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Our Problem

We consider a robust optimal stopping problem w.r.t. a set P of mutually
singular probabilities on the canonical space €:

sup dnf e [Yr] = jof Ee (Y. M
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| Introduction

Our Problem

We consider a robust optimal stopping problem w.r.t. a set P of mutually
singular probabilities on the canonical space €:

EEEEE;EP[YJ :H;E;EP[YT*]. (1)

o O:={weC([0, T];R): w(0)=0} equipped with uniform norm

lwll = llwllo,r == sup_lw(t)];
t ’
@ The coordinator process Bi(w) := w(t), V(t,w) € [0, T] x Qis a
Brownian motion under the Wiener measure Py on (2, 2(2));
(] F:{Ft}

te[0,7] be the natural filtration of B (no augmentation);
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| Introduction

Our Problem

We consider a robust optimal stopping problem w.r.t. a set P of mutually
singular probabilities on the canonical space €:

EEEEE;EP[YJ :H;E;EP[YT*]. (1)

Q:={weC([0, T];R): w(0)=0} equipped with uniform norm

lwll = llwllo,r == sup_|w(t)l;
t

)

The coordinator process Bi(w) := w(t), V(t,w) €0, T] x Qs a
Brownian motion under the Wiener measure Py on (2, 2(2));

F::{Ft}te[O,T] be the natural filtration of B (no augmentation);

S denotes the set of F—stopping times;

The reward process Y will be specified later.
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Application 1: Risk measures

The worst-case risk measure is defined by

R(E) = ;gng[—ﬁl

for financial position &.
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Application 1: Risk measures

The worst-case risk measure is defined by

R(E) = ;Zng[—ﬂ

for financial position &.

Applying the theorem to a reward Y yields:

Inf R(Yr) = —sup inf Be[ V] = — nf Be[¥r-] = (¥r).

So 7* is an optimal stopping time for the optimal stopping problem of fA.
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Application 2: American Options

@ Regard B as the stock price process and assume P consists of local
martingale measures.
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Application 2: American Options

@ Regard B as the stock price process and assume P consists of local
martingale measures.

@ Let H collect all F—progressively-measurable processes H such that
fOT H2d(B)Y < oo, P-a.s. forany P € P.
o If Y is an American-style option, then the buyer's subhedging price is

a.(Y) = sup{yeR:ElTeSand H € H such that

Y, —i—/ H,dB, >y, P—a.s. for any P € 77}.
0

Proposition

V)= el B () = Be(Ye)
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Application 2: American Options

@ Regard B as the stock price process and assume P consists of local
martingale measures.

@ Let H collect all F—progressively-measurable processes H such that
fOT H2d(B)Y < oo, P-a.s. forany P € P.
o If Y is an American-style option, then the buyer's subhedging price is

a.(Y) = sup{yeR:ElTeSand H € H such that

Y, —i—/ H,dB, >y, P—a.s. for any P € 77}.
0

Proposition

a*(Y)zigg |2;EP(YT):H;2;EP(YT*)

and there is HEH s.t. Y« —+—f07* H,dB,>a.(Y) P-a.s. for all PeP.
In particular, the supremum defining a.(Y') is attained.
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Il. Main Result

© Main Result
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Classical Optimal Stopping

Given a proba. P, to solve

SEEEP[YT] :EP[YT*], (2)

one define the Snell envelope of Y:

ZF> := esssup Ep [YT |.7-"t] .
TES
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TES

@ Then the first time Z¥ meets Y
™ =inf{te[0,T]: ZF = Y}

is an optimal stopping time for (2).
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Classical Optimal Stopping

Given a proba. P, to solve

sup EP[YT] = EIP[YT*]a
TES

one define the Snell envelope of Y:

ZF> := esssup Ep [YT |.7-"t] .
TES

@ Then the first time Z¥ meets Y
™ =inf{te[0,T]: ZF = Y}
is an optimal stopping time for (2).

e ZF is an P—supermartingale and {Zt]'P)/\T*}tG[O 7]

is an P—martingale.
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the Upper Snell Envelope

The key to solving the problem is the upper Snell envelope of Y:

Zy(w):=_inf supEp[Y}¥] > Yi(w), (t,w)€[0,T]xQ,
Pep(tvw)TESt

where P(t,w) C B is a path-dependent probability set.

