of the talk.

Motivation I: Greek evaluation with Malliavin calculus

For Black-Scholes model: $d S_{t}^{x}=r S_{t}^{x} d t+\sigma S_{t}^{x} d B_{t}$ (GBM).
Consider the European option with payoff function: $\phi=f\left(S_{T}\right)$.
The option price is: $V_{0}=\mathbb{E}^{Q}\left(e^{-r T} f\left(S_{T}\right)\right)$.
The Delta is: $\Delta:=\frac{\partial V_{0}}{\partial S_{0}}=\nabla \mathbb{E}\left(e^{-r T} f\left(S_{T}\right)\right)$

$$
\begin{aligned}
& \frac{\partial V_{0}}{\partial S_{0}} \underbrace{=}_{\nabla \leftrightarrow \mathbb{E}} \mathbb{E}\left(e^{-r T} f^{\prime}\left(S_{t}\right) \frac{d S_{T}}{d S_{0}}\right) \underbrace{=}_{\text {I.B.P }} e^{-r T} \mathbb{E}\left(f\left(S_{T}\right) \delta\left(\frac{d S_{T}}{d S_{0}}\left(D S_{T}\right)^{-1}\right)\right) \\
& \mathbb{E}\left(f^{\prime}(F) G\right)=\mathbb{E}(f(F) H(F, G)), H(H, G)=\delta\left(G h_{t}\left(D_{\gamma} F\right)^{-1}\right) \\
& D S_{T}=\int_{0}^{T} D_{t} S_{T} d t=\sigma S_{T} T, \quad \frac{d S_{T}}{d S_{0}}=\frac{S_{T}}{S_{0}}, \quad \delta(1)=B_{T} \\
& \Delta=\frac{e^{-r T}}{S_{0} \sigma T} \mathbb{E}\left(f\left(S_{T}\right) B_{T}\right) \Rightarrow \text { Monte Carlo. }
\end{aligned}
$$

Elliptic case (BS): Fournié-Lasry-Lebuchoux-Lions-Touzi, 99', 01’
Finance and Stochastics.

Motivation I: Greek evaluation with Malliavin calculus

For Black-Scholes model: $d S_{t}^{x}=r S_{t}^{x} d t+\sigma S_{t}^{x} d B_{t}$ (GBM).
Consider the European option with payoff function: $\phi=f\left(S_{T}\right)$.
The option price is: $V_{0}=\mathbb{E}^{Q}\left(e^{-r T} f\left(S_{T}\right)\right)$.
The Delta is: $\Delta:=\frac{\partial V_{0}}{\partial S_{0}}=\nabla \mathbb{E}\left(e^{-r T} f\left(S_{T}\right)\right)$

$$
\begin{aligned}
& \frac{\partial V_{0}}{\partial S_{0}} \underbrace{=}_{\nabla \leftrightarrow \mathbb{E}} \mathbb{E}\left(e^{-r T} f^{\prime}\left(S_{t}\right) \frac{d S_{T}}{d S_{0}}\right) \underbrace{=}_{\text {I.B.P }} e^{-r T} \mathbb{E}\left(f\left(S_{T}\right) \delta\left(\frac{d S_{T}}{d S_{0}}\left(D S_{T}\right)^{-1}\right)\right) \\
& \mathbb{E}\left(f^{\prime}(F) G\right)=\mathbb{E}(f(F) H(F, G)), H(H, G)=\delta\left(G h_{t}\left(D_{\gamma} F\right)^{-1}\right) \\
& D S_{T}=\int_{0}^{T} D_{t} S_{T} d t=\sigma S_{T} T, \quad \frac{d S_{T}}{d S_{0}}=\frac{S_{T}}{S_{0}}, \quad \delta(1)=B_{T} \\
& \Delta=\frac{e^{-r T}}{S_{0} \sigma T} \mathbb{E}\left(f\left(S_{T}\right) B_{T}\right) \Rightarrow \text { Monte Carlo. }
\end{aligned}
$$

Elliptic case (BS): Fournié-Lasry-Lebuchoux-Lions-Touzi, 99', 01'
Finance and Stochastics.
??? $\quad d X_{t}^{x}=b\left(X_{t}^{x}\right) d t+\sum_{i=1}^{2} \sigma_{i}\left(X_{t}^{x}\right) \circ d B_{t}^{i}, \quad X_{t}^{x} \in \mathbb{R}^{3},\left[\sigma_{1}, \sigma_{2}\right]=\frac{\partial}{\partial z}$.

Motivation II: More application with Malliavin calculus

Integration by parts formula \leftrightarrow Clark-Ocone formula.

$$
F=\mathbb{E}[F]+\int_{0}^{T} \mathbb{E}\left[D_{t} F \mid \mathcal{F}_{t}\right] d W(t)
$$

$F=f\left(X_{t_{1}}, \cdots, X_{t_{n}}\right)$, what if X_{t} is the solution of the Purple SDE.?
Application of Clark-Ocone formula.

- Karatzas-Ocone-Li, 1991. extension of Clark-Ocone formula.
- Karatzas-Ocone, 1991. Optimal portfolio.
what about? $d X_{t}^{\times}=b\left(X_{t}^{\times}\right) d t+\sum_{i=1}^{d} \sigma_{i}\left(X_{t}^{\times}\right) \circ d B_{t}^{i}, \quad X_{t}^{\times} \in \mathbb{R}^{n}$. $\operatorname{span}\left\{\sigma_{1}, \cdots, \sigma_{d},\left[\sigma_{i}, \sigma_{j}\right],\left[\sigma_{i},\left[\cdots\left[\sigma_{j}, \sigma_{k}\right]\right]\right]\right\}=\mathbb{R}^{n}$. $d<n$.

