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Fixed Point of ODE

Consider ODE {
dv(t)
dt = −v(t)

v(0) = y ∈ R1.

For fixed t ≥ 0, regard v as a mapping

vy(t) : R1 7→ R1.

Then a fixed point is an initial value of the ODE satisfying

vy(t) = y for all t ≥ 0.

It is easy to check that y = 0 satisfies the requirement.
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A Nontrivial Example: Ornstein-Uhlenbeck Process

Consider Ornstein-Uhlenbeck process:{
dv(t) = −v(t)dt+ dWt

v(0) = Y (ω) ∈ L2(Ω).

For fixed t ≥ 0, regard v as a mapping

vY (ω)(t) : L2(Ω) 7→ L2(Ω).

Almost impossible to find a fixed point like

vY (ω)(t) = Y (ω) for t ≥ 0 a.s.
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A Nontrivial Example: Ornstein-Uhlenbeck Process

(Continued)

Define the “stochastic fixed point” like

vY (ω)(t) = Y (θtω) for t ≥ 0 a.s.,

where

(θtW )(s) = W (t+ s)−W (t) for any s ∈ (−∞,+∞).

You can verify that the “stochastic fixed point” is

Y (ω) =

∫ 0

−∞
esdWs.
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Definition for Stationary Solution (Stochastic Fixed Point)

A measurable space: (V,B(V )).

A metric dynamical system (Ω, F , P , (θt)t≥0),

(θt)t≥0 : Ω→ Ω satisfies:

P · θ−1t = P ;

θ0 = I, where I is the identity transformation on Ω;

θs ◦ θt = θs+t for all s, t ≥ 0.

For a measurable random dynamical system

v : [0,∞)× V × Ω→ V , the stationary solution is a F

measurable r.v. Y : Ω→ V such that (Arnold 1998)

vY (ω)(t, ω) = Y (θtω) for t ≥ 0 a.s.
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Some Existing Results

Sinai 1991, 1996 Stochastic Burgers equations with C3 noise

under strong smooth conditions

Mattingly 1999, CMP 2D Stochastic Navier-Stokes equation

with additive noise

E & Khanin & Mazel & Sinai 2000, AM Stochastic inviscid

Burgers equations with additive C3 noise

Caraballo & Kloeden & Schmalfuss 2004, AMO Stochastic

evolution equations with small Lipschitz constant and linear

noise
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A Basic Assumption in Invariant Manifold Theory: There

Exists Stationary Solution

Arnold 1998

Duan & Lu & Schmalfuss 2003, AP

Mohammed & T. Zhang & Zhao 2008, Memoirs of AMS

Lian & Lu 2010, Memoirs of AMS
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Stationary Solutions of Parabolic SPDEs

We use the correspondence between SPDEs and BDSDEs to

construct the stationary solutions of SPDEs:

v(t, x) = v(0, x) +

∫ t

0
[L v(s, x) + f

(
x, v(s, x)

)
]ds

+

∫ t

0
g
(
x, v(s, x)

)
dBs.

f : Rd × R1 → R1, g : Rd × R1 → L2U0
(R1);

B: Wiener process with values in a Hilbert space;

L : a second order differential operator given by

L =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi

with
(
aij(x)

)
= σσ∗(x).
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Results

Zhang & Zhao 2007, JFA Lipschitz coefficients

Zhang & Zhao 2010, JDE linear growth coefficients

Zhang & Zhao 2013, SPA polynomial growth coefficients

Zhang 2011, SD stationary stochastic viscosity solutions

Using BDSDEs, we construct the stationary solutions of non-linear

SPDEs with non-additive noise.
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Time Reverse Version of SPDE

For arbitrary T > 0, define B̂s = BT−s −BT .

By the integral transformation, u(t, x) , v(T − t, x) satisfies

terminal-value SPDE

u(t, x) = u(T, x) +

∫ T

t
[L u(s, x) + f

(
x, u(s, x)

)
]ds

−
∫ T

t
g
(
x, u(s, x)

)
d†B̂s.
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Infinite Horizon BDSDEs

Infinite horizon BDSDE:

e−KsY t,x
s =

∫ ∞
s

e−Krf(Xt,x
r , Y t,x

r , Zt,xr )dr +

∫ ∞
s

Ke−KrY t,x
r dr

−
∫ ∞
s

e−Krg(Xt,x
r , Y t,x

r , Zt,xr )d†B̂r

−
∫ ∞
s

e−Kr〈Zt,xr , dWr〉,

where

Xt,x
s = x+

∫ s

t
b(Xt,x

r )dr +

∫ s

t
σ(Xt,x

r )dWr.

