Stationary Solutions and Random Periodic Solutions of Stochastic Equations

Qi Zhang

Fudan University

April 19, 2013
at
USC

Fixed Point of ODE

Consider ODE

$$
\left\{\begin{array}{l}
\frac{d v(t)}{d t}=-v(t) \\
v(0)=y \in \mathbb{R}^{1} .
\end{array}\right.
$$

For fixed $t \geq 0$, regard v as a mapping

$$
v^{y}(t): \mathbb{R}^{1} \mapsto \mathbb{R}^{1}
$$

Then a fixed point is an initial value of the ODE satisfying

$$
v^{y}(t)=y \quad \text { for all } t \geq 0
$$

It is easy to check that $y=0$ satisfies the requirement.

A Nontrivial Example: Ornstein-Uhlenbeck Process

Consider Ornstein-Uhlenbeck process:

$$
\left\{\begin{array}{l}
d v(t)=-v(t) d t+d W_{t} \\
v(0)=Y(\omega) \in L^{2}(\Omega)
\end{array}\right.
$$

For fixed $t \geq 0$, regard v as a mapping

$$
v^{Y(\omega)}(t): L^{2}(\Omega) \mapsto L^{2}(\Omega)
$$

Almost impossible to find a fixed point like

$$
v^{Y(\omega)}(t)=Y(\omega) \quad \text { for } t \geq 0 \text { a.s. }
$$

A Nontrivial Example: Ornstein-Uhlenbeck Process (Continued)

Define the "stochastic fixed point" like

$$
v^{Y(\omega)}(t)=Y\left(\theta_{t} \omega\right) \quad \text { for } t \geq 0 \text { a.s. }
$$

where

$$
\left(\theta_{t} W\right)(s)=W(t+s)-W(t) \quad \text { for any } s \in(-\infty,+\infty)
$$

You can verify that the "stochastic fixed point" is

$$
Y(\omega)=\int_{-\infty}^{0} \mathrm{e}^{s} d W_{s}
$$

Definition for Stationary Solution (Stochastic Fixed Point)

A measurable space: $(V, \mathscr{B}(V))$.
A metric dynamical system $\left(\Omega, \mathscr{F}, P,\left(\theta_{t}\right)_{t \geq 0}\right)$,
$\left(\theta_{t}\right)_{t \geq 0}: \Omega \rightarrow \Omega$ satisfies:

- $P \cdot \theta_{t}^{-1}=P$;
- $\theta_{0}=I$, where I is the identity transformation on Ω;
- $\theta_{s} \circ \theta_{t}=\theta_{s+t}$ for all $s, t \geq 0$.

For a measurable random dynamical system
$v:[0, \infty) \times V \times \Omega \rightarrow V$, the stationary solution is a \mathscr{F} measurable r.v. $Y: \Omega \rightarrow V$ such that (Arnold 1998)

$$
v^{Y(\omega)}(t, \omega)=Y\left(\theta_{t} \omega\right) \quad \text { for } t \geq 0 \text { a.s. }
$$

Some Existing Results

- Sinai 1991, 1996 Stochastic Burgers equations with C^{3} noise under strong smooth conditions
- Mattingly 1999, CMP 2D Stochastic Navier-Stokes equation with additive noise
- E \& Khanin \& Mazel \& Sinai 2000, AM Stochastic inviscid Burgers equations with additive C^{3} noise
- Caraballo \& Kloeden \& Schmalfuss 2004, AMO Stochastic evolution equations with small Lipschitz constant and linear noise

A Basic Assumption in Invariant Manifold Theory: There Exists Stationary Solution

- Arnold 1998
- Duan \& Lu \& Schmalfuss 2003, AP
- Mohammed \& T. Zhang \& Zhao 2008, Memoirs of AMS
- Lian \& Lu 2010, Memoirs of AMS

