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I. Introduction

Our Problem

We consider a robust optimal stopping problem w.r.t. a set P of mutually
singular probabilities on the canonical space Ω:

sup
τ∈S

inf
P∈P

EP
[
Yτ
]

= inf
P∈P

EP
[
Yτ∗
]
. (1)

Ω:=
{
ω∈C([0,T ];R) : ω(0)=0

}
equipped with uniform norm

‖ω‖ = ‖ω‖0,T := sup
t∈[0,T ]

|ω(t)|;

The coordinator process Bt(ω) := ω(t), ∀ (t, ω) ∈ [0,T ]× Ω is a
Brownian motion under the Wiener measure P0 on

(
Ω,B(Ω)

)
;

F :=
{
Ft

}
t∈[0,T ]

be the natural filtration of B (no augmentation);

S denotes the set of F−stopping times;

The reward process Y will be specified later.
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I. Introduction

Application 1: Risk measures

The worst-case risk measure is defined by

R(ξ) := sup
P∈P

EP[−ξ]

for financial position ξ.

Applying the theorem to a reward Y yields:

inf
τ∈S

R(Yτ ) = −sup
τ∈S

inf
P∈P

EP
[
Yτ
]

= − inf
P∈P

EP
[
Yτ∗
]

= R
(
Yτ∗
)
.

So τ∗ is an optimal stopping time for the optimal stopping problem of R.
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I. Introduction

Application 2: American Options

Regard B as the stock price process and assume P consists of local
martingale measures.

Let H collect all F−progressively-measurable processes H such that∫ T
0 H2

s d〈B〉Ps <∞, P-a.s. for any P ∈ P.

If Y is an American-style option, then the buyer’s subhedging price is

a∗(Y ) := sup
{

y ∈ R : ∃ τ ∈ S and H ∈ H such that

Yτ +

∫ τ

0
HrdBr ≥ y , P− a.s. for any P ∈ P

}
.

Proposition

a∗(Y )= sup
τ∈S

inf
P∈P

EP(Yτ )= inf
P∈P

EP(Yτ∗)

and there is H∈H s.t. Yτ∗+
∫ τ∗

0 HrdBr ≥a∗(Y ) P-a.s. for all P∈P.
In particular, the supremum defining a∗(Y ) is attained.
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II. Main Result

Classical Optimal Stopping

Given a proba. P, to solve

sup
τ∈S

EP
[
Yτ
]

= EP
[
Yτ∗
]
, (2)

one define the Snell envelope of Y :

ZP
t := esssup

τ∈S
EP
[
Yτ |Ft

]
.

Then the first time ZP meets Y

τ∗ := inf{t ∈ [0,T ] : ZP
t = Yt}

is an optimal stopping time for (2).

ZP is an P−supermartingale and
{

ZP
t∧τ∗

}
t∈[0,T ]

is an P−martingale.
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II. Main Result

the Upper Snell Envelope

The key to solving the problem is the upper Snell envelope of Y :

Z t(ω) := inf
P∈P(t,ω)

sup
τ∈St

EP
[
Y t,ω
τ

]
≥ Yt(ω), (t, ω)∈ [0,T ]×Ω,

where P(t, ω) ⊂ PY
t is a path-dependent probability set.

In particular, Z 0 = inf
P∈P

sup
τ∈S

EP
[
Yτ
]
.
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II. Main Result

Main Result

Similar to the classic theory, the first time Z meets Y

τ∗ := inf{t ∈ [0,T ] : Z t = Yt}

is an optimal stopping time for (1), and Z has a martingale property w.r.t.
the nonlinear expectation E t [ξ](ω) := inf

P∈P(t,ω)
EP[ξt,ω]:

Theorem

Z is an E−supermartingale and
{

Z
∗
t := Z t∧τ∗

}
t∈[0,T ]

is an E−martingale

Z t(ω) ≥ E t

[
Z τ

]
(ω), Z

∗
t (ω) = E t

[
Z
∗
τ

]
(ω), ∀ (t, ω) ∈ [0,T ]× Ω, τ ∈ St .