Motivation III: large deviation principle (variational representation)

Variational representation: Boué-Dupuis, 98'. Ann. Prob.

$$
-\log \mathbb{E} e^{-f(W)}=\inf _{v} \mathbb{E}\left\{\frac{1}{2} \int_{0}^{1}\left\|v_{s}\right\|^{2} d s+f\left(W+\int_{0} v_{s} d s\right)\right\}
$$

Replace W with $X \Rightarrow$ we have LDP, explicit rate function obtained.

Motivation III: large deviation principle (variational representation)

Variational representation: Boué-Dupuis, 98'. Ann. Prob.

$$
-\log \mathbb{E} e^{-f(W)}=\inf _{v} \mathbb{E}\left\{\frac{1}{2} \int_{0}^{1}\left\|v_{s}\right\|^{2} d s+f\left(W+\int_{0} v_{s} d s\right)\right\}
$$

Replace W with $X \Rightarrow$ we have LDP, explicit rate function obtained. Idea of the proof

- Girsanov theorem
- Relative entropy function.
- what about the soluiton to Purple SDE? i.e. hypoelliptic.
- Ben Arous-Deuschel 94' CPAM.(Hypoelliptic). Baxendale-Strook, 88' PTRF. (manifold)
- Deuschel-Friz-Jacquier-Violante, 13', 14' CPAM. Stochastic Volatility, hypoelliptic.
sub-Riemannian Geometry.

What is a foliation?

Course description from IHP (07') for Steven Hurder
A foliation is like an onion: you just peel space back layer by layer to see what's there. The word foliation is related to the French term feuilletage, as in the very tasty pastry mille feuilles.

Riemannian submersion

Definition

A smooth surjective map $\pi:(\mathbb{M}, g) \rightarrow(\mathbb{B}, j)$ is called a Riemannian submersion if its derivative maps $T_{x} \pi: T_{x} \mathbb{M} \rightarrow T_{x} \mathbb{B}$ are orthogonal projections, i.e. for every $x \in \mathbb{M}$, the map $\left(T_{p(x) \pi}\right)^{*} T_{p(x)} \pi: T_{p(x)} \mathbb{B} \rightarrow T_{p(x)} \mathbb{B}$ is the identity. A Riemannian submersion is said to have totally geodesic fibers if fore every $b \in \mathbb{B}$, the set $\pi^{-1}(b)$ is a totally geodesic submanifold of \mathbb{M}.

Totally geodesic foliations.

In general, for a manifold \mathbb{M}^{n+m}, we can have m-dimensional totally geodesic leaves and n-dimensional horizontal direction. The sub-Riemannian structure is $\left(g_{\mathcal{H}}, \mathcal{H}\right)$

- Hopf fibration $U(1) \rightarrow \mathbb{S}^{2 n+1} \rightarrow \mathbb{C} P^{n}$.
- Riemannian submersion, $\pi: \mathbb{M}^{n+m} \rightarrow \mathbb{B}^{n}$.
- K-contact manifold, foliated by Reeb vector field.
- Sasakian manifold
- Generalized Hopf fibration.
- ...

Figure: Hopf fibration: Wikipedia

Brownian motion on totally geodesic foliations.

Construction of BM on a Riemannian manifold.

- Isometry $u:\left(\mathbb{R}^{n+m},\langle\cdot, \cdot\rangle\right) \rightarrow\left(T_{x} M, g\right): e_{i} \longmapsto u\left(e_{i}\right)$
- Orthonormal frame bundle $\mathcal{O}(\mathbb{M})=\cup_{x \in \mathbb{M}} \mathcal{O}(\mathbb{M})_{x}$.
- Canonical projection $\pi: \mathcal{O}(\mathbb{M}) \rightarrow \mathbb{M}$ with $\pi u=x$.
- Horizontal lift $\pi_{*}: H_{u} \mathcal{O}(\mathbb{M}) \rightarrow T_{x} \mathbb{M}, \pi_{*} H_{i}(x, u)=u\left(e_{i}\right)$.

Figure: Rolling without slipping by B. K. Driver

Construction of horizontal Brownian motion on foliations.

$$
d U_{t}=\sum_{i=1}^{n+m} H_{i}\left(U_{t}\right) \circ d B_{t}^{i}, U_{0}=(x, u) \in \mathcal{O}(\mathbb{M}) \text {, with } \pi u=x
$$

$\pi\left(U_{t}\right)=X_{t}$: a Brownian motion on Riemannian manifold \mathbb{M}. An isometry $u:\left(\mathbb{R}^{n+m},\langle\cdot \cdot\rangle,\right) \longrightarrow\left(T_{x} \mathbb{M}, g\right)$ will be called horizontal if

- $u\left(\mathbb{R}^{n} \times\{0\}\right) \subset \mathcal{H}_{x} ; \quad u\left(\{0\} \times \mathbb{R}^{m}\right) \subset \mathcal{V}_{x}$.
- $e_{1}, \cdots, e_{n}, f_{1}, \cdots, f_{m}$ canonical basis of \mathbb{R}^{n+m}
- $u\left(e_{1}\right), \cdots, u\left(e_{n}\right), u\left(f_{1}\right), \cdots, u\left(f_{m}\right)$ basis for $T \mathbb{M}$.
- $A_{1}, \cdots, A_{n}, V_{1}, \cdots, V_{m}$: lift of $u\left(e_{i}\right), u\left(f_{i}\right)$ on $T \mathcal{O}(\mathbb{M})$.
- Horizontal frame bundle: $\mathcal{O}_{\mathcal{H}}(\mathbb{M})$.

$$
d U_{t}=\sum_{i=1}^{n} A_{i}\left(U_{t}\right) \circ d B_{t}^{i}, \quad U_{0} \in \mathcal{O}_{\mathcal{H}}(\mathbb{M}),
$$

$W_{t}=\pi\left(U_{t}\right)$ is a horizontal Brownian motion on foliation \mathbb{M}.