@ In particular, Zg = inf supEp|Y.].
P 0 IP’ePTeg IP[ T]
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Main Result

Similar to the classic theory, the first time Z meets Y

™ =inf{t€[0,T]: Z; = Ys}
is an optimal stopping time for (1), and Z has a martingale property w.r.t.
the nonlinear expectation &,[¢](w) ;= inf Ep[¢h¥]:

PeP(t,w)

Theorem

Z is an & —supermartingale and {7: 3= 7t,\7*} is an &—martingale

te[0,T]

*

Zi(w) > &, Z-](w), Zi(w) = &:[Z;](w), Y(t,w) €0, T] x Q,7 €St

v
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Main Result

Similar to the classic theory, the first time Z meets Y

™ =inf{t€[0,T]: Z; = Ys}
is an optimal stopping time for (1), and Z has a martingale property w.r.t.
the nonlinear expectation &,[¢](w) ;= inf Ep[¢h¥]:

PeP(t,w)

Theorem

Z is an & —supermartingale and {7: 3= 7t,\7*} is an &—martingale

te[0,T]
Zi(w) > &, Z-](w), Zi(w) = &:[Z;](w), Y(t,w) €0, T] x Q,7 €St
In particular, 7* satisfies

sup inf, Be Y] = Inf Ee[ Y] = jnf supEp[Y:].

v
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the Lower Snell Envelope

Meanwhile, “Optimal Stopping under Adverse Nonlinear Expectation and
Related Games” by Nutz and Zhang addressed the same problem by a
different approach:

@ They derived the &-martingale property of the discrete time version
of the lower Snell envelope

Z.(w) = inf  Ep[Y], (t,w)e[0,T]xQ
Zi(w) = sup inf p[Y7¢], (tw)e[0,T]

by using a “tower property’ of & which relies on another stability of
pasting, then they passed to the limit.
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the Lower Snell Envelope

Meanwhile, “Optimal Stopping under Adverse Nonlinear Expectation and
Related Games” by Nutz and Zhang addressed the same problem by a
different approach:

@ They derived the &-martingale property of the discrete time version
of the lower Snell envelope

Z.(w) = inf  Ep[Y], (t,w)e[0,T]xQ
Zi(w) = sup inf p[Y7¢], (tw)e[0,T]

by using a “tower property’ of & which relies on another stability of
pasting, then they passed to the limit.

@ While our method relies on Z < ZF as well as the martingale property
of ZF.
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An alternative: a controller-stopper game

From a perspective of a zero-sum controller-stopper game in which the
stopper is trying to maximize Y while the controller wants to minimize Y
by selecting the distribution law from P, the theorem shows that the
controller-stopper game has a value

as its lower value V = sup inf Ep|Y;] coincides with the upper one
resPeP

V= Ipl)ggj i:ng[YT].
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What's the difficulty?

Although this result seems similar to the one obtained in the classical
optimal stopping theory, we have encountered major technical hurdles:

@ The lack of a dominating probability in P deprives & of possessing a
dominated convergence theorem, and thus restricts us from taking the
classic approach by El Karoui to obtain the martingale property of Z.
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What's the difficulty?

Although this result seems similar to the one obtained in the classical
optimal stopping theory, we have encountered major technical hurdles:

@ The lack of a dominating probability in P deprives & of possessing a
dominated convergence theorem, and thus restricts us from taking the
classic approach by El Karoui to obtain the martingale property of Z.

@ we do not have a measurable selection theorem for stopping
strategies, which complicates the proof of the dynamic programming
principle of Z.

@ The local approach by Fleming and Souganidis that uses comparison
principle of viscosity solutions to show the existence of game value
does not work for our path-dependent setting.
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111. Shifted Processes

© Shifted Processes
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Shifted Canonical Probability Spaces

Qf :={weC([t, T;R): w(t)=0} equipped with uniform norm

[wlle,7:= sup_[w(s)l;

s€ft,T]

The coordinator process Bi(w) := w(s), V(s,w) € [t, T] x Qt is a
Brownian motion under the Wiener measure B§ on (QFf, Z(Q"));

Ft .= {‘Fst}se[t,T]
St denotes the set of Ft—stopping times.