In particular, τ∗ satisfies

sup
τ∈S

inf
P∈P

EP
[
Yτ
]

= inf
P∈P

EP
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II. Main Result

the Lower Snell Envelope

Meanwhile, “Optimal Stopping under Adverse Nonlinear Expectation and
Related Games” by Nutz and Zhang addressed the same problem by a
different approach:

They derived the E -martingale property of the discrete time version
of the lower Snell envelope

Z t(ω) := sup
τ∈St

inf
P∈P(t,ω)

EP
[
Y t,ω
τ

]
, (t, ω) ∈ [0,T ]× Ω

by using a “tower property” of E which relies on another stability of
pasting, then they passed to the limit.

While our method relies on Z ≤ ZP as well as the martingale property
of ZP.
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II. Main Result

An alternative: a controller-stopper game

From a perspective of a zero-sum controller-stopper game in which the
stopper is trying to maximize Y while the controller wants to minimize Y
by selecting the distribution law from P, the theorem shows that the
controller-stopper game has a value

V = inf
P∈P

EP
[
Yτ∗
]

as its lower value V = sup
τ∈S

inf
P∈P

EP
[
Yτ
]

coincides with the upper one

V = inf
P∈P

sup
τ∈S

EP
[
Yτ
]
.
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II. Main Result

What’s the difficulty?

Although this result seems similar to the one obtained in the classical
optimal stopping theory, we have encountered major technical hurdles:

The lack of a dominating probability in P deprives E of possessing a
dominated convergence theorem, and thus restricts us from taking the
classic approach by El Karoui to obtain the martingale property of Z .

we do not have a measurable selection theorem for stopping
strategies, which complicates the proof of the dynamic programming
principle of Z .

The local approach by Fleming and Souganidis that uses comparison
principle of viscosity solutions to show the existence of game value
does not work for our path-dependent setting.

( ) 3/24/2014 12 / 32
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III. Shifted Processes

Shifted Canonical Probability Spaces

Ωt :=
{
ω∈C([t,T ];R) : ω(t)=0

}
equipped with uniform norm

‖ω‖t,T := sup
s∈[t,T ]

|ω(s)|;

The coordinator process Bt
s(ω) := ω(s), ∀ (s, ω) ∈ [t,T ]× Ωt is a

Brownian motion under the Wiener measure Pt
0 on

(
Ωt ,B(Ωt)

)
;

Ft :=
{
F t
s

}
s∈[t,T ]

be the natural filtration of Bt ;

St denotes the set of Ft−stopping times.

Let Pt collect all probabilities P on
(
Ωt ,B(Ωt)

)
.

For any F t
s−measurable r.v. η, if ω=ω′ over [t, s], then η(ω)=η(ω′).
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III. Shifted Processes

Shifted Random Variables and Shifted Processes

Let 0≤ t≤s≤T and ω∈Ωt . Given a r.v. ξ and a process X = {Xr}r∈[t,T ]

on Ωt , define their shifted versions on Ωs by

ξs,ω(ω̃) := ξ(ω ⊗s ω̃), ∀ ω̃ ∈ Ωs ;

and X s,ω
r (ω̃) := X (r , ω ⊗s ω̃), ∀ (r , ω̃) ∈ [s,T ]× Ωs ,

where the concatenation ω ⊗s ω̃ ∈ Ωt is defined by(
ω ⊗s ω̃

)
(r) := ω(r) 1{r∈[t,s)} +

(
ω(s) + ω̃(r)

)
1{r∈[s,T ]}, ∀ r ∈ [t,T ].

The shifted r.v.’s/processes “inherit” measurability as follows:

Proposition

Let M be a generic metric space.
1) If an M−valued r.v. ξ on Ωt is F t

r−measurable for some r ∈ [s,T ],
then ξs,ω is F s

r −measurable.
2) If an M−valued process {Xr}r∈[t,T ] is Ft−adapted (resp.
Ft−progressively measurable), then the shifted process

{
X s,ω
r

}
r∈[s,T ]

is

Fs−adapted (resp. Fs−progressively measurable).