Construction of horizontal BM on Heisenberg group: I.

$$
\mathbf{B}=\left(B_{s, t}^{1}, B_{s, t}^{2}, \frac{1}{2}\left(\int_{s}^{t} B_{s, r}^{1} d B_{r}^{2}-\int_{s}^{t} B_{s, r}^{2} d B_{r}^{1}\right)\right)
$$

$$
\begin{aligned}
& d \mathbf{B}_{t}=X \circ d B_{t}^{1}+Y \circ d B_{t}^{2} \\
& X=\partial_{x}-\frac{1}{2} y \partial_{z} \\
& Y=\partial_{y}+\frac{1}{2} x \partial_{z}
\end{aligned}
$$

$$
\sigma_{1}=X, \sigma_{2}=Y \text { and }\left[\sigma_{1}, \sigma_{2}\right]=\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{2}=\partial_{z} . \text { Purple SDE. }
$$

Construction of horizontal BM on Heisenberg group: II.

Horizontal BM on Totally geodesic foliations. (Hopf fibration)

$$
x_{t}=\frac{e^{-i \theta}}{\sqrt{1+|\omega(t)|^{2}}}(\omega(t), 1),
$$

(Baudoin-Wang, PTRF17')

Figure: Hopf fibration: Wikipedia

Quasi-invariance of Horizontal Wiener Measure.

General idea of quasi-invariance of Wiener measure

Let μ be the Wiener measure on the path space W, and $T: W \rightarrow W$ a transformation of W. The image measure μ_{T} is defined by

$$
\mu_{T}(B)=\mu\left(T^{-1} B\right)
$$

In general, the transformation T can be represented as a flow, and the flow is generated by a vector field Z on the path space W.

$$
\frac{d U_{t}^{Z}(x)}{d t}=Z\left(U_{t}^{Z}(x)\right), \quad U_{0}^{Z}(x)=x
$$

If $\left(U_{t}^{Z}\right)_{*} \mu$ and μ are mutually absolutely continuous, we say μ is quasi-invariant under Z.
Radon-Nikodym derivative: $d\left(U_{t}^{Z}\right)_{*} \mu / d \mu=$?

Quasi-invariance of Wiener measure: progress

- R.H Cameron, W.T Martin, C-M Thm Ann. of Math. 1944.
- I.V Girsanov Girsanov Thm Theory Probab. Appl, 1960.
- L Gross Hilbert space Trans. AMS, 94 (1960).
- Bruce K. Driver Compact Riemannian manifold for $C^{1} \mathrm{C}-\mathrm{M}$ functions. JFA, (1992), pp. 272-376
- B.K Driver For pinned Brownian motion Trans. AMS 1994.
- Elton. P. Hsu Compact Riemannian manifold for all C-M paths. JFA (1995).
- Bruce K. Driver Heat kernel measures on loop groups, JFA (1997).
- E. P. Hsu Noncompact case JFA (2002).
- E. P. Hsu, C. Ouyang, complete case. JFA (2009).
- heat kernel measure and finite dimensional approximation
- F. Baudoin, M. Gordina and T. Melcher, heat kernel measures on infinite-dimensional Heisenberg groups. (Trans. AMS 13').

Cameron-Martin Theorem

Theorem (CM Thm: we have $U_{t}^{Z}(x)=x+t Z$.)
Let μ denote the Wiener measure on the path space $W=C_{0}\left([0,1], \mathbb{R}^{n}\right)$. Let $h=\left(h_{1}, \cdots, h_{n}\right)$ be a path in $L^{2}[0,1]$ and define the translation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{aligned}
T(\omega) & =\omega+\int_{0} h d s \\
\omega & \rightarrow\left(\omega_{1}+\int_{0} h_{1} d s, \cdots, \omega_{n}+\int_{0} h_{n} d s\right)
\end{aligned}
$$

Then μ_{T} is absolutely continuous w.r.t. μ and

$$
\frac{d \mu_{T}}{d \mu}(\omega)=\exp \left(\sum_{i=1}^{n} \int_{0}^{1} h_{i}(s) d \omega_{i}(s)-\frac{1}{2} \sum_{i=1}^{n} \int_{0}^{1} h_{i}^{2}(s) d s\right)
$$

Cameron-Martin Theorem and horizontal Wiener measure.

$$
H=\left\{h \in W\left(\mathbb{R}^{n}\right) \mid \text { h is a.c. and } h(0)=0, \int_{0}^{T}\left|h^{\prime}(s)\right|^{2} d s<\infty\right\}
$$

$\left(W_{t}\right)_{0 \leq t \leq 1}$ is the horizontal Brownian motion and the law μ_{W} of W_{t} on \mathbb{M} will be referred to as the horizontal Wiener measure on \mathbb{M}. Therefore, μ_{W} is a probability measure on the space $C_{x_{0}}(\mathbb{M})$ of continuous paths $w:[0,1] \rightarrow \mathbb{M}, w(0)=x_{0}$.

