Pricing Variance Swaps on Time-Changed Markov Processes

Peter Carr ${ }^{1}$ Roger Lee ${ }^{2}$ Matthew Lorig ${ }^{3}$
Department of Operations Research and Financial Engineering PRINCETON UNIVERSITY

www.princeton.edu/~mlorig
${ }^{1}$ Courant Institute, NYU, New York, USA
${ }^{2}$ Department of Mathematics, University of Chicago, Chicago, USA
${ }^{3}$ ORFE Department, Princeton University, Princeton, USA. Work partially supported by NSF grant DMS-0739195

Intro to variance swaps

- Let F be forward price of an asset.
- Assume $F_{t}>0$ for all t.
- Define the process $X:=\log F$.
- The floating leg of a variance swap pays (to the long side)

$$
\begin{equation*}
\sum_{t_{i} \in[0, T]}\left(X_{t_{i+1}}-X_{t_{i}}\right)^{2} \tag{1}
\end{equation*}
$$

- As sampling frequency increases: $(1) \xrightarrow{\mathbb{P}}[X]_{T}$.
- A swap whose floating leg pays $[X]_{T}$ is called a continuously monitored variance swap.
- Using risk-neutral pricing, the fair strike of a VS is $\mathbb{E}[X]_{T}$
- Question: how to compute $\mathbb{E}[X]_{T}$?

Non-parametric approach (with no jumps)
Suppose $F_{t}=\exp \left(X_{t}\right)$ with

$$
d X_{t}=-\frac{1}{2} \sigma_{t}^{2} d t+\sigma_{t} d W_{t}
$$

In this setting, Neuberger (1990) and Dupire (1993) show VS priced by \log contract:

$$
\mathbb{E}[X]_{T}=-2 \mathbb{E}\left(X_{T}-X_{0}\right)=-2 \mathbb{E} \log \left(F_{T} / F_{0}\right)
$$

Quick proof:

$$
\begin{aligned}
\mathbb{E}[X]_{T} & =\mathbb{E} \int_{0}^{T} \sigma_{t}^{2} d t \\
& =-2 \mathbb{E} \int_{0}^{T} d X_{t}+2 \mathbb{E} \int_{0}^{T} \sigma_{t} d W_{t} \\
& =-2 \mathbb{E}\left(X_{T}-X_{0}\right) .
\end{aligned}
$$

Synthetic European contracts

As shown in Carr and Madan (1998), if $h \in C^{2}\left(\mathbb{R}^{+}\right)$then for any $\kappa \in \mathbb{R}^{+}$we have

$$
\begin{aligned}
& h\left(F_{T}\right)=h(\kappa)+h^{\prime}(\kappa)\left(\left(F_{T}-\kappa\right)^{+}-\left(\kappa-F_{T}\right)^{+}\right) \\
& \quad+\int_{0}^{\kappa} h^{\prime \prime}(K)\left(K-F_{T}\right)^{+} d K+\int_{\kappa}^{\infty} h^{\prime \prime}(K)\left(F_{T}-K\right)^{+} d K
\end{aligned}
$$

Taking expectations, we have

$$
\begin{aligned}
& \mathbb{E} h\left(F_{T}\right)=h(\kappa)+h^{\prime}(\kappa)(C(T, \kappa)-P(T, \kappa)) \\
& \quad+\int_{0}^{\kappa} h^{\prime \prime}(K) P(T, K) d K+\int_{\kappa}^{\infty} h^{\prime \prime}(K) C(T, K) d K
\end{aligned}
$$

where $P(T, K)$ and $C(T, K)$ are European put and call prices

Synthetic log contract and VIX

To price a VS, take $h(F)=-2 \log \left(F / F_{0}\right)$.

$$
\begin{align*}
\mathbb{E}[X]_{T} & =-2 \mathbb{E} \log \left(F_{T} / F_{0}\right) \\
& =\int_{0}^{F_{0}} \frac{2}{K^{2}} P(T, K) d K+\int_{F_{0}}^{\infty} \frac{2}{K^{2}} C(T, K) d K \tag{2}
\end{align*}
$$

Discretized version of (2) is used to construct VIX, the CBOE's 30-day forward looking measure of volatility.

Note: equation (2) prices VS correctly only when X experiences no jumps.

Non-parametric pricing of VS with jumps

Suppose $F_{t}=\exp \left(Y_{\tau_{t}}\right)$ where τ is a continuous stochastic clock (possibly correlated with Y) and Y is a Lévy process

$$
\begin{aligned}
d Y_{t} & =b d t+\sigma d W_{t}+\int_{\mathbb{R}} z d \widetilde{N}_{t}(d z) \\
d \widetilde{N}_{t}(d z) & =d N_{t}(d z)-\mu(d z) d t \\
b & =-\frac{1}{2} \sigma^{2}-\int_{\mathbb{R}}\left(e^{z}-1-z\right) \nu(d z)
\end{aligned}
$$

In this setting Carr, Lee, and Wu (2011) show

$$
\mathbb{E}[X]_{T}=-Q \mathbb{E}\left(X_{T}-X_{0}\right)=-Q \mathbb{E} \log \left(F_{T} / F_{0}\right)
$$

The multiplyer Q depends only on the Lévy process Y - not on the clock

$$
Q=\frac{\sigma^{2}+\int_{-\infty}^{\infty} z^{2} \nu(d z)}{\sigma^{2} / 2+\int_{-\infty}^{\infty}\left(e^{z}-1-z\right) \nu(d z)}
$$

Note: if $\nu \equiv 0$ then $Q=2$ (recover result of Neuberger/Dupire).