Stationary Solutions of Parabolic SPDEs

We use the correspondence between SPDEs and BDSDEs to construct the stationary solutions of SPDEs:

$$
\begin{aligned}
v(t, x)= & v(0, x)+\int_{0}^{t}[\mathscr{L} v(s, x)+f(x, v(s, x))] d s \\
& +\int_{0}^{t} g(x, v(s, x)) d B_{s}
\end{aligned}
$$

$f: \mathbb{R}^{d} \times \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}, \quad g: \mathbb{R}^{d} \times \mathbb{R}^{1} \rightarrow \mathcal{L}_{U_{0}}^{2}\left(\mathbb{R}^{1}\right)$;
B : Wiener process with values in a Hilbert space;
\mathscr{L} : a second order differential operator given by

$$
\mathscr{L}=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}}
$$

with $\left(a_{i j}(x)\right)=\sigma \sigma^{*}(x)$.

Results

- Zhang \& Zhao 2007, JFA Lipschitz coefficients
- Zhang \& Zhao 2010, JDE linear growth coefficients
- Zhang \& Zhao 2013, SPA polynomial growth coefficients
- Zhang 2011, SD stationary stochastic viscosity solutions

Using BDSDEs, we construct the stationary solutions of non-linear SPDEs with non-additive noise.

Time Reverse Version of SPDE

For arbitrary $T>0$, define $\hat{B}_{s}=B_{T-s}-B_{T}$.
By the integral transformation, $u(t, x) \triangleq v(T-t, x)$ satisfies terminal-value SPDE

$$
\begin{aligned}
u(t, x)= & u(T, x)+\int_{t}^{T}[\mathscr{L} u(s, x)+f(x, u(s, x))] d s \\
& -\int_{t}^{T} g(x, u(s, x)) d^{\dagger} \hat{B}_{s}
\end{aligned}
$$

Infinite Horizon BDSDEs

Infinite horizon BDSDE:

$$
\begin{aligned}
\mathrm{e}^{-K s} Y_{s}^{t, x}= & \int_{s}^{\infty} \mathrm{e}^{-K r} f\left(X_{r}^{t, x}, Y_{r}^{t, x}, Z_{r}^{t, x}\right) d r+\int_{s}^{\infty} K \mathrm{e}^{-K r} Y_{r}^{t, x} d r \\
& -\int_{s}^{\infty} \mathrm{e}^{-K r} g\left(X_{r}^{t, x}, Y_{r}^{t, x}, Z_{r}^{t, x}\right) d^{\dagger} \hat{B}_{r} \\
& -\int_{s}^{\infty} \mathrm{e}^{-K r}\left\langle Z_{r}^{t, x}, d W_{r}\right\rangle
\end{aligned}
$$

where

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(X_{r}^{t, x}\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t, x}\right) d W_{r}
$$

Infinite horizon BDSDE has a unique solution $\left(Y^{t, \cdot}, Z^{t, \cdot}\right) \in$ $S_{\mathscr{F}, \hat{B}, W}^{2 p,-K} \bigcap L_{\mathscr{F}, \hat{B}, W}^{2 p,-K}\left([t, \infty] ; L_{\rho}^{2 p}\left(\mathbb{R}^{d} ; \mathbb{R}^{1}\right)\right) \times L_{\mathscr{F}, \hat{B}, W}^{2,-K}\left([t, \infty] ; L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)$

The Correspondence between SPDEs and BDSDEs on Finite Time Interval

$\operatorname{BDSDE}: Y_{s}^{t, x}=h\left(X_{T}^{t, x}\right)+\int_{s}^{T} f\left(r, X_{r}^{t, x}, Y_{r}^{t, x}\right) d r$

$$
-\int_{s}^{T}\left\langle g\left(r, X_{r}^{t, x}, Y_{r}^{t, x}\right), d^{\dagger} \hat{B}_{r}\right\rangle-\int_{s}^{T}\left\langle Z_{r}^{t, x}, d W_{r}\right\rangle .
$$