Quasi-invariance of Wiener measure on a Riemannian

 manifold.- μ_{X} : Wiener measure on $W(\mathbb{M})$.
- $/ / t:$ stochastic parallel translation along $X, /_{t}: T_{x} \mathbb{M} \rightarrow T_{X_{t}} \mathbb{M}$.

$$
\begin{gathered}
\gamma \in \underset{\mathcal{I} \uparrow}{\mathcal{W}(\mathbb{M})} \xrightarrow{\tilde{p}_{h}(\gamma)} \underset{\mathcal{I} \uparrow}{\mathcal{W}(\mathbb{M}) \ni \zeta^{t} \gamma} \quad \text { Not Diagram Proof } \\
\omega \in \mathcal{W}_{0}\left(\mathbb{R}^{n}\right) \xrightarrow{p_{h}(\omega)} \mathcal{W}_{0}\left(\mathbb{R}^{n}\right) \ni \xi^{t} \omega \quad \text { For Presentation Only } \\
\zeta^{t} \gamma=\mathcal{I} \circ \xi^{t} \omega \circ \mathcal{I}^{-1} \\
\frac{d \zeta^{t} \gamma}{d t}=Z\left(\zeta^{t} \gamma\right) \quad \text { what is } Z ?
\end{gathered}
$$

Quasi-invariance of Wiener measure on Riemannian

 manifolds.Theorem (B. Driver 1992, E.P. Hsu 1995)
Let $h \in H\left(T_{x} \mathbb{M}\right)$, and Z^{h} be the μ_{X} - a.e. well defined vector field on $W(\mathbb{M})$ given by

$$
Z_{s}^{h}(\gamma)=/ /_{s}(\gamma) h_{s}, \text { for } s \in[0,1]
$$

Then Z^{h} admits a flow $e^{t Z^{h}}$ on $W(\mathbb{M})$ and the Wiener measure μ_{X} is quasi-invariant under the this flow.

Figure: From: Bruce K. Driver, Curved Wiener Space Analysis

Quasi-invariance on compact foliated manifolds.

Theorem (Baudoin,F. and Gordina, 2017)
Let $h \in \mathcal{C} \mathcal{M}_{\mathcal{H}}\left(\mathbb{R}^{n+m}\right)$. Consider the $\mu_{\chi}^{\mathcal{H}}$-a.e. defined process given by

$$
v_{t}^{h}(\omega)=h(t)+\underbrace{\int_{0}^{t} T_{\mathcal{I}_{\mathcal{H}}\left(\omega^{\mathcal{H}}\right)_{s}}\left(A \circ d \omega_{s}^{\mathcal{H}}, A h(s)\right) .}_{\text {martingale part in vertical direction. }}
$$

and Z^{h} be the $\mu_{X}^{\mathcal{H}}$ - a.e. well defined vector field on $W\left(\mathbb{M}^{n+m}\right)$ given by

$$
Z_{s}^{h}(\gamma)=\hat{\Theta}_{s}^{\varepsilon}(\gamma) v_{s}^{h}, \text { for } s \in[0,1]
$$

Then Z^{h} admits a flow $e^{t Z^{h}}$ on $W\left(\mathbb{M}^{n+m}\right)$ and the horizontal Wiener measure $\mu_{X}^{\mathcal{H}}$ is quasi-invariant under this flow.

Outline of the proof

- Recall that: $\zeta^{t} \gamma=\mathcal{I} \circ \xi^{t} \omega \circ \mathcal{I}^{-1}: W_{\mathcal{H}}(\mathbb{M}) \rightarrow W_{\mathcal{H}}(\mathbb{M})$, is generated by $\mathbf{D}_{v}:=$ Directional Derivative.
- $\xi_{v}^{t} \omega=\omega^{\mathcal{H}}+\int_{0}^{t} p_{v}\left(\xi_{v}^{\lambda}(\omega)\right) d \lambda$.
- $p_{v}(t):=\mathcal{I}_{*}^{-1} Z^{h}=$

$$
\begin{aligned}
& v_{\mathcal{H}}(t)+\frac{1}{2} \int_{0}^{t}\left(\Re \mathfrak{R i c}_{\mathcal{H}}\right) U_{s}\left(A v_{\mathcal{H}}(s)\right) d s-\frac{1}{\varepsilon} \int_{0}^{t} J_{V v(s)}\left(A d \omega_{s}^{\mathcal{H}}\right) U_{s} \\
& +\int_{0}^{t}\left(\int_{0}^{s} \widehat{\Omega}_{U_{\tau}}^{\varepsilon}\left(A \circ d \omega_{\tau}^{\mathcal{H}}, \operatorname{Av}(\tau)+V v(\tau)\right)\right) d \omega_{s}^{\mathcal{H}} .
\end{aligned}
$$

- For every fixed $t \in \mathbb{R}$, the law $\mathbb{P}_{\zeta_{v}^{t}}$ of ζ_{v}^{t} is equivalent to the horizontal Wiener measure \mathbb{P}_{X} with Radon-Nikodym derivative :

$$
\frac{d \mathbb{P}_{\zeta_{v}^{t}}}{d \mathbb{P}_{X}}(w)=\frac{d \mathbb{P}_{\xi_{v}^{t}}}{d \mathbb{P}_{\mathcal{H}}}\left(\mathcal{I}^{-1} w\right), \quad w \in W_{\mathcal{H}}(\mathbb{M})
$$

$$
\frac{d \mathbb{P}_{\xi_{v}^{t}}}{d \mathbb{P}_{\mathcal{H}}}\left(\omega^{\mathcal{H}}\right)=\exp \left[\int_{0}^{T} a_{s}^{t}\left(\xi^{-t} \omega\right)^{*} d \omega_{s}^{\mathcal{H}}-\frac{1}{2} \int_{0}^{T}\left|a_{s}^{t}\left(\xi^{-t} \omega\right)\right|^{2} d s\right]
$$

where $a^{t}=v_{\mathcal{H}}^{\prime} t+\int_{0}^{t} c\left(\xi^{\lambda}\right) d \lambda+\int_{0}^{t} b\left(\xi^{\lambda}\right) a^{\lambda} d \lambda$,

