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Intro to variance swaps

◮ Let F be forward price of an asset.

◮ Assume Ft > 0 for all t.

◮ Define the process X := logF .

◮ The floating leg of a variance swap pays (to the long side)

∑

ti∈[0,T ]

(
Xti+1

−Xti

)2
. (1)

◮ As sampling frequency increases: (1)
P→ [X]T .

◮ A swap whose floating leg pays [X]T is called a continuously
monitored variance swap.

◮ Using risk-neutral pricing, the fair strike of a VS is E [X]T
◮ Question: how to compute E [X]T ?



Non-parametric approach (with no jumps)

Suppose Ft = exp(Xt) with

dXt = −
1

2
σ2t dt+ σtdWt.

In this setting, Neuberger (1990) and Dupire (1993) show VS
priced by log contract:

E [X]T = −2E (XT −X0) = −2E log(FT /F0).

Quick proof:

E [X]T = E

∫ T

0
σ2t dt

= −2E
∫ T

0
dXt + 2

�
�
�

�
�
�

E

∫ T

0
σtdWt

= −2E (XT −X0).



Synthetic European contracts

As shown in Carr and Madan (1998), if h ∈ C2(R+) then for any
κ ∈ R

+ we have

h(FT ) = h(κ) + h′(κ)
(
(FT − κ)+ − (κ− FT )

+
)

+

∫ κ

0
h′′(K)(K − FT )

+dK +

∫ ∞

κ
h′′(K)(FT −K)+dK.

Taking expectations, we have

Eh(FT ) = h(κ) + h′(κ)
(
C(T, κ)− P (T, κ)

)

+

∫ κ

0
h′′(K)P (T,K)dK +

∫ ∞

κ
h′′(K)C(T,K)dK,

where P (T,K) and C(T,K) are European put and call prices



Synthetic log contract and VIX

To price a VS, take h(F ) = −2 log(F/F0).

E [X]T = −2E log(FT /F0)

=

∫ F0

0

2

K2
P (T,K)dK +

∫ ∞

F0

2

K2
C(T,K)dK, (2)

Discretized version of (2) is used to construct VIX, the CBOE’s
30-day forward looking measure of volatility.

Note: equation (2) prices VS correctly only when X experiences no
jumps.



Non-parametric pricing of VS with jumps
Suppose Ft = exp(Y τ t) where τ is a continuous stochastic clock
(possibly correlated with Y ) and Y is a Lévy process

dY t = b dt+ σ dWt +

∫

R

zdÑt(dz),

dÑt(dz) = dNt(dz)− µ(dz)dt,

b = −1

2
σ2 −

∫

R

(ez − 1− z)ν(dz).

In this setting Carr, Lee, and Wu (2011) show

E [X]T = −QE (XT −X0) = −QE log(FT /F0).

The multiplyer Q depends only on the Lévy process Y – not on the
clock

Q =
σ2 +

∫∞
−∞ z2ν(dz)

σ2/2 +
∫∞
−∞ (ez − 1− z) ν(dz)

Note: if ν ≡ 0 then Q = 2 (recover result of Neuberger/Dupire).



Features and limitations of time-changed Lévy processes

Features

◮ Allows for jumps, stochastic volatility and leverage effect

◮ Multiplier Q depends only on background Lévy process – not
time-change.

◮ Includes many popular models (e.g., Heston, Exponential
Lévy, etc.) in a single framework.

Possible limitations

◮ In time-changed Lévy approach, the multiplier Q
should be constant

Q =
−E [logF ]T
E log(FT /F0)

.

Evidence from Carr, Lee, and Wu (2011) suggests Q is not
constant in time or across maturities.



Time-changed Markov Processes
Suppose F is modeled by

Ft = exp(Y τ t)

where τ is a continuous stochastic clock possibly correlated with Y
and Y is any continuous time scalar Markov process

dY t = b(Yt) dt+ a(Yt) dWt +

∫

R

z dÑt(Yt−, dz),

Here, dÑt(Yt−, dz) is a compensated Poisson random measure
with state-dependent jumps

dÑt(Yt−, dz) = dNt(Yt−, dz)− µ(Yt−, dz)dt,

and the drift b(Yt) is fixed by a and µ so that F is a martingale

b(Yt) = −
1

2
a2(Yt)−

∫

R

µ(Yt−, dz) (e
z − 1− z) .



The generator of Y
Note that Y has generator

A =
1

2
a2(y)

(
∂2 − ∂

)
+

∫

R

µ(y, dz)
(
θz − 1− z∂

)

−
∫

R

µ(y, dz)
(
ez − 1− z

)
∂,

where θz is the shift operator: θzf(y) = f(y + z).
Note, for analytic f , we have

ez∂f(y) =
∞∑

n=0

zn

n!
∂nf(y) = f(y + z).

Formally, then, we re-write the generator A as follows:

A =
1

2
a2(y)

(
∂2 − ∂

)
+

∫

R

µ(y, dz)
(
ez∂ − 1− z∂

)

−
∫

R

µ(y, dz)
(
ez − 1− z

)
∂.