$\operatorname{SPDE}: u(t, x)=h(x)+\int_{t}^{T}\left\{\mathscr{L} u(s, x)+f_{n}(s, x, u(s, x))\right\} d s$

$$
-\int_{t}^{T}\left\langle g(s, x, u(s, x)), d^{\dagger} \hat{B}_{s}\right\rangle, \quad 0 \leq t \leq T .
$$

Correspondence: $u(t, x) \triangleq Y_{t}^{t, x}$ is a solution of SPDE, and

$$
\left(Y_{s}^{t, x}, Z_{s}^{t, x}\right)=\left(u\left(s, X_{s}^{t, x}\right),(\sigma \nabla u)\left(s, X_{s}^{t, x}\right)\right) .
$$

Existing Results for Correspondence Between SPDEs and BDSDEs

Based on different smooth requirements for coefficients, this correspondence was established for differential types of solutions of SPDEs.

- Pardoux \& Peng 1994, PTRF smooth solution
- Buckdahn \& Ma 2001, SPA stochastic viscosity solution
- Bally \& Matoussi 2001, JTP weak solution

Metric Dynamical System

Define $\hat{\theta}_{t}: \Omega \longrightarrow \Omega, t \geq 0$, by

$$
\hat{\theta}_{t}\binom{\hat{B}_{s}}{W_{s}}=\binom{\hat{B}_{s+t}-\hat{B}_{t}}{W_{s+t}-W_{t}}
$$

Then for any $s, t \geq 0$,

- $P \cdot \hat{\theta}_{t}^{-1}=P$;
- $\hat{\theta}_{0}=I$, where I is the identity transformation on Ω;
- $\hat{\theta}_{s} \circ \hat{\theta}_{t}=\hat{\theta}_{s+t}$.

Also for an arbitrary \mathscr{F} measurable ϕ, set

$$
\hat{\theta} \circ \phi(\omega)=\phi(\hat{\theta}(\omega)) .
$$

Stationary Property of Infinite Horizon BDSDEs

By uniqueness of solution, the solution of infinite horizon BDSDE $\left(Y^{t, \cdot}, Z^{t, \cdot}\right)$ satisfies the stationary property: for any $t \geq 0$,

$$
\hat{\theta}_{r} \circ Y_{s}^{t, \cdot}=Y_{s+r}^{t+r, \cdot} \quad \hat{\theta}_{r} \circ Z_{s}^{t, \cdot}=Z_{s+r}^{t+r, \cdot} \quad \text { for } r \geq 0, s \geq t \text { a.s. }
$$

In particular, for any $t \geq 0$,

$$
\hat{\theta}_{r} \circ Y_{t}^{t, \cdot}=Y_{t+r}^{t+r, \cdot} \quad \text { for } r \geq 0 \text { a.s. }
$$

Transferring the Stationary Property from BDSDEs to Terminal-Value SPDEs

So, for any $t \geq 0$,

$$
\hat{\theta}_{r} \circ u(t, \cdot)=u(t+r, \cdot) \quad \text { for } r \geq 0 \text { a.s. }
$$

By Kolmogorov's continuity lemma, $u(t, \cdot)$ is continuous w.r.t. t. Thus

$$
\hat{\theta}_{r} \circ u(t, \cdot)=u(t+r, \cdot) \quad \text { for } t, r \geq 0 \text { a.s. }
$$

Time Reverse Transformation

For arbitrary $T>0$, choose \hat{B} in terminal-value SPDEs as $\hat{B}_{s}=B_{T-s}-B_{T}$. We see that $v(t, x) \triangleq u(T-t, x)$ satisfies initial-value SPDE

$$
\begin{aligned}
v(t, x)= & v(0, x)+\int_{0}^{t}[\mathscr{L} v(s, x)+f(x, v(s, x))] d s \\
& +\int_{0}^{t} g(x, v(s, x)) d B_{s}, t \geq 0
\end{aligned}
$$