Quasi-invariance on foliated manifold: example

No Diagram Proof At All. For Presentation Only!

$$
\begin{array}{cl}
\gamma \in \underset{\mathcal{I} \uparrow}{\mathcal{W}\left(\mathbb{M}^{n+m}\right)} \xrightarrow{\hat{p}_{h}(\gamma)} \mathcal{W}\left(\mathbb{M}^{n+m}\right) \ni \zeta^{t} \gamma & , \hat{p}_{h}(\gamma)=e^{t \hat{\Theta}_{s}^{s}(\gamma) v_{s}^{h}} \\
\sigma \in \underset{\mathcal{I} \uparrow}{\mathcal{W}\left(\mathbb{B}^{n}\right) \xrightarrow{\tilde{p}_{h}(\sigma)} \mathcal{W}\left(\mathbb{B}^{n}\right) \ni \eta^{t} \sigma} & , \tilde{p}_{h}(\sigma)=e^{t / /_{s}(\sigma) h_{s}} \\
\omega \in \mathcal{W}_{0}\left(\mathbb{R}^{n}\right) \xrightarrow{p_{h}(\omega)} \mathcal{W}_{0}\left(\mathbb{R}^{n}\right) \ni \xi^{t} \omega & , p_{h}(\omega)=\omega+t h
\end{array}
$$

Heisenberg group : $v_{s}^{h}(B)=\left(h_{1}(s), h_{2}(s), \int_{0}^{s} h_{1}(\tau) d B_{\tau}^{2}-\int_{0}^{s} h_{2}(\tau) d B_{\tau}^{1}\right)$.
Hopf fibration : $v_{s}^{h}=\left(h_{1}(s), h_{2}(s), \int_{0}^{s}\left(\left(\widehat{\Theta}_{\tau}^{\varepsilon}\right)^{-1} R\right)\left\langle J \widehat{\Theta}_{\tau}^{\varepsilon} h(\tau), \widehat{\Theta}_{\tau}^{\varepsilon} \circ d B_{\tau}\right\rangle_{\mathcal{H}}\right)$.

Quasi-invariance of horizontal Wiener measure on Heisenberg group.

$$
\begin{aligned}
& \widetilde{p}_{h}(w)_{t} \\
= & w_{t}+\left(h(t), \sum_{i=1}^{n} h^{i}(t) w_{t}^{i+n}-h^{i+n}(t) w_{t}^{i}+\right. \\
& \left.\int_{0}^{t}\left(h^{i}(s)+2 w_{s}^{i}\right) d h^{i+n}(s)-\left(h^{i+n}(s)+2 w_{s}^{i+n}\right) d h^{i}(s)\right)
\end{aligned}
$$

Let $\mu_{\mathcal{H}}^{h}$ be the pushforward of $\mu_{\mathcal{H}}$ under \widetilde{p}_{h}. The density is explicitly given by

$$
\frac{d \mu_{\mathcal{H}}^{h}}{d \mu_{\mathcal{H}}}=\exp \left(\sum_{i=1}^{2 n} \int_{0}^{T} h_{i}^{\prime}(s) d w_{s}^{i}-\frac{1}{2} \int_{0}^{T}\left|h^{\prime}(s)\right|_{\mathbb{R}^{2 n}}^{2} d s\right) .
$$

Clark-Ocone formula and Integration by Parts formulas.

Various Gradients

Definition

For $\left.F=f\left(w_{t_{1}}, \ldots, w_{t_{n}}\right) \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)\right)$ we define

- Intrinsic gradient (Intrinsic derivative):

$$
D_{t}^{\varepsilon} F=\sum_{i=1}^{n} \mathbf{1}_{\left[0, t_{i}\right]}(t) \Theta_{t_{i}}^{\varepsilon} d_{i} f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right), \quad 0 \leq t \leq 1
$$

- Damped gradient (Damped Malliavin derivative):

$$
\tilde{D}_{t}^{\varepsilon} F=\sum_{i=1}^{n} \mathbf{1}_{\left[0, t_{i}\right]}(t)\left(\tau_{t}^{\varepsilon}\right)^{-1} \tau_{t_{i}}^{\varepsilon} d_{i} f\left(X_{t_{1}}, \cdots, X_{t_{n}}\right), \quad 0 \leq t \leq 1
$$

- Directional Derivative For an \mathcal{F}-adapted, $T_{x} \mathbb{M}$-valued semimartingale $(v(t))_{0 \leqslant t \leqslant 1}$ with $v(0)=0$,

$$
\mathbf{D}_{v} F=\sum_{i=1}^{n}\left\langle d_{i} f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right), \widehat{\Theta}_{t_{i}}^{\varepsilon} v\left(t_{i}\right)\right\rangle
$$

Clark-Ocone formula

Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordina17 Let $\varepsilon>0$. Let $F=f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right), f \in C^{\infty}(\mathbb{M})$. Then

$$
F=\mathbb{E}_{x}(F)+\int_{0}^{1}\left\langle\mathbb{E}_{x}\left(\tilde{D}_{s}^{\varepsilon} F \mid \mathcal{F}_{s}\right), \hat{\Theta}_{s}^{\varepsilon} d B_{s}\right\rangle .
$$