Features and limitations of time-changed Lévy processes

Features

- Allows for jumps, stochastic volatility and leverage effect
- Multiplier Q depends only on background Lévy process - not time-change.
- Includes many popular models (e.g., Heston, Exponential Lévy, etc.) in a single framework.

Possible limitations

- In time-changed Lévy approach, the multiplier Q should be constant

$$
Q=\frac{-\mathbb{E}[\log F]_{T}}{\mathbb{E} \log \left(F_{T} / F_{0}\right)}
$$

Evidence from Carr, Lee, and Wu (2011) suggests Q is not constant in time or across maturities.

Time-changed Markov Processes

Suppose F is modeled by

$$
F_{t}=\exp \left(Y_{\tau_{t}}\right)
$$

where τ is a continuous stochastic clock possibly correlated with Y and Y is any continuous time scalar Markov process

$$
d Y_{t}=b\left(Y_{t}\right) d t+a\left(Y_{t}\right) d W_{t}+\int_{\mathbb{R}} z d \widetilde{N}_{t}\left(Y_{t-}, d z\right)
$$

Here, $d \widetilde{N}_{t}\left(Y_{t-}, d z\right)$ is a compensated Poisson random measure with state-dependent jumps

$$
d \widetilde{N}_{t}\left(Y_{t-}, d z\right)=d N_{t}\left(Y_{t-}, d z\right)-\mu\left(Y_{t-}, d z\right) d t
$$

and the drift $b\left(Y_{t}\right)$ is fixed by a and μ so that F is a martingale

$$
b\left(Y_{t}\right)=-\frac{1}{2} a^{2}\left(Y_{t}\right)-\int_{\mathbb{R}} \mu\left(Y_{t-}, d z\right)\left(e^{z}-1-z\right)
$$

The generator of Y

Note that Y has generator

$$
\begin{aligned}
\mathcal{A}=\frac{1}{2} & a^{2}(y)\left(\partial^{2}-\partial\right)+\int_{\mathbb{R}} \mu(y, d z)\left(\theta_{z}-1-z \partial\right) \\
& -\int_{\mathbb{R}} \mu(y, d z)\left(e^{z}-1-z\right) \partial,
\end{aligned}
$$

where θ_{z} is the shift operator: $\theta_{z} f(y)=f(y+z)$.
Note, for analytic f, we have

$$
e^{z \partial} f(y)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \partial^{n} f(y)=f(y+z)
$$

Formally, then, we re-write the generator \mathcal{A} as follows:

$$
\begin{aligned}
& \mathcal{A}=\frac{1}{2} a^{2}(y)\left(\partial^{2}-\partial\right)+\int_{\mathbb{R}} \mu(y, d z)\left(e^{z \partial}-1-z \partial\right) \\
&-\int_{\mathbb{R}} \mu(y, d z)\left(e^{z}-1-z\right) \partial .
\end{aligned}
$$

The quadratic variation process $[Y]$

Note that $d[Y]_{t}$ is given by

$$
d[Y]_{t}=\left(a^{2}\left(Y_{t}\right)+\int_{\mathbb{R}} z^{2} \mu\left(Y_{t}, d z\right)\right) d t+\underbrace{\int_{\mathbb{R}} z^{2} d \tilde{N}\left(Y_{t-}, d z\right)}_{\text {martingale }}
$$

Hence

$$
\mathbb{E} d[Y]_{t}=\mathbb{E}\left(a^{2}\left(Y_{t}\right)+\int_{\mathbb{R}} z^{2} \mu\left(Y_{t}, d z\right)\right) d t
$$

Likewise, for $G \in \operatorname{dom}(\mathcal{A})$ we have

$$
d G\left(Y_{t}\right)=\mathcal{A} G\left(Y_{t}\right) d t+\text { martingale }
$$

Hence

$$
\mathbb{E} d G\left(Y_{t}\right)=\mathbb{E} \mathcal{A} G\left(Y_{t}\right) d t
$$

Variance Swap Pricing

Suppose we can find a function G such that

$$
-\mathcal{A} G(y)=a^{2}(y)+\int_{\mathbb{R}} z^{2} \mu(y, d z)
$$

Then, using results from the previous page, we have

$$
\begin{aligned}
\mathbb{E}[Y]_{\tau_{T}} & =\mathbb{E} \int_{0}^{\tau_{T}} d[Y]_{t} \\
& =\mathbb{E} \int_{0}^{\tau_{T}}\left(a^{2}\left(Y_{t}\right)+\int_{\mathbb{R}} z^{2} \mu\left(Y_{t}, d z\right)\right) d t \\
& =-\mathbb{E} \int_{0}^{\tau_{T}} \mathcal{A} G\left(Y_{t}\right) d t \\
& =-\mathbb{E} \int_{0}^{\tau_{T}} d G\left(Y_{t}\right)+\mathbb{E} \text { martingale } \\
& =-\mathbb{E} G\left(Y_{\tau_{T}}\right)+G\left(Y_{0}\right) .
\end{aligned}
$$

Recall $F_{t}=\exp \left(Y_{\tau_{t}}\right)$

Continuity of time-change τ implies: $[\log F]_{T}=[Y]_{\tau_{T}}$. Hence

$$
\underbrace{\mathbb{E}[\log F]_{T}}_{\mathrm{A}}=\underbrace{-\mathbb{E} G\left(\log F_{T}\right)}_{\mathrm{B}}+\underbrace{G\left(\log F_{0}\right)}_{\mathrm{C}} .
$$

- A: Fair strike of a variance swap.
- B: Value of a European contract with payoff: $-G\left(\log F_{T}\right)$.
- C: Value of $G\left(\log F_{0}\right)$ zero-coupon bonds.