Let 3, collect all probabilities P on (QF, 2(Q")).

be the natural filtration of B?;
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111. Shifted Processes

Shifted Canonical Probability Spaces

o Q' :={weC([t, T|;R): w(t)=0} equipped with uniform norm

o

t,7 = sup |w(s)l;
s€ft,T]

@ The coordinator process Bi(w) := w(s), V(s,w) € [t, T] x Q' is a
Brownian motion under the Wiener measure B§ on (QFf, Z(Q"));

o Ft:= {‘Fst}se[t,T]

@ S! denotes the set of Ft—stopping times.

o Let B, collect all probabilities P on (QF, Z(Q2")).

be the natural filtration of B?;

For any F!—measurable r.v. n, if w=w’ over [t,s], then n(w)=n(w’).
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Shifted Random Variables and Shifted Processes

Let 0<t<s<T and weQt. Givenar.v. £ and a process X = {Xe}rele,m
on QF, define their shifted versions on Q° by

EU(W) = E(w®s w), Vw e Q;
and X7¥(w) = X(r,w®sw), Y(r,w)els, T]x Q%
where the concatenation w ®s @ € Q' is defined by
(w®s@)(r) == w(r) Lepesyy + (w(s) +@(r) Lirers, 3> Vr et T).
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Shifted Random Variables and Shifted Processes

Let 0<t<s<T and we Q" Givenar.v. £ and a process X = {X;} [,
on QF, define their shifted versions on Q° by
EY(W) = {(w s ), Vw e Q%
and X7¥(w) = X(r,w®sw), Y(r,w)els, T]x Q%
where the concatenation w ®s @ € Q' is defined by
(w®s@)(r) == w(r) Lepesyy + (w(s) +@(r) Lirers, 3> Vr et T).

The shifted r.v.’s/processes “inherit” measurability as follows:

Proposition

Let M be a generic metric space.

1) If an M—valued r.v. £ on Q' is Ft—measurable for some r € [s, T],
then 5% s F7 —measurable.

2) If an M—valued process {X;},¢[¢, 1] is F*—adapted (resp.

F—progressively measurable), then the shifted process { X7} cls.7] 5

F*—adapted (resp. F°—progressively measurable).

v
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Regular Conditional Probability Distributions

Let 0<t<s<T and P € PB;. There exists a family {P¥},cqt of
probabilities on (QF, 2(Q")), called the regular conditional probability
distribution (r.c.p.d.) of P w.r.t. F! such that

(i) VA e FL, the mapping w — PY(A) is Ff—measurable;
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Regular Conditional Probability Distributions

Let 0<t<s<T and P € PB;. There exists a family {P¥},cqt of
probabilities on (QF, 2(Q")), called the regular conditional probability
distribution (r.c.p.d.) of P w.r.t. F! such that

(i) VA e FL, the mapping w — PY(A) is Ff—measurable;
(ii) V€ € [1(FE,P), Epsle] = Bp[€|FE](w) for P-ass. w € QF;
(iii) Vw € QF, P¥(w s Q%) = 1.
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Regular Conditional Probability Distributions

Let 0<t<s<T and P € PB;. There exists a family {P¥},cqt of
probabilities on (QF, 2(Q")), called the regular conditional probability
distribution (r.c.p.d.) of P w.r.t. F! such that

(i) VA e FL, the mapping w — PY(A) is Ff—measurable;

(ii) V€ € [1(FE,P), Epsle] = Bp[€|FE](w) for P-ass. w € QF;
(i) Yw € Qf, P2 (w s Q%) = 1.

Given w € QF, we can deduce from (iii) that

Ps¢(A) :=P¥(w®@s A), VAcFs (3)

defines a probability of ;.
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Regular Conditional Probability Distributions

Let 0<t<s<T and P € PB;. There exists a family {P¥},cqt of
probabilities on (QF, 2(Q")), called the regular conditional probability
distribution (r.c.p.d.) of P w.r.t. F! such that

(i) VA e FL, the mapping w — PY(A) is Ff—measurable;

(ii) V€ € [1(FE,P), Epsle] = Bp[€|FE](w) for P-ass. w € QF;
(i) Yw € Qf, P2 (w s Q%) = 1.