Clark-Ocone formula

Clark-Ocone formula Baudoin-F.15, Baudoin-F.-Gordina17 Let $\varepsilon>0$. Let $F=f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right), f \in C^{\infty}(\mathbb{M})$. Then

$$
F=\mathbb{E}_{x}(F)+\int_{0}^{1}\left\langle\mathbb{E}_{x}\left(\tilde{D}_{s}^{\varepsilon} F \mid \mathcal{F}_{s}\right), \hat{\Theta}_{s}^{\varepsilon} d B_{s}\right\rangle .
$$

Gradient Representation.
Let $F=f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right) \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)$. We have

$$
d \mathbb{E}_{x}(F)=\mathbb{E}_{x}\left(\sum_{i=1}^{n} \tau_{t_{i}}^{\varepsilon} d_{i} f\left(W_{t_{1}}, \cdots, W_{t_{n}}\right)\right) .
$$

Baudoin 14 , sub-Rie transverse symmetry $d P_{t} f(x)=\mathbb{E}\left(\tau_{t}^{\varepsilon} d f\left(X_{t}\right)\right)$

Integration by parts formula for the damped gradient

Theorem (Baudoin-F.15, Baudoin-F.-Gordina17)
Suppose $F \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)$ and $\gamma \in \mathcal{C} \mathcal{M}_{\mathcal{H}}(\mathbb{M}, \Omega)$, then

$$
\begin{equation*}
\mathbb{E}_{x}\left(\int_{0}^{1}\left\langle\widetilde{D}_{s}^{\varepsilon} F, \widehat{\Theta}_{s}^{\varepsilon} \gamma^{\prime}(s)\right\rangle d s\right)=\mathbb{E}_{x}\left(F \int_{0}^{1}\left\langle\gamma^{\prime}(s), d B_{s}\right\rangle_{\mathcal{H}}\right) . \tag{2.1}
\end{equation*}
$$

Definition

An \mathcal{F}_{t}-adapted absolutely continuous \mathcal{H}_{x}-valued process $(\gamma(t))_{0 \leqslant t \leqslant 1}$ such that $\gamma(0)=0$ and $\mathbb{E}_{x}\left(\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\|_{\mathcal{H}}^{2} d t\right)<\infty$ will be called a horizontal Cameron-Martin process. The space of horizontal Cameron-Martin processes will be denoted by $\mathcal{C} \mathcal{M}_{\mathcal{H}}(\mathbb{M}, \Omega)$.
Recall the Cameron-Martin space.

$$
H=\left\{h \in W\left(\mathbb{R}^{n}\right) \mid \mathrm{h} \text { is a.c. and } h(0)=0, \int_{0}^{T}\left|h^{\prime}(s)\right|^{2} d s<\infty\right\}
$$

Integration by parts formula for directional derivative

Theorem (Baudoin-F.-Gordina17)
Suppose $F \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)$ and $v \in T W_{\mathcal{H}}(\mathbb{M}, \Omega)$, then
$\mathbb{E}_{x}\left(\mathbf{D}_{v} F\right)=\mathbb{E}_{x}\left(F \int_{0}^{1}\left\langle v_{\mathcal{H}}^{\prime}(t)+\frac{1}{2}\left(\widehat{\Theta}_{t}^{\varepsilon}\right)^{-1} \mathfrak{R i c}_{\mathcal{H}} \widehat{\Theta}_{t}^{\varepsilon} v_{\mathcal{H}}(t), d B_{t}\right\rangle_{\mathcal{H}}\right)$.

Definition
An \mathcal{F}_{t}-adapted $T_{x} \mathbb{M}$-valued continuous semimartingale $(v(t))_{0 \leqslant t \leqslant 1}$ such that $v(0)=0$ and $\mathbb{E}_{x}\left(\int_{0}^{1}\|v(t)\|^{2} d t\right)<\infty$ will be called a tangent process if the process

$$
v(t)-\int_{0}^{t}\left(\widehat{\Theta}_{s}^{\varepsilon}\right)^{-1} T\left(\widehat{\Theta}_{s}^{\varepsilon} \circ d B_{s}, \widehat{\Theta}_{s}^{\varepsilon} v(s)\right)
$$

is a horizontal Cameron-Martin process. The space of tangent processes will be denoted by $T W_{\mathcal{H}}(\mathbb{M}, \Omega)$.

Functional inequalities.

Functional inequalities

Theorem (Baudoin-F,15',)
For every cylindric function $G \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)$ we have the following log-Sobolev inequality.

$$
\mathbb{E}_{x}\left(G^{2} \ln G^{2}\right)-\mathbb{E}_{x}\left(G^{2}\right) \ln \mathbb{E}_{\times}\left(G^{2}\right) \leq 2 e^{3 T\left(K+\frac{\kappa}{\varepsilon}\right)} \mathbb{E}_{x}\left(\int_{0}^{T}\left\|D_{s}^{\varepsilon} G\right\|_{\varepsilon}^{2} d s\right) .
$$

Functional inequalities

Theorem (Baudoin-F,15',)
For every cylindric function $G \in \mathcal{F} C^{\infty}\left(C_{x}(\mathbb{M})\right)$ we have the following log-Sobolev inequality.
$\mathbb{E}_{x}\left(G^{2} \ln G^{2}\right)-\mathbb{E}_{x}\left(G^{2}\right) \ln \mathbb{E}_{x}\left(G^{2}\right) \leq 2 e^{3 T\left(K+\frac{\kappa}{\varepsilon}\right)} \mathbb{E}_{x}\left(\int_{0}^{T}\left\|D_{s}^{\varepsilon} G\right\|_{\varepsilon}^{2} d s\right)$.
Yang-Mills condition $\delta_{\mathcal{H}} T(\cdot)=\sum_{i=1}^{n} \nabla X_{i} T\left(X_{i}, \cdot\right)=0$
Theorem (Baudoin-F,15',)

- Improved Log-Sobolev inequality
- Equivalent conditions: two-sided uniform Ricci curvature bound \leftrightarrow Log-Sobolev inequality \leftrightarrow Poincare inequality \leftrightarrow gradient estimates.