Quantity B can be constructed from T-maturity calls/puts a la
Carr and Madan (1998).

- To price a VS, we must solve OIDE:

$$
-\mathcal{A} G(y)=a^{2}(y)+\int_{\mathbb{R}} z^{2} \mu(y, d z)
$$

Simplification

Define: $H:=\partial G$ so that $G(y)=\int H(y) d y$. Then H solves

$$
-\frac{\mathcal{A}}{\partial} H=a^{2}(y)+\int_{\mathbb{R}} z^{2} \mu(y, d z)
$$

where

$$
\begin{aligned}
& \frac{\mathcal{A}}{\partial}=\frac{1}{2} a^{2}(y)(\partial-1)+\int_{\mathbb{R}} \mu(y, d z)\left(\frac{e^{z \partial}-1-z \partial}{\partial}\right) \\
&-\int_{\mathbb{R}} \mu(y, d z)\left(e^{z}-1-z\right)
\end{aligned}
$$

and

$$
\frac{e^{z \partial}-1-z \partial}{\partial}:=\sum_{n=2}^{\infty} \frac{1}{n!} z^{n} \partial^{n-1}
$$

Example 1: jump-intensity proportional to local variance Introduce $\gamma(y)>0$. Assume

$$
a^{2}(y)=\gamma^{2}(y) \sigma^{2}, \quad \mu(y, d z)=\gamma^{2}(y) \nu(d z),
$$

Easy to check that $H(y)$ is given by

$$
H=Q:=\frac{\sigma^{2}+I_{2}}{\sigma^{2} / 2+I_{0}}, \quad G=Q y
$$

where

$$
I_{0}:=\int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right), \quad I_{n}:=\int_{\mathbb{R}} \nu(d z) z^{n}, \quad n \geq 2 .
$$

Note: this case includes Time-changed Lévy case (take $\gamma(y)=1$). Thus, we recover result of Carr, Lee, and Wu (2011):

$$
\mathbb{E}[\log F]_{T}=-\mathbb{E} G\left(\log F_{T}\right)+G\left(\log F_{0}\right)=-Q \log \left(F_{T} / F_{0}\right) .
$$

Neuberger-Dupire \subset Carr-Lee-Wu \subset Carr-Lee-Lorig.

Limiting cases

The following limiting cases are useful:

$$
\begin{array}{rll}
\text { No Jumps : } & \nu \equiv 0, & H=2, \\
\text { Pure Jumps : } & \sigma=0, & H=I_{2} / I_{0}=: Q_{0}
\end{array}
$$

We can use these limiting cases to build other exact solutions.

Example 2: building around pure jump solution

Introduce $e_{c}(y)=e^{c y}$ and $\delta \geq 0$. Assume

$$
a^{2}(y)=\delta \sigma^{2}(y), \quad \mu(y, d z)=\eta(y) \nu(d z), \quad \frac{\sigma^{2}(y)}{2 \eta(y)}=e_{c}(y)
$$

Then H solves

$$
\begin{equation*}
0=\delta e_{c}\left(\mathcal{A}_{1} H+2\right)+\left(\mathcal{A}_{0} H+I_{2}\right) \tag{3}
\end{equation*}
$$

where we have defined operators \mathcal{A}_{0} and \mathcal{A}_{1}

$$
\begin{aligned}
& \mathcal{A}_{0}=\int_{\mathbb{R}} \nu(d z)\left(\frac{e^{z \partial}-1-z \partial}{\partial}\right)-\int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right), \\
& \mathcal{A}_{1}=\partial-1
\end{aligned}
$$

Assume H is power series in δ

$$
\begin{equation*}
H=\sum_{n=0}^{\infty} \delta^{n} H_{n} \tag{4}
\end{equation*}
$$

Insert expansion (4) into OIDE (6) and collect terms of like order in δ

$$
\begin{aligned}
\mathcal{O}\left(\delta^{0}\right): & \mathcal{A}_{0} H_{0}=-I_{2}, & \\
\mathcal{O}(\delta): & \mathcal{A}_{0} H_{1}=-e_{c}\left(\mathcal{A}_{1} H_{0}+2\right), & \\
\mathcal{O}\left(\delta^{n}\right): & \mathcal{A}_{0} H_{n}=-e_{c} \mathcal{A}_{1} H_{n-1}, & n \geq 2 .
\end{aligned}
$$

We need to study the operator \mathcal{A}_{0} and its inverse

The operator \mathcal{A}_{0}

\mathcal{A}_{0} is a pseudo-differential operator ($\Psi \mathrm{DO}$)

$$
\mathcal{A}_{0}=\int_{\mathbb{R}} \nu(d z)\left(\frac{e^{z \partial}-1-z \partial}{\partial}\right)-\int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right) .
$$