In fact, we can prove that $v(t, x, \omega) \triangleq Y_{T-t}^{T-t, x}(\hat{\omega})=Y_{0}^{0, x}\left(\hat{\theta}_{T-t} \hat{\omega}\right)$ is independent of the choice of T as follows:

$$
\begin{aligned}
\hat{\theta}_{T-t} \hat{\omega} & =\hat{\omega}(T-t+s)-\hat{\omega}(T-t) \\
& =\left(B_{T-(T-t+s)}-B_{T}\right)-\left(B_{T-(T-t)}-B_{T}\right) \\
& =B_{t-s}-B_{t} .
\end{aligned}
$$

Transferring the Stationary Property from Terminal-Value to Initial-Value SPDEs

Define $\theta_{t}=\left(\hat{\theta}_{t}\right)^{-1}, t \geq 0$, then θ_{t} is a shift w.r.t. B satisfying

$$
\theta_{t} \circ B_{s}=B_{s+t}-B_{t} .
$$

So

$$
\theta_{r} v(t, \cdot, \omega)=v(t+r, \cdot, \omega) \quad \text { for } r \geq 0 \text { a.s. }
$$

In particular, let $Y(\cdot, \omega)=v(0, \cdot, \omega)=Y_{T}^{T, \cdot}(\hat{\omega})$.
Then the above implies that $Y(\cdot, \omega)$ satisfies the definition of stationary solution:

$$
v^{Y(\cdot, \omega)}(t, \cdot, \omega)=Y\left(\cdot, \theta_{t} \omega\right) \quad \text { for } t \geq 0 \text { a.s. }
$$

Main Results for Stationary Solution

Assume that we had known that

- the correspondence between SPDE and BDSDE in some reasonable sense
- the existence and uniqueness of solution of infinite horizon BDSDE

Theorem

For arbitrary T and $t \in[0, T]$, let $v(t, x) \triangleq Y_{T-t}^{T-t, x}$, where $\left(Y^{t, \cdot}, Z_{.^{t, \cdot}}^{t}\right)$ is the solution of the infinite horizon BDSDE with $\hat{B}_{s}=B_{T-s}-B_{T}$ for all $s \geq 0$. Then $v(t, \cdot)$ is a "perfect" stationary solution of SPDE.

Assumptions

(H.1). $\exists p \geq 2$ and f_{0} with $\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|f_{0}(s, x)\right|^{8 p} \rho^{-1}(x) d x d s<\infty$ s.t. $|f(s, x, y)| \leq L\left(\left|f_{0}(s, x)\right|+|y|^{p}\right) ;$ $\left|\partial_{y} f(s, x, y)\right| \leq L\left(1+|y|^{p-1}\right)$.
(H.2). $\left|f\left(s, x_{1}, y\right)-f\left(s, x_{2}, y\right)\right| \leq L\left(1+|y|^{p}\right)\left|x_{1}-x_{2}\right|$, $\left|\partial_{y} f\left(s, x_{1}, y\right)-\partial_{y} f\left(s, x_{2}, y\right)\right| \leq L\left(1+|y|^{p-1}\right)\left|x_{1}-x_{2}\right|$, $\left|\partial_{y} f\left(s, x, y_{1}\right)-\partial_{y} f\left(s, x, y_{2}\right)\right| \leq L\left(1+\left|y_{1}\right|^{p-2}+\left|y_{2}\right|^{p-2}\right)\left|y_{1}-y_{2}\right|$, $g(s, x, y)$: Lipschitz condition on (s, x, y), $\partial_{y} g(s, x, y)$: bounded and Lipschitz condition on (x, y).
(H.3). $\exists \mu>0$ with $2 \mu-K-p(2 p-1) \sum_{j=1}^{\infty} L_{j}>0$ s.t.

$$
\left(y_{1}-y_{2}\right)\left(f\left(s, x, y_{1}\right)-f\left(s, x, y_{2}\right)\right) \leq-\mu\left|y_{1}-y_{2}\right|^{2}
$$

Assumptions (Continued)

(H.4). Diffusion coefficients $b \in C_{l, b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right), \sigma \in C_{b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.
(H.5). Matrix $\sigma(x)$ is uniformly elliptic, i.e. $\exists \varepsilon>0$ s.t.