Concentration inequalities.

we denote by d_{ε} the distance associated with g_{ε}
Proposition (Baudoin-F 15', under curvature bounds)
Let $\varepsilon>0$. We have for every $T>0$ and $r \geq 0$
$\mathbb{P}_{x}\left(\sup _{0 \leq t \leq T} d_{\varepsilon}\left(X_{t}, x\right) \geq \mathbb{E}_{x}\left[\sup _{0 \leq t \leq T} d_{\varepsilon}\left(X_{t}, x\right)\right]+r\right) \leq \exp \left(\frac{-r^{2}}{2 T e\left(K+\frac{\kappa}{\varepsilon}\right) T}\right)$
$\Longrightarrow \lim \sup _{r \rightarrow \infty} \frac{1}{r^{2}} \ln \mathbb{P}_{x}\left(\sup _{0 \leq t \leq T} d_{\varepsilon}\left(X_{t}, x\right) \geq r\right) \leq-\frac{1}{2 T e^{\left(K+\frac{\kappa}{\varepsilon}\right) T}}$
Proposition (Baudoin-F 15', $\mathrm{K}=0$ and bounds.)

$$
\begin{aligned}
& \lim \sup _{r \rightarrow+\infty} \frac{1}{r^{2}} \ln \mathbb{P}_{x}\left(\sup _{0 \leq t \leq T} d\left(X_{t}, x\right) \geq r\right) \leq-\frac{1}{2 T}, \\
& \lim \inf _{r \rightarrow+\infty} \frac{1}{r^{2}} \ln \mathbb{P}_{x}\left(\sup _{0 \leq t \leq T} d\left(X_{t}, x\right) \geq r\right) \geq-\frac{D}{2 n T},
\end{aligned}
$$

Future work and applicaitons.

- Compact \Rightarrow complete;
- Rough paths proof of Picard iteration;
- Path space on sub-Riemannian manifold \Rightarrow Loop space on sub-Riemannian manifold;
- Totally geodesic foliations \Rightarrow non totally geodesic foliations;
- Ricci flow on totally geodesic foliations, F. 17', 18'. differential Harnack inequalities, monotonicity formulas.
- Stochastic Ricci flow and random matrices.
- Characterization of Ricci flow using Path space and Wasserstein space on sub-Riemannian manifolds.

Future work and applicaitons.

- Compact \Rightarrow complete;
- Rough paths proof of Picard iteration;
- Path space on sub-Riemannian manifold \Rightarrow Loop space on sub-Riemannian manifold;
- Totally geodesic foliations \Rightarrow non totally geodesic foliations;
- Ricci flow on totally geodesic foliations, F. 17', 18'. differential Harnack inequalities, monotonicity formulas.
- Stochastic Ricci flow and random matrices.
- Characterization of Ricci flow using Path space and Wasserstein space on sub-Riemannian manifolds.
- Quasi-invariance of horizontal Wiener measure. Girsanov Thm
- Is there any finance model that satisfies a Heisenberg group type stochastic differential equation? control problem.
- LDP, SV model, Malliavin calculus application.

Bibliography

围 F. Baudoin and Q. Feng, Log-sobolev inequalities on the horizontal path space of a totally geodesic foliation, arXiv:1503.08180 (2015). Revision for ECP.
F. Baudoin, Q. Feng, and M. Gordina, Quasi-invariance of horizontal wiener measure on a compact foliated riemannian manifold,arXiv:1706.07040 (2017). Revision for JFA.

Thanks for your attention!

Technical part: various connections.

Bott connection

$$
\nabla_{X} Y=\left\{\begin{array}{l}
\pi_{\mathcal{H}}\left(\nabla_{X}^{R} Y\right), X, Y \in \Gamma^{\infty}(\mathcal{H}), \\
\pi_{\mathcal{H}}([X, Y]), X \in \Gamma^{\infty}(\mathcal{V}), Y \in \Gamma^{\infty}(\mathcal{H}), \\
\pi_{\mathcal{V}}([X, Y]), X \in \Gamma^{\infty}(\mathcal{H}), Y \in \Gamma^{\infty}(\mathcal{V}), \\
\pi_{\mathcal{V}}\left(\nabla_{X}^{R} Y\right), X, Y \in \Gamma^{\infty}(\mathcal{V}),
\end{array}\right.
$$

Isomorphism

$$
g_{\mathcal{H}}\left(J_{Z}(X), Y\right)_{x}=g_{\mathcal{V}}(Z, T(X, Y))_{x}, Z \in \Gamma^{\infty}(\mathcal{V}), X, Y \in \Gamma^{\infty}(\mathcal{H})
$$

Damped connection

$$
\nabla_{X}^{\varepsilon} Y=\nabla_{X} Y-T(X, Y)+\frac{1}{\varepsilon} J_{Y} X, \quad X, Y \in \Gamma^{\infty}(\mathbb{M})
$$