Infinite horizon BDSDE has a unique solution (Y t,·
· , Z

t,·
· ) ∈

S2p,−K
F B̂,W

⋂
L2p,−K

F B̂,W
([t,∞];L2p

ρ (Rd;R1))×L2,−K
F B̂,W

([t,∞];L2
ρ(Rd;Rd))
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The Correspondence between SPDEs and BDSDEs on

Finite Time Interval

BDSDE : Y t,x
s = h(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r )dr

−
∫ T

s
〈g(r,Xt,x

r , Y t,x
r ), d†B̂r〉 −

∫ T

s
〈Zt,xr , dWr〉.

SPDE : u(t, x) = h(x) +

∫ T

t
{L u(s, x) + fn

(
s, x, u(s, x)

)
}ds

−
∫ T

t
〈g
(
s, x, u(s, x)

)
, d†B̂s〉, 0 ≤ t ≤ T.

Correspondence: u(t, x) , Y t,x
t is a solution of SPDE, and

(Y t,x
s , Zt,xs ) =

(
u(s,Xt,x

s ), (σ∇u)(s,Xt,x
s )
)
.
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Existing Results for Correspondence Between SPDEs and

BDSDEs

Based on different smooth requirements for coefficients, this

correspondence was established for differential types of solutions of

SPDEs.

Pardoux & Peng 1994, PTRF smooth solution

Buckdahn & Ma 2001, SPA stochastic viscosity solution

Bally & Matoussi 2001, JTP weak solution
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Metric Dynamical System

Define θ̂t : Ω −→ Ω, t ≥ 0, by

θ̂t

(
B̂s
Ws

)
=

(
B̂s+t − B̂t
Ws+t −Wt

)

Then for any s, t ≥ 0,

P · θ̂−1t = P ;

θ̂0 = I, where I is the identity transformation on Ω;

θ̂s ◦ θ̂t = θ̂s+t.

Also for an arbitrary F measurable φ, set

θ̂ ◦ φ(ω) = φ
(
θ̂(ω)

)
.
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Stationary Property of Infinite Horizon BDSDEs

By uniqueness of solution, the solution of infinite horizon BDSDE

(Y t,·
· , Z

t,·
· ) satisfies the stationary property: for any t ≥ 0,

θ̂r ◦ Y t,·
s = Y t+r,·

s+r θ̂r ◦ Zt,·s = Zt+r,·s+r for r ≥ 0, s ≥ t a.s.

In particular, for any t ≥ 0,

θ̂r ◦ Y t,·
t = Y t+r,·

t+r for r ≥ 0 a.s.
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Transferring the Stationary Property from BDSDEs to

Terminal-Value SPDEs

So, for any t ≥ 0,

θ̂r ◦ u(t, ·) = u(t+ r, ·) for r ≥ 0 a.s.

By Kolmogorov’s continuity lemma, u(t, ·) is continuous w.r.t. t.

Thus

θ̂r ◦ u(t, ·) = u(t+ r, ·) for t, r ≥ 0 a.s.
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Time Reverse Transformation

For arbitrary T > 0, choose B̂ in terminal-value SPDEs as

B̂s = BT−s −BT . We see that v(t, x) , u(T − t, x) satisfies

initial-value SPDE

v(t, x) = v(0, x) +

∫ t

0
[L v(s, x) + f

(
x, v(s, x)

)
]ds

+

∫ t

0
g
(
x, v(s, x)

)
dBs, t ≥ 0.

In fact, we can prove that v(t, x, ω) , Y T−t,x
T−t (ω̂) = Y 0,x

0 (θ̂T−tω̂)

is independent of the choice of T as follows:

θ̂T−tω̂ = ω̂(T − t+ s)− ω̂(T − t)
= (BT−(T−t+s) −BT )− (BT−(T−t) −BT )

= Bt−s −Bt.
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Transferring the Stationary Property from Terminal-Value

to Initial-Value SPDEs

Define θt = (θ̂t)
−1, t ≥ 0, then θt is a shift w.r.t. B satisfying

θt ◦Bs = Bs+t −Bt.