$$
\sigma \sigma^{*}(x) \geq \varepsilon I_{d} .
$$

Approximating Sequences

Step 1. To approximate infinite horizon BDSDEs:

$$
\begin{aligned}
Y_{s}^{t, x, m}= & \int_{s}^{m} f\left(r, X_{r}^{t, x}, Y_{r}^{t, x, m}\right) d r-\int_{s}^{m} g\left(r, X_{r}^{t, x}, Y_{r}^{t, x, m}\right) d^{\dagger} \hat{B}_{r} \\
& -\int_{s}^{m}\left\langle Z_{r}^{t, x, m}, d W_{r}\right\rangle .
\end{aligned}
$$

Step 2. To approximate the polynomial growth generator:
$f_{n}(s, x, y)=f(s, x, y) I_{\{|y| \leq n\}}+\partial_{y} f\left(s, x, \frac{n}{|y|} y\right)\left(y-\frac{n}{|y|} y\right) I_{\{|y|>n\}}$.

$$
f_{n}(s, x, y) \longrightarrow f(s, x, y), \quad \text { as } n \rightarrow \infty .
$$

We need
(i) strongly convergent subsequence in $L^{2}\left(\Omega \times[0, T] ; L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{1}\right)\right)$
(ii) $L^{p}\left(\Omega \times[0, T] ; L_{\rho}^{p}\left(\mathbb{R}^{d} ; \mathbb{R}^{1}\right)\right), p \geq 1$, estimate.

Weak Convergence

Define $\left(U^{t, \cdot, n}, V^{t,, n}\right) \triangleq\left(f_{n}\left(r, X_{r}^{t, x}, Y_{r}^{t, x, n}\right), g_{n}\left(r, X_{r}^{t, x}, Y_{r}^{t, x, n}\right)\right)$.
 converges weakly to a limit $\left(Y^{t, \cdot}, Z_{.^{t, \cdot}}, U^{t, \cdot}, V^{t, \cdot}\right)$ in $L^{2}\left(\Omega \times[t, T] ; L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{1}\right) \times L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right) \times L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{1}\right) \times L_{\rho}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{l}\right)\right)$.
$Y_{s}^{t, x}=h\left(X_{T}^{t, x}\right)+\int_{s}^{T} U_{r}^{t, x} d r-\int_{s}^{T}\left\langle V_{r}^{t, x}, d^{\dagger} \hat{B}_{r}\right\rangle-\int_{s}^{T}\left\langle Z_{r}^{t, x}, d W_{r}\right\rangle$.
Key: finding a strongly convergent subsequence of $\left(Y^{t, \cdot, n}, Z,{ }^{t,{ }^{, n}}\right)$ to get $\left(U_{r}^{t, x}, V_{r}^{t, x}\right)=\left(f\left(r, X_{r}^{t, x}, Y_{r}^{t, x}\right), g\left(r, X_{r}^{t, x}, Y_{r}^{t, x}\right)\right)$.

The Correspondence between SPDEs and BDSDEs with Coefficients f_{n}

BDSDEs:

$$
\begin{aligned}
Y_{s}^{t, x, n}= & h\left(X_{T}^{t, x}\right)+\int_{s}^{T} f_{n}\left(r, X_{r}^{t, x}, Y_{r}^{t, x, n}\right) d r \\
& -\int_{s}^{T}\left\langle g\left(r, X_{r}^{t, x}, Y_{r}^{t, x, n}\right), d^{\dagger} \hat{B}_{r}\right\rangle-\int_{s}^{T}\left\langle Z_{r}^{t, x, n}, d W_{r}\right\rangle .
\end{aligned}
$$

SPDEs:

$$
\begin{aligned}
u_{n}(t, x)= & h(x)+\int_{t}^{T}\left\{\mathscr{L} u_{n}(s, x)+f_{n}\left(s, x, u_{n}(s, x)\right)\right\} d s \\
& -\int_{t}^{T}\left\langle g\left(s, x, u_{n}(s, x)\right), d^{\dagger} \hat{B}_{s}\right\rangle, \quad 0 \leq t \leq T
\end{aligned}
$$

Correspondence:
$u_{n}(t, x) \triangleq Y_{t}^{t, x, n}, u_{n}\left(s, X_{s}^{t, x}\right)=Y_{s}^{t, x, n},\left(\sigma \nabla u_{n}\right)\left(s, X_{s}^{t, x}\right)=Z_{s}^{t, x, n}$.