Given w € QF, we can deduce from (iii) that

Ps¢(A) :=P¥(w®@s A), VAcFs (3)

defines a probability of ;.
The Wiener measures, however, are invariant under path shift:

It holds for P§—a.s. weQ* that (Pé)s’w =P}.
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111. Shifted Processes

For a P—integrable r.v. &, its shift £&5“ is PS* —integrable:

Proposition

If¢ € LY(FL,P) for some P € Py, it holds for P—a.s. w € QF that
& e M(Fs,P) and

Epsw [£] = Ep[¢| FL](w) € R.
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IV. Assumptions

@ Assumptions and Weak Stability of Pasting
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Regularity Assumptions on reward Y

(Y1) For some Py €%, Y € H/)\)(F,]P’ﬁ), i.e., Y is a F—adapted, RCLL
process with Ep, [ Y. In(Y,)] < oo ;
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Regularity Assumptions on reward Y

(Y1) For some Py €%, Y € H/]\)(F,]P’ﬁ), i.e., Y is a F—adapted, RCLL
process with Ep, [ Y. In(Y,)] < oo ;
(Y2) (An one-sided continuity) For any 0<t; <t, < T and wy,wp €Q

Yo (w1) = Y (w2) S (2—t1)+llwi(- A t1) —w2(- A 22) |-

For any te [0, T] and any P € s, if Y c D(Ft,P) for some w e, then
Yt cD(Ft,P) for all w' €.

Given t€[0, T], set ) :={PeP,: YOcD(F:,P)}. For any P&, the
Lemma says that

Y eD(FLP), YweQ.
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Assumptions on a Probability Class {P(t,w) }(¢w)elo, 7]x0

(P0) (Non-anticipative) If wijp q=w2|[o,g. P(t,w1)="P(t,w2) CPY .
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(P1) (Invariance) it holds for P-a.s. @ € Qf that PS% € P(s,w ®; @);
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(:vdj € QL.
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(i) P(ANAg)=P(ANAg), VA€ F} where Ao := N7 AS;

(i) For any j=1,---,m and A € Ff, P(AN A;) = P(AN A;) and
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Assumptions on a Probability Class {P(t,w) }(¢w)elo, 7]x0

(P0) (Non-anticipative) If wijp q=w2|[o,g. P(t,w1)="P(t,w2) CPY .

In particular, P:=P(0,0)=P(0,w), YVweQ.

Also, for any 0<t<s<T,weQ, PeP(t,w), B

(P1) (Invariance) it holds for P-a.s. @ € Qf that P*% € P(s,w ®; );
(P2) (Weak Stability of Pasting) £ > 0, let {A;}2; C F{ be disjoint
subsets s.t. each A; C O2(w;):={weQt: [|w— wj||t5<5} for some

wj € QF. Then VP;eP(s,w ®¢ wj), j=1,---,m, there is PeP(t,w) s.t.
(i) P(ANAg)=P(ANAg), VA€ F} where Ao := N7 AS;

(i) For any j=1,---,m and A € Ff, P(AN A;) = P(AN A;) and

sup B [1an, V1] <Ep | Lizeany ( supBe, [YZ“7C] +e) |,
reSt cess

o (P2) are implied by the ‘/‘\stability under finite pasting”:
P(A)=P(ANAo) + Y Es [1{%Aj}pj (AS’UJ)} , VAeFt.
j=1
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1V. Assumptions

Assumptions on Z

(Zl) ‘7t(w1) —71_»(0.)2)‘ S le — w2|]07t, le,WQ € Q, Vte [0, T]
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Assumptions on Z

(Zl) ‘7t(w1) —?t((JJz)‘ S le — WQ”OJ_», le,WQ € Q, Vte [0, T]
Remark: If P(t,w) does not depend on w, then (Y2) implies (Z1).
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Assumptions on Z

(Zl) ‘7t(w1) —7t(w2)‘ S le — WQ”OJ_», le,wz € Q, Vte [07 T]
Remark: If P(t,w) does not depend on w, then (Y2) implies (Z1).
(Z2) For any a > 0, there is C, > 0s.t. forany t € [0, T)

sup sup Ep{ sup |B,t|] < Gy, Ve (0,T].
weO0g,(0) PeP(t,w) reft,(t4+0)AT]
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Example: Path-dependent SDEs with Controls

Fix C>0. For any t€[0, T], let U; collect all F*—progressively measurable
processes {{is}se[¢, 7] Such that |u.[<C.
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Example: Path-dependent SDEs with Controls

Fix C>0. For any t€[0, T], let U; collect all F*—progressively measurable
processes {{is}se[¢, 7] Such that |u.[<C.