The quadratic variation process [Y ]
Note that d[Y ]t is given by

d[Y ]t =

(
a2(Yt) +

∫

R

z2µ(Yt, dz)

)
dt+

∫

R

z2dÑ(Yt−, dz)

︸ ︷︷ ︸
martingale

.

Hence

E d[Y ]t = E

(
a2(Yt) +

∫

R

z2µ(Yt, dz)

)
dt.

Likewise, for G ∈ dom(A) we have

dG(Yt) = AG(Yt)dt+martingale.

Hence

E dG(Yt) = EAG(Yt)dt.



Variance Swap Pricing

Suppose we can find a function G such that

−AG(y) = a2(y) +

∫

R

z2µ(y, dz).

Then, using results from the previous page, we have

E [Y ]τT = E

∫ τT

0
d[Y ]t

= E

∫ τT

0

(
a2(Yt) +

∫

R

z2µ(Yt, dz)

)
dt

= −E
∫ τT

0
AG(Yt)dt

= −E
∫ τT

0
dG(Yt) +((((((

Emartingale

= −EG(YτT ) +G(Y0).



Recall Ft = exp(Yτt)

Continuity of time-change τ implies: [logF ]T = [Y ]τT . Hence

E [logF ]T︸ ︷︷ ︸
A

= −EG(logFT )︸ ︷︷ ︸
B

+G(logF0)︸ ︷︷ ︸
C

.

◮ A: Fair strike of a variance swap.

◮ B: Value of a European contract with payoff: −G(logFT ).

◮ C: Value of G(logF0) zero-coupon bonds.

Quantity B can be constructed from T -maturity calls/puts a la
Carr and Madan (1998).

◮ To price a VS, we must solve OIDE:

−AG(y) = a2(y) +

∫

R

z2µ(y, dz).



Simplification

Define: H := ∂G so that G(y) =
∫
H(y)dy. Then H solves

−A

∂
H = a2(y) +

∫

R

z2µ(y, dz),

where

A

∂
=

1

2
a2(y) (∂ − 1) +

∫

R

µ(y, dz)
(ez∂ − 1− z∂

∂

)

−
∫

R

µ(y, dz)
(
ez − 1− z

)

and

ez∂ − 1− z∂
∂

:=
∞∑

n=2

1

n!
zn∂n−1.



Example 1: jump-intensity proportional to local variance
Introduce γ(y) > 0. Assume

a2(y) = γ2(y)σ2, µ(y, dz) = γ2(y) ν(dz),

Easy to check that H(y) is given by

H = Q :=
σ2 + I2
σ2/2 + I0

, G = Qy,

where

I0 :=

∫

R

ν(dz) (ez − 1− z) , In :=

∫

R

ν(dz)zn, n ≥ 2.

Note: this case includes Time-changed Lévy case (take γ(y) = 1).
Thus, we recover result of Carr, Lee, and Wu (2011):

E [logF ]T = −EG(logFT ) +G(logF0) = −Q log(FT /F0).

Neuberger-Dupire ⊂ Carr-Lee-Wu ⊂ Carr-Lee-Lorig.



Limiting cases

The following limiting cases are useful:

No Jumps : ν ≡ 0, H = 2,

Pure Jumps : σ = 0, H = I2/I0 =: Q0.

We can use these limiting cases to build other exact solutions.



Example 2: building around pure jump solution

Introduce ec(y) = ecy and δ ≥ 0. Assume

a2(y) = δ σ2(y), µ(y, dz) = η(y)ν(dz),
σ2(y)

2 η(y)
= ec(y).

Then H solves

0 = δec (A1H + 2) + (A0H + I2) , (3)

where we have defined operators A0 and A1

A0 =

∫

R

ν(dz)

(
ez∂ − 1− z∂

∂

)
−
∫

R

ν(dz) (ez − 1− z) ,

A1 = ∂ − 1.



Assume H is power series in δ

H =
∞∑

n=0

δnHn. (4)

Insert expansion (4) into OIDE (6) and collect terms of like order
in δ

O(δ0) : A0H0 = −I2,
O(δ) : A0H1 = −ec (A1H0 + 2) ,

O(δn) : A0Hn = −ecA1Hn−1, n ≥ 2.

We need to study the operator A0 and its inverse



The operator A0

A0 is a pseudo-differential operator (ΨDO)

A0 =

∫

R

ν(dz)

(
ez∂ − 1− z∂

∂

)
−
∫

R

ν(dz) (ez − 1− z) .

ΨDO’s are characterized by their action on oscillating exponentials

A0ψλ = φλψλ, ψλ := 1√
2π
eiλy.

where φλ, called the symbol of A0, satisfies (∂ → iλ)

φλ =

∫

R

ν(dz)

(
eiλz − 1− iλz

iλ

)
−
∫

R

ν(dz) (ez − 1− z) .