( ) 3/24/2014 15 / 32
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III. Shifted Processes

Regular Conditional Probability Distributions

Let 0≤ t≤s≤T and P ∈ Pt . There exists a family {Pωs }ω∈Ωt of
probabilities on

(
Ωt ,B(Ωt)

)
, called the regular conditional probability

distribution (r.c.p.d.) of P w.r.t. F t
s such that

( i) ∀A ∈ F t
T , the mapping ω → Pωs (A) is F t

s−measurable;

( ii) ∀ ξ ∈ L1
(
F t
T ,P

)
, EPωs [ξ] = EP

[
ξ
∣∣F t

s

]
(ω) for P-a.s. ω ∈ Ωt ;

(iii) ∀ω ∈ Ωt , Pωs
(
ω ⊗s Ωs

)
= 1.

Given ω ∈ Ωt , we can deduce from (iii) that

Ps,ω
(
Ã
)

:= Pωs
(
ω ⊗s Ã

)
, ∀ Ã ∈ F s

T (3)

defines a probability of Ps .
The Wiener measures, however, are invariant under path shift:

Lemma

It holds for Pt
0−a.s. ω∈Ωt that

(
Pt

0

)s,ω
= Ps

0.
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III. Shifted Processes

For a P−integrable r.v. ξ, its shift ξs,ω is Ps,ω−integrable:
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IV. Assumptions

Regularity Assumptions on reward Y

(Y1) For some P]∈P0, Y ∈ D̂(F,P]), i.e., Y is a F−adapted, RCLL
process with EP]

[
Y∗ ln+(Y∗)

]
<∞ ;

(Y2) (An one-sided continuity) For any 0≤ t1≤ t2≤T and ω1, ω2∈Ω

Yt1(ω1)−Yt2(ω2) . (t2−t1)+‖ω1(· ∧ t1)−ω2(· ∧ t2)‖.

Lemma

For any t∈ [0,T ] and any P ∈ Pt , if Y t,ω∈ D̂(Ft ,P) for some ω∈Ω, then
Y t,ω′ ∈ D̂(Ft ,P) for all ω′∈Ω.

Given t∈ [0,T ], set PY
t :=

{
P∈Pt : Y t,0∈ D̂(Ft ,P)

}
. For any P∈Pt , the

Lemma says that

Y t,ω∈ D̂
(
Ft ,P

)
, ∀ω ∈ Ω.
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IV. Assumptions

Assumptions on a Probability Class {P(t, ω)}(t,ω)∈[0,T ]×Ω

(P0) (Non-anticipative) If ω1|[0,t] =ω2|[0,t], P(t, ω1)=P(t, ω2)⊂PY
t .

In particular, P :=P(0, 0)=P(0, ω), ∀ω∈Ω.
Also, for any 0≤ t<s≤T , ω∈Ω, P∈P(t, ω),
(P1) (Invariance) it holds for P-a.s. ω̃ ∈ Ωt that Ps,ω̃ ∈ P(s, ω ⊗t ω̃);

(P2) (Weak Stability of Pasting) ε > 0, let {Aj}mj=1 ⊂ F t
s be disjoint

subsets s.t. each Aj⊂Os
ε(ω̃j) :={ω̃∈Ωt : ‖ω̃−ω̃j‖t,s<ε} for some

ω̃j ∈ Ωt . Then ∀Pj ∈P(s, ω ⊗t ω̃j), j =1, · · ·,m, there is P̂∈P(t, ω) s.t.