So

θrv(t, ·, ω) = v(t+ r, ·, ω) for r ≥ 0 a.s.

In particular, let Y (·, ω) = v(0, ·, ω) = Y T,·
T (ω̂).

Then the above implies that Y (·, ω) satisfies the definition of

stationary solution:

vY (·,ω)(t, ·, ω) = Y (·, θtω) for t ≥ 0 a.s.
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Main Results for Stationary Solution

Assume that we had known that

the correspondence between SPDE and BDSDE in some

reasonable sense

the existence and uniqueness of solution of infinite horizon

BDSDE

Theorem

For arbitrary T and t ∈ [0, T ], let v(t, x) , Y T−t,x
T−t , where

(Y t,·
· , Z

t,·
· ) is the solution of the infinite horizon BDSDE with

B̂s = BT−s −BT for all s ≥ 0. Then v(t, ·) is a “perfect”

stationary solution of SPDE.
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Assumptions

(H.1). ∃ p ≥ 2 and f0 with
∫∞
0

∫
Rd |f0(s, x)|8pρ−1(x)dxds <∞ s.t.

|f(s, x, y)| ≤ L(|f0(s, x)|+ |y|p);

|∂yf(s, x, y)| ≤ L(1 + |y|p−1).

(H.2). |f(s, x1, y)− f(s, x2, y)| ≤ L(1 + |y|p)|x1 − x2|,
|∂yf(s, x1, y)− ∂yf(s, x2, y)| ≤ L(1 + |y|p−1)|x1 − x2|,
|∂yf(s, x, y1)−∂yf(s, x, y2)| ≤ L(1+|y1|p−2+|y2|p−2)|y1−y2|,

g(s, x, y): Lipschitz condition on (s, x, y),

∂yg(s, x, y): bounded and Lipschitz condition on (x, y).

(H.3). ∃ µ > 0 with 2µ−K − p(2p− 1)
∞∑
j=1

Lj > 0 s.t.

(y1 − y2)
(
f(s, x, y1)− f(s, x, y2)

)
≤ −µ|y1 − y2|2.
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Assumptions (Continued)

(H.4). Diffusion coefficients b ∈ C2
l,b(Rd;Rd), σ ∈ C3

b (Rd;Rd × Rd).

(H.5). Matrix σ(x) is uniformly elliptic, i.e. ∃ ε > 0 s.t.

σσ∗(x) ≥ εId.
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Approximating Sequences

Step 1. To approximate infinite horizon BDSDEs:

Y t,x,m
s =

∫ m

s
f(r,Xt,x

r , Y t,x,m
r )dr −

∫ m

s
g(r,Xt,x

r , Y t,x,m
r )d†B̂r

−
∫ m

s
〈Zt,x,mr , dWr〉.

Step 2. To approximate the polynomial growth generator:

fn(s, x, y) = f(s, x, y)I{|y|≤n} + ∂yf(s, x,
n

|y|
y)(y − n

|y|
y)I{|y|>n}.

fn(s, x, y) −→ f(s, x, y), as n→∞.

We need

(i) strongly convergent subsequence in L2(Ω× [0, T ];L2
ρ(Rd;R1))

(ii) Lp(Ω× [0, T ];Lpρ(Rd;R1)), p ≥ 1, estimate.
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Weak Convergence

Define (U t,·,n· , V t,·,n
· ) , (fn(r,Xt,x

r , Y t,x,n
r ), gn(r,Xt,x

r , Y t,x,n
r )).

By Alaoglu lemma, a subsequence (Y t,·,n
· , Zt,·,n· , U t,·,n· , V t,·,n

· )

converges weakly to a limit (Y t,·
· , Z

t,·
· , U

t,·
· , V

t,·
· ) in

L2(Ω× [t, T ];L2
ρ(Rd;R1)×L2

ρ(Rd;Rd)×L2
ρ(Rd;R1)×L2

ρ(Rd;Rl)).

Y t,x
s = h(Xt,x

T ) +

∫ T

s
U t,xr dr −

∫ T

s
〈V t,x
r , d†B̂r〉 −

∫ T

s
〈Zt,xr , dWr〉.