PDEs with Polynomial Growth Coefficients

We apply Rellich-Kondrachov Compactness Theorem to approximating PDEs to derive a strongly convergent subsequence of u_{n} in Zhang \& Zhao 2012, JTP.

Theorem

Let $X \subset \subset H \subset Y$ be Banach spaces, with X reflexive. Here $X \subset \subset H$ means X is compactly embedded in H. Suppose that u_{n} is a sequence which is uniformly bounded in $L^{2}([0, T] ; X)$, and $d u_{n} / d t$ is uniformly bounded in $L^{p}([0, T] ; Y)$, for some $p>1$. Then there is a subsequence which converges strongly in $L^{2}([0, T] ; H)$.

But this method does not work for the SPDE/BDSDE as Rellich-Kondrachov Compactness Theorem stands for PDEs and for fixed $\omega \in \Omega$ the subsequence choice may depend on ω.

SPDEs with Polynomial Growth Coefficients

Instead, we use Sobolev-Wiener Compactness Theorem, which is an extension of Rellich-Kondrachov compactness theorem to stochastic case with the help of Malliavin derivatives, proved in Bally \& Saussereau 2004, JFA.

The time and space independent case was considered by Da Prato \& Malliavin \& Nualart 1992 and Peszat 1993

Sobolev-Wiener Compactness Theorem

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $L^{2}\left([0, T] \times \Omega ; H^{1}(\mathcal{O})\right)$. Define $u_{n}^{\varphi}(s, \omega) \triangleq \int_{\mathcal{O}} u_{n}(s, x, \omega) \varphi(x) d x$. Suppose that
(1) $\sup _{n} E\left[\int_{0}^{T}\left\|u_{n}(s, \cdot)\right\|_{H^{1}(\mathcal{O})}^{2} d s\right]<\infty$.
(2) For all $\varphi \in C_{c}^{k}(\mathcal{O})$ and $t \in[0, T], u_{n}^{\varphi}(s) \in \mathbb{D}^{1,2}$ and $\sup _{n} \int_{0}^{T}\left\|u_{n}^{\varphi}(s)\right\|_{\mathbb{D}^{1,2}}^{2} d s<\infty$.
(3) For all $\varphi \in C_{c}^{k}(\mathcal{O}),\left(E\left[u_{n}^{\varphi}\right]\right)_{n \in \mathbb{N}}$ of $L^{2}([0, T])$ satisfies
(3i) For any $\varepsilon>0$, there exists $0<\alpha<\beta<T$ s.t.

$$
\sup _{n} \int_{[0, T] \backslash(\alpha, \beta)}\left|E\left[u_{n}^{\varphi}(s)\right]\right|^{2} d s<\varepsilon
$$

(3ii) For any $0<\alpha<\beta<T$ and $h \in \mathbb{R}^{1}$ s.t. $|h|<\min (\alpha, T-\beta)$,

$$
\sup _{n} \int_{\alpha}^{\beta}\left|E\left[u_{n}^{\varphi}(s+h)\right]-E\left[u_{n}^{\varphi}(s)\right]\right|^{2} d s<C_{p}|h| .
$$

Sobolev-Wiener Compactness Theorem

(4) For all $\varphi \in C_{c}^{k}(\mathcal{O})$, the following conditions are satisfied:
(4i) For any $\varepsilon>0, \exists 0<\alpha<\beta<T$ and $0<\alpha^{\prime}<\beta^{\prime}<T$ s.t.