( i) P̂(A ∩ A0)=P(A ∩ A0), ∀A ∈ F t
T where A0 := ∩mj=1Ac

j ;

(ii) For any j =1, · · ·,m and A ∈ F t
s , P̂(A ∩ Aj) = P(A ∩ Aj) and

sup
τ∈Sts

EP̂
[
1A∩Aj

Y t,ω
τ

]
≤EP

[
1{ω̃∈A∩Aj}

(
sup
ζ∈Ss

EPj

[
Y s,ω⊗t ω̃
ζ

]
+ε
)]
,

(P2) are implied by the “stability under finite pasting”:

P̂(A)=P(A ∩ A0

)
+

λ∑
j=1

EP

[
1{ω̃∈Aj}Pj

(
As,ω̃

)]
, ∀A ∈ F t

T .
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IV. Assumptions

Assumptions on Z

(Z1)
∣∣Z t(ω1)− Z t(ω2)

∣∣ . ‖ω1 − ω2‖0,t , ∀ω1, ω2 ∈ Ω, ∀ t ∈ [0,T ].

Remark: If P(t, ω) does not depend on ω, then (Y2) implies (Z1).

(Z2) For any α > 0, there is Cα > 0 s.t. for any t ∈ [0,T )

sup
ω∈Ot

α(0)
sup

P∈P(t,ω)
EP

[
sup

r∈[t,(t+δ)∧T ]
|Bt

r |
]
≤ Cαδ, ∀ δ ∈ (0,T ].
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(Z2) For any α > 0, there is Cα > 0 s.t. for any t ∈ [0,T )

sup
ω∈Ot

α(0)
sup

P∈P(t,ω)
EP

[
sup

r∈[t,(t+δ)∧T ]
|Bt

r |
]
≤ Cαδ, ∀ δ ∈ (0,T ].
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IV. Assumptions

Example: Path-dependent SDEs with Controls

Fix C >0. For any t∈ [0,T ], let Ut collect all Ft−progressively measurable
processes {µs}s∈[t,T ] such that |µ·|≤C .

We impose sufficient regularity conditions on b : [0,T ]×Ω×R→R s.t. for
any µ ∈ Ut the path-dependent SDE

Xs =

∫ s

t
bt,ω(r ,X , µr )dr +

∫ s

t
µr dBt

r , s ∈ [t,T ], (4)

admits a unique solution X t,ω,µ on
(
Ωt ,F t

T ,Pt
0

)
, where

bt,ω(r , ω̃, u) :=b(r , ω ⊗t ω̃, u), ∀ (r , ω̃, u) ∈ [t,T ]× Ωt × R.

Let Pt,ω,µ be the law of X t,ω,µ under Pt
0:

Pt,ω,µ(A) := Pt
0 ◦
(
X t,ω,µ

)−1
(A), ∀A ∈ F t

T .
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IV. Assumptions

Example: Path-dependent SDEs with Controls (Cont’d)

For any (t, ω)∈ [0,T ]×Ω and µ∈Ut , we set P(t, ω) :=
{
Pt,ω,µ : µ∈Ut

}
.

Proposition

{P(t, ω)}(t,ω)∈[0,T ]×Ω satisfies (P0), (P1), (P2), (Z1) and (Z2).
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V. DPP

Dynamic Programming Principle (DPP) of Z

Lemma

1) Z is F−adapted.

2) For any (t, ω)∈ [0,T ]×Ω, P∈P(t, ω) and s∈ [t,T ], EP

[∣∣Z t,ω
s

∣∣] <∞.

We first have a basic dynamic programming principle of Z :

Proposition

For any 0 ≤ t ≤ s ≤ T and ω ∈ Ω,

Z t(ω) = inf
P∈P(t,ω)

sup
τ∈St

EP

[
1{τ<s}Y

t,ω
τ + 1{τ≥s}Z

t,ω
s

]
.
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V. DPP

Dynamic Programming Principle (DPP) of Z

Consequently, all paths of Z are continuous:

Proposition

For any (t, ω) ∈ [0,T ]× Ω and P ∈ P(t, ω), Z
t,ω ∈ C1(Ft ,P).

The continuity of Z allows us to derive a general version of dynamic
programming principle with random horizons.