Key: finding a strongly convergent subsequence of (Y t,·,n
· , Zt,·,n· )

to get (U t,xr , V t,x
r ) = (f(r,Xt,x

r , Y t,x
r ), g(r,Xt,x

r , Y t,x
r )).
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The Correspondence between SPDEs and BDSDEs with

Coefficients fn

BDSDEs:

Y t,x,n
s = h(Xt,x

T ) +

∫ T

s
fn(r,Xt,x

r , Y t,x,n
r )dr

−
∫ T

s
〈g(r,Xt,x

r , Y t,x,n
r ), d†B̂r〉 −

∫ T

s
〈Zt,x,nr , dWr〉.

SPDEs:

un(t, x) = h(x) +

∫ T

t
{L un(s, x) + fn

(
s, x, un(s, x)

)
}ds

−
∫ T

t
〈g
(
s, x, un(s, x)

)
, d†B̂s〉, 0 ≤ t ≤ T.

Correspondence:

un(t, x) , Y t,x,n
t , un(s,Xt,x

s ) = Y t,x,n
s , (σ∇un)(s,Xt,x

s ) = Zt,x,ns .
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PDEs with Polynomial Growth Coefficients

We apply Rellich-Kondrachov Compactness Theorem to

approximating PDEs to derive a strongly convergent subsequence

of un in Zhang & Zhao 2012, JTP.

Theorem

Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Here

X ⊂⊂ H means X is compactly embedded in H. Suppose that un
is a sequence which is uniformly bounded in L2([0, T ];X), and

dun/dt is uniformly bounded in Lp([0, T ];Y ), for some p > 1.

Then there is a subsequence which converges strongly in

L2([0, T ];H).

But this method does not work for the SPDE/BDSDE as

Rellich-Kondrachov Compactness Theorem stands for PDEs and

for fixed ω ∈ Ω the subsequence choice may depend on ω.
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SPDEs with Polynomial Growth Coefficients

Instead, we use Sobolev-Wiener Compactness Theorem, which is

an extension of Rellich-Kondrachov compactness theorem to

stochastic case with the help of Malliavin derivatives, proved in

Bally & Saussereau 2004, JFA.

The time and space independent case was considered by Da Prato

& Malliavin & Nualart 1992 and Peszat 1993
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Sobolev-Wiener Compactness Theorem

Let (un)n∈N be a sequence in L2([0, T ]× Ω;H1(O)). Define

uϕn(s, ω) ,
∫
O un(s, x, ω)ϕ(x)dx. Suppose that

(1) supnE[
∫ T
0 ‖un(s, ·)‖2H1(O)ds] <∞.

(2) For all ϕ ∈ Ckc (O) and t ∈ [0, T ], uϕn(s) ∈ D1,2 and

supn
∫ T
0 ‖u

ϕ
n(s)‖2D1,2ds <∞.

(3) For all ϕ ∈ Ckc (O), (E[uϕn])n∈N of L2([0, T ]) satisfies

(3i) For any ε > 0, there exists 0 < α < β < T s.t.

sup
n

∫
[0,T ]\(α,β)

|E[uϕn(s)]|2ds < ε.

(3ii) For any 0 < α < β < T and h ∈ R1 s.t. |h| < min(α, T − β),

sup
n

∫ β

α
|E[uϕn(s+ h)]− E[uϕn(s)]|2ds < Cp|h|.
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Sobolev-Wiener Compactness Theorem

(4) For all ϕ ∈ Ckc (O), the following conditions are satisfied:

(4i) For any ε > 0, ∃ 0 < α < β < T and 0 < α′ < β′ < T s.t.

sup
n
E[

∫
[0,T ]2\(α,β)×(α′,β′)

|Dθu
ϕ
n(s)|2dθds] < ε.

(4ii) For any 0 < α < β < T , 0 < α′ < β′ < T and h, h′ ∈ R1 s.t.

max(|h|, |h′|) < min(α, α′, T − β, T − β′),

sup
n
E[

∫ β

α

∫ β′

α′
|Dθ+hu

ϕ
n(s+h′)−Dθu

ϕ
n(s)|2dθds] < Cp(|h|+ |h′|).