IDO's are characterized by their action on oscillating exponentials

$$
\mathcal{A}_{0} \psi_{\lambda}=\phi_{\lambda} \psi_{\lambda}, \quad \psi_{\lambda}:=\frac{1}{\sqrt{2 \pi}} e^{i \lambda y} .
$$

where ϕ_{λ}, called the symbol of \mathcal{A}_{0}, satisfies $(\partial \rightarrow i \lambda)$

$$
\phi_{\lambda}=\int_{\mathbb{R}} \nu(d z)\left(\frac{e^{i \lambda z}-1-i \lambda z}{i \lambda}\right)-\int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right) .
$$

The inverse operator $\mathcal{A}_{0}^{-1}=\frac{1}{\mathcal{A}_{0}}$ is given by

$$
\frac{1}{\mathcal{A}_{0}} \cdot=\int_{\mathbb{R}} d \lambda \frac{1}{\phi_{\lambda}}\left\langle\psi_{\lambda}, \cdot\right\rangle \psi_{\lambda}, \quad\langle u, v\rangle:=\int_{\mathbb{R}} d y \bar{u}(y) v(y)
$$

Using definition of $\frac{1}{\mathcal{A}_{0}}$ we find $H_{0}=Q_{0}$ and for $n \geq 1$:

$$
\begin{align*}
H_{n}= & \left(Q_{0}-2\right) \underbrace{\int \cdots \int}_{n} d \lambda_{n} \frac{\psi_{\lambda_{n}}}{\phi_{\lambda_{n}}}\left\langle\psi_{\lambda_{1}}, e_{c}\right\rangle \times \\
& \prod_{k=1}^{n-1} d \lambda_{k} \frac{-\chi_{\lambda_{k}}}{\phi_{\lambda_{k}}}\left\langle\psi_{\lambda_{k+1}}, e_{c} \psi_{\lambda_{k}}\right\rangle \tag{5}
\end{align*}
$$

where $\chi_{\lambda}=i \lambda-1$ is symbol of $\mathcal{A}_{1}=\partial-1$.
Noting that

$$
\left\langle\psi_{\lambda}, e_{c}\right\rangle=\sqrt{2 \pi} \delta(\lambda+i c) \quad \text { and } \quad\left\langle\psi_{\mu}, e_{c} \psi_{\lambda}\right\rangle=\delta(\mu-\lambda+i c)
$$

equation (5) becomes

$$
H_{n}=\left(Q_{0}-2\right) \frac{\sqrt{2 \pi} \psi_{-i n c}}{\phi_{-i n c}} \prod_{k=1}^{n-1}\left(\frac{-\chi_{-i k c}}{\phi_{-i k c}}\right) \quad n \geq 1
$$

No integrals!

Using $H=\sum_{n} \delta^{n} H_{n}$ we have

$$
H=Q_{0}+\left(Q_{0}-2\right) \sum_{n=1}^{\infty} a_{n}\left(\delta e_{c}\right)^{n}, \quad a_{n}=\frac{1}{\phi_{-i n c}} \prod_{k=1}^{n-1} \frac{-\chi_{-i n c}}{\phi_{-i k c}} .
$$

If the measure ν is such that

1. $\int_{\mathbb{R}}\left(e^{n c z}-1-n c z\right) \nu(d z)<\infty$ for all $n \in \mathbb{N}$,
2. $\lim _{n \rightarrow \infty} \frac{n^{2} c^{2}}{\int_{\mathbb{R}}\left(e^{n c z}-1-n c z\right) \nu(d z)}=0$,
then the coefficients a_{n} satisfy

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0
$$

and the series converges (and the radius of convergence is \mathbb{R})

Finally, using $G(y)=\int H(y) d y$, the function that prices the variance swap is

$$
\begin{aligned}
G & =Q_{0} y+\sum_{n=1}^{\infty} \delta^{n} G_{n} \\
G_{n} & =\left(Q_{0}-2\right) \frac{e_{n c}}{n c \cdot \phi_{-i n c}} \prod_{k=0}^{n-1}\left(\frac{-\chi_{-i k c}}{\phi_{-i k c}}\right), \quad n \geq 1
\end{aligned}
$$

In figures 1 and 2 we plot $Q_{0} \log \left(F_{T} / F_{0}\right)$ and

$$
h\left(F_{T}\right):=-G\left(\log F_{T}\right)+G\left(\log F_{0}\right)+A\left(F_{T}-F_{0}\right),
$$

as a function of F_{T}

- The constant A is chosen so that $h\left(F_{T}\right)$ has the same slope as $-Q_{0} \log \left(F_{T} / F_{0}\right)$ at $F_{T}=F_{0}$.
- Forward contracts $\left(F_{T}-F_{0}\right)$ have no value since $\mathbb{E} F_{T}=F_{0}$.

Figure 1: We plot $h\left(F_{T}\right)$ as a function of F_{T} (solid blue). For comparison we also plot $-Q_{0} \log \left(F_{T} / F_{0}\right)$ (dashed black). In this Figure, $F_{0}=10.0, c=0.23, \delta=0.22$ and jumps are distributed with a Dirac mass $\nu \sim \delta_{z_{0}}$ with $z_{0}=1.0$.