$$
\sup _{n} E\left[\int_{[0, T]^{2} \backslash(\alpha, \beta) \times\left(\alpha^{\prime}, \beta^{\prime}\right)}\left|D_{\theta} u_{n}^{\varphi}(s)\right|^{2} d \theta d s\right]<\varepsilon .
$$

(4ii) For any $0<\alpha<\beta<T, 0<\alpha^{\prime}<\beta^{\prime}<T$ and $h, h^{\prime} \in \mathbb{R}^{1}$ s.t. $\max \left(|h|,\left|h^{\prime}\right|\right)<\min \left(\alpha, \alpha^{\prime}, T-\beta, T-\beta^{\prime}\right)$,
$\sup _{n} E\left[\int_{\alpha}^{\beta} \int_{\alpha^{\prime}}^{\beta^{\prime}}\left|D_{\theta+h} u_{n}^{\varphi}\left(s+h^{\prime}\right)-D_{\theta} u_{n}^{\varphi}(s)\right|^{2} d \theta d s\right]<C_{p}\left(|h|+\left|h^{\prime}\right|\right)$.
Then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is relatively compact in $L^{2}\left(\Omega \times[0, T] \times \mathcal{O} ; \mathbb{R}^{1}\right)$.

Generalized Equivalence of Norm Principle

The generalized equivalence of norm principle (based on Barles \& Lesigne 1997, Bally \& Matoussi 2001, JTP) is used to establish the equivalence of norm between the solutions of terminal-value SPDEs and the solutions of BDSDEs. Consider stochastic flows:

$$
X_{s}^{t, x}=x+\int_{t}^{s} b\left(X_{r}^{t, x}\right) d r+\int_{t}^{s} \sigma\left(X_{r}^{t, x}\right) d W_{r} \quad s \geq t
$$

where $b \in C_{l, b}^{2}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right), \sigma \in C_{l, b}^{3}\left(\mathbb{R}^{d} ; \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

Lemma

If $s \in[t, T], \varphi: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$ is independent of $\mathscr{F}_{t, s}^{W}$ and $\varphi \rho^{-1} \in L^{1}\left(\Omega \times \mathbb{R}^{d} ; \mathbb{R}^{1}\right)$, then $\exists c, C>0$ s.t.

$$
\begin{aligned}
c E\left[\int_{\mathbb{R}^{d}}|\varphi(x)| \rho^{-1}(x) d x\right] & \leq E\left[\int_{\mathbb{R}^{d}}\left|\varphi\left(X_{s}^{t, x}\right)\right| \rho^{-1}(x) d x\right] \\
& \leq C E\left[\int_{\mathbb{T}_{d} d}|\varphi(x)| \rho^{-1}(x) d x\right]
\end{aligned}
$$

Definition for Random Periodic Solutions

A measurable space: $(V, \mathscr{B}(V))$.

A metric dynamical system $\left(\Omega, \mathscr{F}, P,\left(\theta_{t}\right)_{t \geq 0}\right)$.

For a measurable random dynamical system
$v: \mathbb{R}^{1} \times \mathbb{R}^{1} \times V \times \Omega \rightarrow V$, the random periodic solution with period $\tau>0$ is an \mathscr{F} measurable r.v. $Y: \mathbb{R}^{1} \times \Omega \rightarrow V$ such that

$$
v^{t, Y(t, \omega)}(t+\tau, \omega)=Y(t+\tau, \omega)=Y\left(t, \theta_{\tau} \omega\right), \quad t \geq 0 \text { a.s. }
$$

Some Existing Results

- Zhao \& Zheng 2009, JDE Random periodic solutions for C^{1}-cocycles
- Feng \& Zhao \& Zhou 2011, JDE Random periodic solutions of SDEs with additive noise
- Feng \& Zhao 2012, JFA Random periodic solutions of SPDEs with additive noise