We impose sufficient regularity conditions on b: [0, T|xQxR—R s.t. for
any u € U, the path-dependent SDE

S S
Xs:/ bt""(r,X,,u,)dr%—/ pedBt, selt, T, (4)
t t

admits a unique solution X*“** on (QFf, %, P), where

b*(r,@,u):=b(r,w ®:w,u), V(r,w,u)€[t, T] x Q" x R.
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Example: Path-dependent SDEs with Controls

Fix C>0. For any t€[0, T], let U; collect all F*—progressively measurable
processes {{is}se[¢, 7] Such that |u.[<C.

We impose sufficient regularity conditions on b: [0, T|xQxR—R s.t. for
any u € U, the path-dependent SDE

S S
Xs :/ bt"*’(r,X,,u,)dr—l—/ prdBf, selt,T], (4)
t t
admits a unique solution X*“** on (QFf, %, P), where
b*(r,@,u):=b(r,w ®:w,u), V(r,w,u)€[t, T] x Q" x R.
Let P“# be the law of X““** under P§:

BN(A) = B (X) (A, VA€ F.
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Example: Path-dependent SDEs with Controls (Cont'd)

For any (t,w)€[0, T]xQ and peldy, we set P(t,w):={P"#: neld}.
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Example: Path-dependent SDEs with Controls (Cont'd)

For any (t,w)€[0, T]xQ and peldy, we set P(t,w):={P"#: neld}.

Proposition
{P(t,w)}(tw)elo, T]xq satisfies (PO),
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Example: Path-dependent SDEs with Controls (Cont'd)

For any (t,w)€[0, T]xQ and peldy, we set P(t,w):={P"#: neld}.

Proposition
{P(t,w)}(tw)elo, Tixq satisfies (P0), (P1), (P2), (Z1) and (Z22).
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V. DPP

e Dynamic Programming Principle
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Dynamic Programming Principle (DPP) of Z

1) Z is F—adapted.
2) For any (t,w)€[0, T]xQ, PeP(t,w) and set, T], ]EPU??&” = e
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Dynamic Programming Principle (DPP) of Z

1) Z is F—adapted.
2) For any (t,w)€[0, T]xQ, PeP(t,w) and set, T], ]EPU??MH = e

We first have a basic dynamic programming principle of Z:

Proposition

Forany0<t<s< T andw € Q,

=2 _ . t,w t,w
Zw) =, | sup Be[Lira Y1 + 12 257
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_
Dynamic Programming Principle (DPP) of Z

Consequently, all paths of Z are continuous:

Proposition

For any (t,w) € [0, T] x Q and P € P(t,w), Z" € C}(F!,P).
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V. DPP

Dynamic Programming Principle (DPP) of Z

Consequently, all paths of Z are continuous:

Proposition

For any (t,w) € [0, T] x Q and P € P(t,w), Z" € CL(Ft,P).

The continuity of Z allows us to derive a general version of dynamic
programming principle with random horizons.

Proposition

For any (t,w) € [0, T] x Q and v € S¢,

Zi(w) = inf Ep |1l Y0¥ + 1090 257
t(w) bt ) SUp Ep|Lirci) ¥ s Zy
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Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) 1= (Y@, Z").
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Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) := (Y, Z"). Given &€ Q, we can find a
Py eP(s,w ®¢ w) s.t.

Z(@) > sup Ep, [V5¥] —¢/3. (5)
TESS
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Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) := (Y, Z"). Given &€ Q, we can find a
Py eP(s,w ®¢ w) s.t.