Figure 2: We plot $h\left(F_{T}\right)$ as a function of F_{T} (solid blue). For comparison we also plot $-Q_{0} \log \left(F_{T} / F_{0}\right)$ (dashed black). In this Figure, $F_{0}=10.0, c=-0.21, \delta=1.00$ and jumps are jumps are distributed with a Dirac mass $\nu \sim \delta_{z_{0}}$ with $z_{0}=-1.0$.

Example 3: building around no-jump solution

Introduce $e_{c}(y)=e^{c y}$ and $\delta \geq 0$. Assume

$$
a^{2}(y)=\sigma^{2}(y), \quad \mu(y, d z)=\delta \eta(y) \nu(d z), \quad \frac{2 \eta(y)}{\sigma^{2}(y)}=e_{c}(y)
$$

Then H solves

$$
\begin{equation*}
\text { around no jump : } \quad 0=\delta e_{c}\left(\mathcal{A}_{0} H+I_{2}\right)+\left(\mathcal{A}_{1} H+2\right), \tag{6}
\end{equation*}
$$

Compare to

$$
\text { around pure jump : } \quad 0=\left(\mathcal{A}_{0} H+I_{2}\right)+\delta e_{c}\left(\mathcal{A}_{1} H+2\right)
$$

Just reverse roles of:

$$
\begin{array}{ll}
\mathcal{A}_{0} \longleftrightarrow \mathcal{A}_{1} & \text { and } \\
\phi_{\lambda} \longleftrightarrow \chi_{\lambda} &
\end{array}
$$

Reversing roles of ϕ and χ (symbols of \mathcal{A}_{0} and \mathcal{A}_{1} resp.)

$$
\begin{aligned}
G & =2 y+\sum_{n=1}^{\infty} \delta^{n} G_{n} \\
G_{n} & =\left(2 I_{0}-I_{2}\right) \frac{e_{n c}}{n c \cdot \chi_{-i n c}} \prod_{k=0}^{n-1}\left(\frac{-\phi_{-i k c}}{\chi_{-i k c}}\right), \quad n \geq 1
\end{aligned}
$$

Conditions for convergence:

- $\int_{\mathbb{R}}\left(e^{n c z}-1-n c z\right) \nu(d z)<\infty$ for all $n \in \mathbb{N}$,
- $\lim _{n \rightarrow \infty} \frac{\int_{\mathbb{R}}\left(e^{n c z}-1-n c z\right) \nu(d z)}{n^{2} c^{2}}=0$ (reciprocal of prev. cond.).

In figures 3 and 4 we plot $2 \log \left(F_{T} / F_{0}\right)$ and

$$
h\left(F_{T}\right):=-G\left(\log F_{T}\right)+G\left(\log F_{0}\right)+A\left(F_{T}-F_{0}\right),
$$

as a function of F_{T}. The constant A is chosen so that $h\left(F_{T}\right)$ has the same slope as $-2 \log \left(F_{T} / F_{0}\right)$ at $F_{T}=F_{0}$.

Figure 3: We plot $h\left(F_{T}\right)$ as a function of F_{T} (solid blue). For comparison we also plot $-2 \log \left(F_{T} / F_{0}\right)$ (dashed black). In this Figure, $F_{0}=10.0$, $c=0.39, \delta=1.25$ and $\nu=\delta_{z_{0}}$ (Dirac measure) with $z_{0}=-1.50$. Negative jumps raise value of VS relative to two log contracts.

Figure 4: We plot $h\left(F_{T}\right)$ as a function of F_{T} (solid blue). For comparison we also plot $-2 \log \left(F_{T} / F_{0}\right)$ (dashed black). In this Figure, $F_{0}=10.0, c=-1.05, \delta=1.00$ and $\nu=\delta_{z_{0}}$ (Dirac measure) with $z_{0}=1.75$. Positive jumps lower value of VS relative to two \log contracts.

Example 4: subordinate diffusions

Model forward price as

$$
F_{t}=\exp \left(Y_{\tau_{t}}^{\phi}\right), \quad Y_{t}^{\phi}=Y_{T_{t}}
$$

where τ is a continuous time-change, Y is a diffusion absorbed at endpoints $L<R$

$$
d Y_{t}=-\frac{1}{2} \sigma^{2}\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d W_{t}
$$

and T is a Lévy subordinator

$$
d T_{t}=b d t+\int_{0}^{\infty} z d N_{t}^{\rho}(d z), \quad \mathbb{E} d N_{t}^{\rho}(d z)=\rho(d z) d t
$$

The process Y^{ϕ} experiences jumps because the subordinator T jumps.