Then (un)n∈N is relatively compact in L2(Ω× [0, T ]×O;R1).
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Generalized Equivalence of Norm Principle

The generalized equivalence of norm principle (based on Barles &

Lesigne 1997, Bally & Matoussi 2001, JTP) is used to establish

the equivalence of norm between the solutions of terminal-value

SPDEs and the solutions of BDSDEs. Consider stochastic flows:

Xt,x
s = x+

∫ s

t
b(Xt,x

r )dr +

∫ s

t
σ(Xt,x

r )dWr s ≥ t,

where b ∈ C2
l,b(Rd;Rd), σ ∈ C3

l,b(Rd;Rd × Rd).

Lemma

If s ∈ [t, T ], ϕ : Ω× Rd → R1 is independent of FW
t,s and

ϕρ−1 ∈ L1(Ω× Rd;R1), then ∃ c, C > 0 s.t.

cE[

∫
Rd

|ϕ(x)|ρ−1(x)dx] ≤ E[

∫
Rd

|ϕ(Xt,x
s )|ρ−1(x)dx]

≤ CE[

∫
Rd

|ϕ(x)|ρ−1(x)dx].
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Definition for Random Periodic Solutions

A measurable space: (V,B(V )).

A metric dynamical system (Ω, F , P , (θt)t≥0).

For a measurable random dynamical system

v : R1 × R1 × V × Ω→ V , the random periodic solution with

period τ > 0 is an F measurable r.v. Y : R1 × Ω→ V such that

vt,Y (t,ω)
(
t+ τ, ω

)
= Y (t+ τ, ω) = Y (t, θτω), t ≥ 0 a.s.
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Some Existing Results

Zhao & Zheng 2009, JDE Random periodic solutions for

C1-cocycles

Feng & Zhao & Zhou 2011, JDE Random periodic solutions

of SDEs with additive noise

Feng & Zhao 2012, JFA Random periodic solutions of SPDEs

with additive noise
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Random Periodic Solutions of SDEs with Non-Additive

Noise

We study the following SDE valued in Rd:

ut,ξ(s) = ξ +

∫ s

t

[
−Aut,ξ(r) + b

(
r, ut,ξ(r)

)]
dr

+

∫ s

t
σ
(
r, ut,ξ(r)

)
dBr.

A is an invertible matrix satisfying

δ , inf
{

Re(λ) : (λi)i=1,··· ,d are the eigenvalues of A
}
> 0;

b : R1 × Rd → Rd, σ : R1 × Rd → Rd×d;

b(t, x) = b(t+ τ, x), σ(t, x) = σ(t+ τ, x).
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Infinite Horizon Integral Equation

By Duhamel’s formula,

ut,ξ(s) = e−A(s−t)ξ +

∫ s

t
e−A(s−r)b

(
r, ut,ξ(r)

)
dr

+

∫ s

t
e−A(s−r)σ

(
r, ut,ξ(r)

)
dBr.

Introduce the infinite horizon integral equation:

Xs =

∫ s

−∞
e−A(s−r)b(r,Xr)dr +

∫ s

−∞
e−A(s−r)σ(r,Xr)dBr.

Then

Xs = e−A(s−t)Xt +

∫ s

t
e−A(s−r)b(r,Xr)dr +

∫ s

t
e−A(s−r)σ(r,Xr)dBr.
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Random Periodic Property of Xs

If the original SDE admits a unique solution ut,ξ(s), then

ut,Xt(s) = Xs.

Xs is a random periodic solution of the original SDE if

Xs+τ (ω) = Xs(θτω).

Recursive sequence (Qiao & Zhang & X. Zhang, Preprint):

Xn+1
s =

∫ s

−∞
e−A(s−r)b(r,Xn

r )dr +

∫ s

−∞
e−A(s−r)σ(r,Xn

r )dBr.

By recursion, for all n,

Xn
s+τ (ω) = Xn

s (θτω).
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Main Results for Random Periodic Solution

Theorem

Assume b, σ,∇b,∇σ are bounded and

2‖∇b‖2∞δ−2 + 2‖∇σ‖2∞(2δ)−1 < 1. Then the infinite horizon

integral equation has a unique solution Xs which is a random

periodic solution of SDE.

Sketch of Proof: 1. Xn is a Cauchy sequence in C(R1;L2(Ω)).

2. Take X such that

lim
n→∞

sup
s∈R1

E|Xn
s −Xs|2 = 0.

3. As n→∞, it appears that X satisfies the infinite horizon

integral equation and

Xs+τ (ω) = Xs(θτω).
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Thank You
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