Random Periodic Solutions of SDEs with Non-Additive Noise

We study the following SDE valued in \mathbb{R}^{d} :

$$
\begin{aligned}
u^{t, \xi}(s)= & \xi+\int_{t}^{s}\left[-A u^{t, \xi}(r)+b\left(r, u^{t, \xi}(r)\right)\right] d r \\
& +\int_{t}^{s} \sigma\left(r, u^{t, \xi}(r)\right) d B_{r} .
\end{aligned}
$$

A is an invertible matrix satisfying

$$
\delta \triangleq \inf \left\{\operatorname{Re}(\lambda):\left(\lambda_{i}\right)_{i=1, \cdots, d} \text { are the eigenvalues of } A\right\}>0 ;
$$

$b: \mathbb{R}^{1} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad \sigma: \mathbb{R}^{1} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d} ;$
$b(t, x)=b(t+\tau, x), \quad \sigma(t, x)=\sigma(t+\tau, x)$.

Infinite Horizon Integral Equation

By Duhamel's formula,

$$
\begin{aligned}
u^{t, \xi}(s)= & \mathrm{e}^{-A(s-t)} \xi+\int_{t}^{s} \mathrm{e}^{-A(s-r)} b\left(r, u^{t, \xi}(r)\right) d r \\
& +\int_{t}^{s} \mathrm{e}^{-A(s-r)} \sigma\left(r, u^{t, \xi}(r)\right) d B_{r}
\end{aligned}
$$

Introduce the infinite horizon integral equation:

$$
X_{s}=\int_{-\infty}^{s} \mathrm{e}^{-A(s-r)} b\left(r, X_{r}\right) d r+\int_{-\infty}^{s} \mathrm{e}^{-A(s-r)} \sigma\left(r, X_{r}\right) d B_{r} .
$$

Then

$$
X_{s}=\mathrm{e}^{-A(s-t)} X_{t}+\int_{t}^{s} \mathrm{e}^{-A(s-r)} b\left(r, X_{r}\right) d r+\int_{t}^{s} \mathrm{e}^{-A(s-r)} \sigma\left(r, X_{r}\right) d B_{r}
$$

Random Periodic Property of X_{s}

If the original SDE admits a unique solution $u^{t, \xi}(s)$, then

$$
u^{t, X_{t}}(s)=X_{s} .
$$

X_{s} is a random periodic solution of the original SDE if

$$
X_{s+\tau}(\omega)=X_{s}\left(\theta_{\tau} \omega\right)
$$

Recursive sequence (Qiao \& Zhang \& X. Zhang, Preprint):

$$
X_{s}^{n+1}=\int_{-\infty}^{s} \mathrm{e}^{-A(s-r)} b\left(r, X_{r}^{n}\right) d r+\int_{-\infty}^{s} \mathrm{e}^{-A(s-r)} \sigma\left(r, X_{r}^{n}\right) d B_{r} .
$$

By recursion, for all n,

$$
X_{s+\tau}^{n}(\omega)=X_{s}^{n}\left(\theta_{\tau} \omega\right)
$$

Main Results for Random Periodic Solution

Theorem

Assume $b, \sigma, \nabla b, \nabla \sigma$ are bounded and
$2\|\nabla b\|_{\infty}^{2} \delta^{-2}+2\|\nabla \sigma\|_{\infty}^{2}(2 \delta)^{-1}<1$. Then the infinite horizon integral equation has a unique solution X_{s} which is a random periodic solution of SDE.

Sketch of Proof: 1. X^{n} is a Cauchy sequence in $C\left(\mathbb{R}^{1} ; L^{2}(\Omega)\right)$.
2. Take X such that

$$
\lim _{n \rightarrow \infty} \sup _{s \in \mathbb{R}^{1}} E\left|X_{s}^{n}-X_{s}\right|^{2}=0
$$

3. As $n \rightarrow \infty$, it appears that X satisfies the infinite horizon integral equation and

$$
X_{s+\tau}(\omega)=X_{s}\left(\theta_{\tau} \omega\right)
$$

Thank You