Some spectral theory

The generator of Y, given by

$$
\begin{aligned}
\mathcal{A} & =\frac{1}{2} \sigma^{2}(y)\left(\partial^{2}-\partial\right) \\
\operatorname{dom}(\mathcal{A}) & =\left\{f \in C^{2}([L, R]): f(L)=f(R)=0\right\}
\end{aligned}
$$

is self-adjoint on $L^{2}([L, R], \mathfrak{m})$ where \mathfrak{m} is the speed measure of \mathcal{A}

$$
\langle f, \mathcal{A} g\rangle_{\mathfrak{m}}=\langle\mathcal{A} f, g\rangle_{\mathfrak{m}}, \quad \mathfrak{m}(y)=\frac{e^{-y}}{\sigma^{2}(y)}
$$

By the spectral theorem, the operator $g(\mathcal{A})$ is defined as

$$
g(\mathcal{A})=\sum_{n} g\left(\lambda_{n}\right)\left\langle\psi_{n}, \cdot\right\rangle_{\mathfrak{m}} \psi_{n}, \quad \mathcal{A} \psi_{n}=\lambda_{n} \psi_{n}
$$

In particular
resolvent: $\quad(\mathcal{A}-z) u=h$
$\Rightarrow \quad u=\frac{1}{\mathcal{A}-z} h$,
semigroup : $\quad u(t, y)=\mathbb{E}_{y} h\left(Y_{t}\right) \quad \Rightarrow \quad u(t, y)=e^{t \mathcal{A}} h(y)$.

\mathcal{A}^{ϕ} - the generator of $Y_{t}^{\phi}=Y_{T_{t}}$

The subordinator T is characterized by its Laplace exponent

$$
\mathbb{E} e^{\lambda T_{t}}=e^{t \phi(\lambda)}, \quad \phi(\lambda)=b \lambda+\int_{0}^{t} \rho(d s)\left(e^{s \lambda}-1\right) .
$$

We compute the semigroup $e^{t \mathcal{A}^{\phi}}$ of Y^{ϕ} as follows

$$
\begin{aligned}
e^{t \mathcal{A}^{\phi}} h(y) & =\mathbb{E}_{y} h\left(Y_{t}^{\phi}\right)=\mathbb{E} \mathbb{E}_{y}\left[h\left(Y_{T_{t}}\right) \mid T_{t}\right] \\
& =\mathbb{E} e^{T_{t} \mathcal{A}} h(y)=e^{t \phi(\mathcal{A})} h(y) .
\end{aligned}
$$

Therefore, the generator \mathcal{A}^{ϕ} is given by

$$
\mathcal{A}^{\phi}=\lim _{t \rightarrow 0} \frac{1}{t}\left(e^{t \mathcal{A}^{\phi}}-1\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(e^{t \phi(\mathcal{A})}-1\right)=\phi(\mathcal{A})
$$

And the resolvent is given by

$$
\frac{1}{\mathcal{A}^{\phi}-z}=\frac{1}{\phi(\mathcal{A})-z}
$$

VS pricing

The function G that prices the VS solves

$$
\begin{aligned}
\mathcal{A}^{\phi} G(y) & =h(y) \\
h(y) & =-b \sigma^{2}(y)-\int_{L-y}^{R-y} \mu(y, d z) z^{2} \\
\mu(y, d z) & =\int_{0}^{\infty} \rho(d s) p_{Y}(s, y, y+z) d z \\
p_{Y}(s, y, y+z) & =e^{t \mathcal{A}} \delta_{y+z}(y)
\end{aligned}
$$

The solution can be written down directly:

$$
G=\frac{1}{\mathcal{A}^{\phi}} h=\frac{1}{\phi(\mathcal{A})} h=\sum_{n} \frac{1}{\phi\left(\lambda_{n}\right)}\left\langle\psi_{n}, h\right\rangle_{\mathfrak{m}} \psi_{n}
$$

Specific solutions are computed by solving $\mathcal{A} \psi_{n}=\lambda_{n} \psi_{n}$ and computing $\phi(\lambda)$.

Simple example

Let background process Y have dynamics

$$
d Y_{t}=-\frac{1}{2} \sigma^{2} d t+\sigma d W_{t} \quad \Rightarrow \quad \mathcal{A}=\frac{1}{2} \sigma^{2}\left(\partial^{2}-\partial\right)
$$

We need to solve eigenvalue problem

$$
\mathcal{A} \psi_{n}=\lambda_{n} \psi_{n}, \quad \psi_{n}(L)=\psi_{n}(R)=0
$$

The solution is

$$
\begin{aligned}
& \psi_{n}(y)=e^{y / 2} \sqrt{\frac{\sigma^{2}}{R-L}} \sin \left(\alpha_{n}(y-L)\right), \quad \alpha_{n}=\frac{n \pi}{R-L}, \\
& \lambda_{n}=\frac{-\sigma^{2}}{2}\left(\alpha_{n}^{2}+\frac{1}{4}\right), \\
& n \in \mathbb{N} \text {. }
\end{aligned}
$$

Let the Lévy density of the subordinator T be exponential

$$
\rho(d s)=C e^{-\eta s} d s, \quad \Rightarrow \quad \phi(\lambda)=b \lambda+\frac{C \lambda}{\eta^{2}-\eta \lambda},
$$

Figure 5: We plot $h\left(F_{T}\right)=-G\left(\log F_{T}\right)+G\left(\log F_{0}\right)+A\left(F_{T}-F_{0}\right)$, (solid blue) and $-Q \log \left(F_{T} / F_{0}\right)$ (dashed black) as a function of F_{T}. The Lévy measure ρ of the subordinator is exponential: $\rho(d s)=C e^{-\eta s} d s$. In this Figure, $\sigma=1, b=0$ (i.e., no diffusion component), $C=1, \eta=1$, $L=-2, R=1, F_{0}=e^{Y_{0}^{\phi}}=1, Q=2$.