Proposition

For any (t, ω) ∈ [0,T ]× Ω and ν ∈ St ,

Z t(ω) = inf
P∈P(t,ω)

sup
τ∈St

EP

[
1{τ<ν}Y

t,ω
τ + 1{τ≥ν}Z

t,ω
ν

]
.
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V. DPP

Sketchy Proof of DPP “≤”

Fix (t, ω), we set (Y,Z) := (Y t,ω,Z
t,ω

).

Given ω̃∈Ωt , we can find a
Pω̃∈P(s, ω ⊗t ω̃) s.t.

Z(ω̃) ≥ sup
τ∈Ss

EPω̃
[
Ys,ω̃
τ

]
− ε/3. (5)

By the continuity of Y and Z ,

sup
τ∈Ss

EPω̃
[
Ys,ω̃′
τ

]
≤ Z(ω̃′)+

2

3
ε, ∀ ω̃′ ∈ Os

δ (ω̃). (6)

Let
{
ω̂t
j

}
j∈N be dense in Ωt and fix P∈P(t, ω).

For j =1, · · ·, λ, set Aj :=
(

Os
δ (ω̂t

j )
∖(
∪

j ′<j
Os
δ (ω̂t

j ′)
))
∈F t

s and

Pj := Pω̂t
j

via (5).

Let Pλ be the probability of P(t, ω) in (P2) that corresponds to the
partition {Aj} and the probabilities {Pj}.
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V. DPP

Sketchy Proof of DPP “≤” (Cont’d)

Using (6),

EPλ
[
Yτ
]
≤ EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
+ ε.

Taking supremum over τ ∈St yields that

Z t(ω) ≤ sup
τ∈St

EP

[
1{τ<s}Yτ + 1{τ≥s}Zs

]
.
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V. DPP

Sketchy Proof of DPP “≥”

Fix P ∈ P(t, ω), note Zs(ω̃)≤ sup
ζ∈Ss

EPs,ω̃

[
Ys,ω̃
ζ

]
, ∀ ω̃ ∈ Ωt . Given

ζ ∈ Ss ,

EPs,ω̃

[
Ys,ω̃
ζ

]
= EP

[
Yζ(Πt

s)

∣∣F t
s

]
(ω̃)≤EP

[
Yτ̂
∣∣F t

s

]
(ω̃) (7)

holds for any ω̃ ∈ Ωt except on a P−null set Nζ , where τ̂ is an
optimal stopping time.

Since Ss is an uncountable set, we can not take supremum over
ζ ∈ Ss for P−a.s. ω̃ ∈ Ωt in (7) to directly obtain

Zs ≤ EP
[
Yτ̂
∣∣FP

s

]
= ZP

s , P− a.s.
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V. DPP

Sketchy Proof of DPP “≥” (Cont’d)

To overcome this difficulty, we shall consider a “dense” countable subset Γ
of Ss in sense that for any τ̂ ∈ Ss , we can a τ̂ ′ ∈ Γ s.t.

EP
[∣∣Yτ̂ ′ − Yτ̂ ∣∣] < ε/4.

Then using (7),

EP

[
1{τ<s}Yτ+1{τ≥s}Zs

]
≤EP

[
1{τ<s}Yτ∧s +1{τ≥s}EP

[
Yτ̂
∣∣F t

s

]]
=EP

[
1{τ<s}Yτ∧s +1{τ≥s}Yτ̂

]
= EP

[
Yτ
]
≤ sup
τ∈St

EP
[
Yτ
]
.

Taking supremum over τ ∈St yields “≥”.
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V. DPP

Sketchy Proof of the Theorem

The dynamic programming principle plays two roles in the
demonstration of (1): First, it is used to show the continuity of Z ,
which is crucial in our construction of approximating stopping times
for τ∗. Second, a random-horizon version of DPP directly gives rise to
the supermartingale property of Z .

The submartingale property of Z until τ∗, however, requires a delicate
approximation scheme that involves carefully pasting probabilities,
Z ≤ ZP and the martingale property of ZP.
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V. DPP

Thank you for your attention.
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