Z(@) > sup Ep, [V5¥] —¢/3. (5)
TESS

By the continuity of Y and Z,

~ 2 ~ ~
sup Ep_ [V3¥ ] < Z(w’)—i—ga, Vo' e 03(w). (6)
TESS
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Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) := (Y, Z"). Given &€ Q, we can find a
Py eP(s,w ®¢ w) s.t.

Z(@) > sup Ep, [V5¥] —¢/3. (5)
TESS

By the continuity of Y and Z,

~ 2 ~ ~
sup Ep_ [V3¥ ] < Z(w’)—i—ga, Vo' e 03(w). (6)
TESS

o Let {@f}jeN be dense in QF and fix PeP(t,w).

3/24/2014 27/ 32



Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) := (Y, Z"). Given &€ Q, we can find a
Py eP(s,w ®¢ w) s.t.

Z(@) > sup Ep, [V5¥] —¢/3. (5)
TESS

By the continuity of Y and Z,

~ 2 ~ ~
sup Ep_ [V3¥ ] < Z(w’)—i—ga, Vo' e 03(w). (6)
TESS

o Let {@f}jeN be dense in QF and fix PeP(t,w).
e Forj=1,--- ) set Aj:= (Og(@f)\( .U.Og(@jt,))> e F! and
J'<J
P; = IP’@J; via (5).
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Sketchy Proof of DPP “<"

Fix (t,w), we set (¥, Z) := (Y, Z"). Given &€ Q, we can find a
Py eP(s,w ®¢ w) s.t.

Z(@) > sug Ep, D/ﬁ’a] —€/3. (5)
TES®

By the continuity of Y and Z,

~ o 2 - -
sup Ep_ [V3¥ ] < Z(w’)—i—ga, Vo' e 03(w). (6)
TESS
o Let {@f}jeN be dense in QF and fix PeP(t,w).
e Forj=1,--- ) set Aj:= (Og(@f)\( .U.Og(fujt/))> e F! and
J'<J
P; = IP’@J; via (5).

o Let Py be the probability of P(t,w) in (P2) that corresponds to the
partition {.A;} and the probabilities {IP;}.
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Sketchy Proof of DPP “<" (Cont'd)

Using (6),
E]P’A D)T] < Ep |:1{T<S}y’7' + 1{7'25}25] +e.
Taking supremum over 7€ S? yields that

?t(w) < sup Ep [1{T<5}y7— + I{TZS}ZS:| .
TES?
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a2 P
Sketchy Proof of DPP “>"

e Fix P € P(t,w), note Z5(w) < sup Eps [ygﬂ Vo e Q. Given
cess
=

Epsz [3}2’ } Ep D}C(nr)}]:] )<Ep D}T‘}—t] (7)

holds for any @ € Q' except on a P—null set ./\/C, where T is an
optimal stopping time.

@ Since S° is an uncountable set, we can not take supremum over
¢ € 8° for P—a.s. w € QF in (7) to directly obtain

Z, <Ep[Y:|F;| =2, P-as.
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Sketchy Proof of DPP “>" (Cont'd)

To overcome this difficulty, we shall consider a “dense” countable subset '
of 8% in sense that for any 7 € S, we cana 7/ € I s.t.

IEPHJJ?/ — yg_\H < /4.

3/24/2014 30/ 32



Sketchy Proof of DPP “>" (Cont'd)

To overcome this difficulty, we shall consider a “dense” countable subset '
of 8% in sense that for any 7 € S, we cana 7/ € I s.t.

IEPHJJ?/ — y;_\H < /4.

Then using (7),

Ep [1{T<s}y7 +1l>g Zs:| <Ep [1{T<s}y7'/\s+ 1>0Ep D’?!-ﬂﬂ

=Ep [1(r ) Vrns+Lirg Ve| = Ep[V] < sup B (3]
TES

Taking supremum over 7 €S yields “>".
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Sketchy Proof of the Theorem

@ The dynamic programming principle plays two roles in the
demonstration of (1): First, it is used to show the continuity of Z,
which is crucial in our construction of approximating stopping times
for 7*. Second, a random-horizon version of DPP directly gives rise to
the supermartingale property of Z.

@ The submartingale property of Z until 7%, however, requires a delicate
approximation scheme that involves carefully pasting probabilities,
Z < ZP and the martingale property of Z.
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V. DPP

Thank you for your attention. J
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