Quick recap

- We have shown that, in the Time-change Markov process setting, a VS has the same value as a European option with payoff $h\left(F_{T}\right):=-G\left(\log F_{T}\right)+G\left(\log F_{0}\right)$.
- One can compute the value of this option $\mathbb{E} h\left(F_{T}\right)$ using co-terminal calls and puts

$$
\begin{aligned}
& \mathbb{E} h\left(F_{T}\right)=h(\kappa)+h^{\prime}(\kappa)(C(T, \kappa)-P(T, \kappa)) \\
& \quad+\int_{0}^{\kappa} h^{\prime \prime}(K) P(T, K) d K+\int_{\kappa}^{\infty} h^{\prime \prime}(K) C(T, K) d K
\end{aligned}
$$

- For certain special cases, we can also compute $\mathbb{E} h\left(F_{T}\right)$ directly from model parameters.
- This will allow us to show how the ratio $\frac{-\mathbb{E}[\log F]_{T}}{\mathbb{E} \log \left(F_{T} / F_{0}\right)}$ varies as a function of F_{0}.

Special case 1: European option pricing

Introduce $\omega>0$ and $\delta>0$. Let

$$
a^{2}(y)=2 \omega^{2}, \quad \mu(y, d z)=\delta \omega^{2} e_{c}(y) \nu(d z)
$$

This model falls under the "building around no jumps" setting of example 3. Thus, we know the function G that prices the VS. We wish to find $u(t, y):=\mathbb{E}_{y} G\left(Y_{t}\right)$. From the KBE we have

$$
\left(-\partial_{t}+\mathcal{A}\right) u=0, \quad u(0, y)=G(y)
$$

where \mathcal{A} is the infinitesimal generator of Y.

The generator \mathcal{A} of Y

The process Y has generator

$$
\mathcal{A}=\delta e_{c} \mathcal{L}_{0}+\mathcal{L}_{1}
$$

with

$$
\begin{aligned}
& \mathcal{L}_{0}=\omega^{2} \int_{\mathbb{R}} \nu(d z)\left(e^{z \partial}-1-z \partial\right)-\omega^{2} \int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right) \partial \\
& \mathcal{L}_{1}=\omega^{2}\left(\partial^{2}-\partial\right) .
\end{aligned}
$$

\mathcal{L}_{0} and \mathcal{L}_{1} are Ψ DOs with symbols Φ_{λ} and \mathcal{X}_{λ} respectively

$$
\begin{aligned}
\Phi_{\lambda}= & \omega^{2} \int_{\mathbb{R}} \nu(d z)\left(e^{i \lambda z}-1-i \lambda z\right) \\
& \quad-\omega^{2} \int_{\mathbb{R}} \nu(d z)\left(e^{z}-1-z\right) i \lambda, \\
\mathcal{X}_{\lambda}= & \omega^{2}\left(-\lambda^{2}-i \lambda\right) .
\end{aligned}
$$

Assume u is power series in δ (same game as for H)

$$
u=\sum_{n \geq 0} \delta^{n} u_{n}
$$

Insert expansion for u and $\mathcal{A}=\delta e_{c} \mathcal{L}_{0}+\mathcal{L}_{1}$ into KBE and collect like powers of δ.

$$
\begin{array}{lll}
\mathcal{O}\left(\delta^{0}\right): & \left(-\partial_{t}+\mathcal{L}_{1}\right) u_{0}=0, & u_{0}(0, y)=G(y) \\
\mathcal{O}\left(\delta^{n}\right): & \left(-\partial_{t}+\mathcal{L}_{1}\right) u_{n}=-e_{c} \mathcal{L}_{0} u_{n-1}, & u_{n}(0, y)=0
\end{array}
$$

The formal solution is

$$
\begin{array}{ll}
\mathcal{O}\left(\delta^{0}\right): & u_{0}(t, y)=e^{t \mathcal{L}_{1}} G(y) \\
\mathcal{O}\left(\delta^{n}\right): & u_{n}(t, y)=\int_{0}^{t} d s e^{(t-s) \mathcal{L}_{1}} e^{c y} \mathcal{L}_{0} u_{n-1}(s, y)
\end{array}
$$

where the semigroup of operators $\mathcal{P}_{t}:=e^{t \mathcal{L}_{1}}$ is given by

$$
e^{t \mathcal{L}_{1}} \cdot=\int_{\mathbb{R}} d \lambda e^{t \mathcal{X}_{\lambda}}\left\langle\psi_{\lambda}, \cdot\right\rangle \psi_{\lambda}
$$

Using $\left\langle\psi_{\mu}, e_{c} \mathcal{L}_{0} \psi_{\lambda}\right\rangle=\Phi_{\lambda} \delta(\lambda-\mu-i c)$, one can find an explicit expression for u_{n} :

$$
\begin{aligned}
u_{n}(t, y)= & \int_{\mathbb{R}} d \lambda\left(\sum_{k=0}^{n} \frac{e^{t \mathcal{X}_{\lambda-i k c}}}{\prod_{j \neq k}^{n}\left(\mathcal{X}_{\lambda-i k c}-\mathcal{X}_{\lambda-i j c}\right)}\right) \cdots \\
& \times\left(\prod_{k=0}^{n-1} \Phi_{\lambda-i k c}\right)\left\langle\psi_{\lambda}, G\right\rangle \psi_{\lambda-i n c}(y)
\end{aligned}
$$