Adjoint connection of the damped connection

$$
\hat{\nabla}_{X}^{\varepsilon} Y:=\nabla_{X}^{\varepsilon} Y-T^{\varepsilon}(X, Y)=\nabla_{X} Y+\frac{1}{\varepsilon} J_{X} Y,
$$

Technical part: Bochner-Weitzenböck identity

$$
\square_{\varepsilon}=-\left(\nabla_{\mathcal{H}}-\mathfrak{T}_{\mathcal{H}}^{\varepsilon}\right)^{*}\left(\nabla_{\mathcal{H}}-\mathfrak{T}_{\mathcal{H}}^{\varepsilon}\right)-\frac{1}{\varepsilon} \mathbf{J}^{2}+\frac{1}{\varepsilon} \delta_{\mathcal{H}} T-\mathfrak{R i c} \mathcal{H}_{\mathcal{H}},
$$

- Let $f \in C_{0}^{\infty}(\mathbb{M}), x \in \mathbb{M}$ and $\varepsilon>0$, then

$$
d L f(x)=\square_{\varepsilon} d f(x) . \quad \text { (Baudoin-Kim-Wang. 16' CGT) }
$$

- Consequence

$$
d P_{t} f=Q_{t}^{\varepsilon} d f, P_{t}=e^{t L}, Q_{t}^{\varepsilon}=e^{t \square_{\varepsilon}}
$$

- Clark-Ocone formula

$$
F=\mathbb{E}_{x}(F)+\int_{0}^{T}\left\langle\mathbb{E}_{x}\left(\tilde{D}_{s}^{\epsilon} F \mid \mathcal{F}_{s}\right), \widehat{\Theta}_{0, s}^{\varepsilon} d B_{s}\right\rangle_{\mathcal{H}}
$$

Technical part: stochastic parallel translation.

$\widehat{\Theta}_{t}^{\varepsilon}: T_{X_{t}}^{*} \mathbb{M} \rightarrow T_{X}^{*} \mathbb{M}$ is a solution to

$$
d\left[\widehat{\Theta}_{t}^{\varepsilon} \alpha\left(X_{t}\right)\right]=\widehat{\Theta}_{t}^{\varepsilon} \hat{\nabla}_{o d X_{t}}^{\varepsilon} \alpha\left(X_{t}\right)
$$

$\tau_{t}^{\varepsilon}: T_{X_{t}}^{*} \mathbb{M} \rightarrow T_{x}^{*} \mathbb{M}$ is a solution of

$$
\begin{aligned}
& d\left[\tau_{t}^{\varepsilon} \alpha\left(X_{t}\right)\right] \\
& =\tau_{t}^{\varepsilon}\left(\nabla_{\circ d X_{t}}-\mathfrak{T}_{o d X_{t}}^{\varepsilon}-\right. \\
& \tau_{0}=\mathbf{I d}, \quad \tau_{t}^{\varepsilon}=\mathcal{M}_{t}^{\varepsilon} \Theta_{t}^{\varepsilon} .
\end{aligned}
$$

$$
=\tau_{t}^{\varepsilon}\left(\nabla_{\circ d X_{t}}-\mathfrak{T}_{\circ d X_{t}}^{\varepsilon}-\frac{1}{2}\left(\frac{1}{\varepsilon} \mathbf{J}^{2}-\frac{1}{\varepsilon} \delta_{\mathcal{H}} T+\mathfrak{\Re i c _ { \mathcal { H } }}\right) d t\right) \alpha\left(X_{t}\right)
$$

$\mathcal{M}_{t}^{\varepsilon}: T_{x}^{*} \mathbb{M} \rightarrow T_{x}^{*} \mathbb{M}, t \geqslant 0$, is the solution to ODE

$$
\begin{align*}
& \frac{d \mathcal{M}_{t}^{\varepsilon}}{d t}=-\frac{1}{2} \mathcal{M}_{t}^{\varepsilon} \Theta_{t}^{\varepsilon}\left(\frac{1}{\varepsilon} \mathbf{J}^{2}-\frac{1}{\varepsilon} \delta_{\mathcal{H}} T+\mathfrak{R i c} \mathcal{H}^{2}\right)\left(\Theta_{t}^{\varepsilon}\right)^{-1} \tag{3.3}\\
& \mathcal{M}_{0}^{\varepsilon}=\mathbf{I d}
\end{align*}
$$

Technical part: example.

Given a number ρ, suppose that $G(\rho)$ is simply a connected three-dimensional Lie group whose Lie algebra \mathfrak{g} admits a basis $\{X, Y, Z\}$ satisfying

$$
\begin{gathered}
{[X, Y]=Z,[X, Z]=-\rho Y,[Y, Z]=\rho X .} \\
\rho=0, \varepsilon=\infty \Rightarrow \hat{\Theta}_{t}^{\varepsilon}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \tau_{t}^{\infty}=\left(\begin{array}{ccc}
1 & 0 & B_{t}^{2} \\
0 & 1 & -B_{t}^{1} \\
0 & 0 & 1
\end{array}\right) \\
\rho \neq 0 \Rightarrow \tau_{t}^{\infty}=\left(\begin{array}{ccc}
e^{-\frac{\rho}{2} t} & 0 & \int_{0}^{t} e^{-\frac{\rho}{2} s} d B_{s}^{2} \\
0 & e^{-\frac{\rho}{2} t} & -\int_{0}^{t} e^{-\frac{\rho}{2} s} d B_{s}^{1} \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