- $u(t, y):=\mathbb{E}_{y} G\left(Y_{t}\right)=\sum_{n} \delta^{n} u_{n}$ is price of option with no time-change $\left(\tau_{t}=t\right)$
- To price option with independent time-change τ, simply condition on τ_{t}

$$
v(t, y):=\mathbb{E}_{y} G\left(Y_{\tau_{t}}\right)=\mathbb{E} \mathbb{E}_{y}\left[G\left(Y_{\tau_{t}}\right) \mid \tau_{t}\right]=\mathbb{E} u\left(\tau_{t}, y\right)
$$

Analytic formulas result as long as Laplace transform $\mathbb{E} e^{\lambda \tau_{t}}$ is known (e.g. $\tau_{t}=\int_{0}^{t} c_{s} d s$ where c is CIR).

Figure 6: A plot of $\left(\frac{\mathbb{E}_{y}[\log F]_{T}}{-\mathbb{E}_{y} \log \left(F_{T} / F_{0}\right)}\right)$ as a function of $F_{0}=e^{y}$ (blue).

$$
\begin{aligned}
& F_{0} \rightarrow 0: \quad \frac{\mu(y, \mathbb{R})}{a(y)} \rightarrow 0 \quad\left(\frac{\mathbb{E}_{y}[\log F]_{T}}{-\mathbb{E}_{y} \log \left(F_{T} / F_{0}\right)}\right) \rightarrow 2, \\
& F_{0} \rightarrow \infty: \quad \frac{\mu(y, \mathbb{R})}{a(y)} \rightarrow \infty \quad\left(\frac{\mathbb{E}_{y}[\log F]_{T}}{-\mathbb{E}_{y} \log \left(F_{T} / F_{0}\right)}\right) \rightarrow Q_{0}(=e!) .
\end{aligned}
$$

Special case 2: European option pricing

Return to the subordinated diffusion setting

$$
F_{t}=\exp \left(Y_{\tau_{t}}^{\phi}\right), \quad Y_{t}^{\phi}=Y_{T_{t}}
$$

where τ is a continuous time-change, Y is a diffusion absorbed at endpoints $L<R$ and T is a Lévy subordinator. We know the function G that prices the VS.
We also know how to compute

$$
u(t, y)=\mathbb{E}_{y} G\left(Y_{t}^{\phi}\right)=e^{t \mathcal{A}^{\phi}} G(y)=\sum_{n} e^{t \phi\left(\lambda_{n}\right)}\left\langle\psi_{n}, G\right\rangle_{\mathfrak{m}} \psi_{n}(y)
$$

If the time-change τ is independent of Y^{ϕ} and we know its Laplace transform $\mathbb{E} e^{\lambda \tau_{t}}=L(t, \lambda)$, then the price can be computed by conditioning on τ_{t}

$$
\begin{aligned}
v(t, y) & :=\mathbb{E}_{y} G\left(Y_{\tau_{t}}^{\phi}\right)=\mathbb{E} \mathbb{E}_{y}\left[G\left(Y_{\tau_{t}}^{\phi}\right) \mid \tau_{t}\right]=\mathbb{E} u\left(\tau_{t}, y\right) \\
& =\sum_{n} L\left(t, \phi\left(\lambda_{n}\right)\right)\left\langle\psi_{n}, G\right\rangle_{\mathfrak{m}} \psi_{n}(y)
\end{aligned}
$$

Figure 7: A plot of $\left(\frac{\mathbb{E}_{y}[\log F]_{T}}{-\mathbb{E}_{y} \log \left(F_{T} / F_{0}\right)}\right)$, as a function of $F_{0}=e^{y}$ for the subordinated diffusion model. We let the Lévy measure ρ of the subordinator be exponential: $\rho(d s)=C e^{-\eta s} d s$ and we assume a deterministic clock $\tau_{t}=t$. We use the following parameters: $\sigma=1$, $b=1, C=2.0, \eta=1, L=-2, R=1, T=3$.

Review

1. We have shown that when F is modeled as the exponential of a time-changed Markov process $F_{t}=\exp \left(Y_{\tau_{t}}\right)$ the VS is priced by a European option whose payoff G depends only on the dynamics of Y - not on the time-change τ.
2. For certain cases, we can explicitly compute the function G that prices the VS.
3. When Y is a Lévy process we recover the results of Carr, Lee, and $\mathrm{Wu}(2011)\left(G\left(\log F_{T}\right)=\log F_{T}\right)$.

$$
\text { Carr-Lee-Wu } \subset \text { Carr-Lee-Lorig }
$$

4. When Y is not a Lévy process we find that the ratio $\left(\frac{\mathbb{E}_{y}[\log F]_{T}}{-\mathbb{E}_{y} \log \left(F_{T} / F_{0}\right)}\right)$ depends on the value of $F_{0}=e^{y}$.

Bibliography I

Carr, P., R. Lee, and L. Wu (2011). Variance swaps on time-changed lévy processes. Finance and Stochastics, 1-21.
Carr, P. and D. Madan (1998). Towards a theory of volatility trading. Volatility: new estimation techniques for pricing derivatives, 417.
Dupire, B. (1993). Model art. Risk 6(9), 118-124.
Neuberger, A. (1990). Volatility trading. Working paper: London Business School.