The inverse operator A−1
0 = 1

A0
is given by

1

A0
· =

∫

R

dλ
1

φλ
〈ψλ, ·〉ψλ, 〈u, v〉 :=

∫

R

dy u(y) v(y),



Using definition of 1
A0

we find H0 = Q0 and for n ≥ 1:

Hn = (Q0 − 2)

∫
· · ·
∫

︸ ︷︷ ︸
n

dλn
ψλn

φλn

〈ψλ1
, ec〉×

n−1∏

k=1

dλk
−χλk

φλk

〈ψλk+1
, ecψλk

〉, (5)

where χλ = iλ− 1 is symbol of A1 = ∂ − 1.
Noting that

〈ψλ, ec〉 =
√
2πδ(λ+ ic) and 〈ψµ, ecψλ〉 = δ(µ− λ+ ic),

equation (5) becomes

Hn = (Q0 − 2)

√
2π ψ−inc

φ−inc

n−1∏

k=1

(−χ−ikc

φ−ikc

)
n ≥ 1.

No integrals! ,



Using H =
∑

n δ
nHn we have

H = Q0 + (Q0 − 2)
∞∑

n=1

an(δec)
n, an =

1

φ−inc

n−1∏

k=1

−χ−inc

φ−ikc
.

If the measure ν is such that

1.
∫
R
(encz − 1− ncz)ν(dz) <∞ for all n ∈ N,

2. limn→∞
n2c2∫

R
(encz−1−ncz)ν(dz)

= 0,

then the coefficients an satisfy

lim
n→∞

an+1

an
= 0,

and the series converges (and the radius of convergence is R)



Finally, using G(y) =
∫
H(y)dy, the function that prices the

variance swap is

G = Q0 y +
∞∑

n=1

δnGn,

Gn = (Q0 − 2)
enc

nc · φ−inc

n−1∏

k=0

(−χ−ikc

φ−ikc

)
, n ≥ 1.

In figures 1 and 2 we plot Q0 log(FT /F0) and

h(FT ) := −G(logFT ) +G(logF0) +A(FT − F0),

as a function of FT

◮ The constant A is chosen so that h(FT ) has the same slope
as −Q0 log(FT /F0) at FT = F0.

◮ Forward contracts (FT − F0) have no value since EFT = F0.
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Figure 1: We plot h(FT ) as a function of FT (solid blue). For
comparison we also plot −Q0 log(FT /F0) (dashed black). In this Figure,
F0 = 10.0, c = 0.23, δ = 0.22 and jumps are distributed with a Dirac
mass ν ∼ δz0 with z0 = 1.0.
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Figure 2: We plot h(FT ) as a function of FT (solid blue). For
comparison we also plot −Q0 log(FT /F0) (dashed black). In this Figure,
F0 = 10.0, c = −0.21, δ = 1.00 and jumps are jumps are distributed with
a Dirac mass ν ∼ δz0 with z0 = −1.0.



Example 3: building around no-jump solution

Introduce ec(y) = ecy and δ ≥ 0. Assume

a2(y) = σ2(y), µ(y, dz) = δ η(y)ν(dz),
2 η(y)

σ2(y)
= ec(y).

Then H solves

around no jump : 0 = δec (A0H + I2) + (A1H + 2) , (6)

Compare to

around pure jump : 0 = (A0H + I2) + δec (A1H + 2)

Just reverse roles of:

A0 ←→ A1 and 2←→ I2,

φλ ←→ χλ



Reversing roles of φ and χ (symbols of A0 and A1 resp.)

G = 2 y +

∞∑

n=1

δnGn,

Gn = (2I0 − I2)
enc

nc · χ−inc

n−1∏

k=0

(−φ−ikc

χ−ikc

)
, n ≥ 1.

Conditions for convergence:

◮

∫
R
(encz − 1− ncz)ν(dz) <∞ for all n ∈ N,

◮ limn→∞

∫
R
(encz−1−ncz)ν(dz)

n2c2
= 0 (reciprocal of prev. cond.).

In figures 3 and 4 we plot 2 log(FT /F0) and

h(FT ) := −G(logFT ) +G(logF0) +A(FT − F0),

as a function of FT . The constant A is chosen so that h(FT ) has
the same slope as −2 log(FT /F0) at FT = F0.
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Figure 3: We plot h(FT ) as a function of FT (solid blue). For comparison
we also plot −2 log(FT /F0) (dashed black). In this Figure, F0 = 10.0,
c = 0.39, δ = 1.25 and ν = δz0 (Dirac measure) with z0 = −1.50.
Negative jumps raise value of VS relative to two log contracts.
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Figure 4: We plot h(FT ) as a function of FT (solid blue). For
comparison we also plot −2 log(FT /F0) (dashed black). In this Figure,
F0 = 10.0, c = −1.05, δ = 1.00 and ν = δz0 (Dirac measure) with
z0 = 1.75. Positive jumps lower value of VS relative to two log contracts.



Example 4: subordinate diffusions

Model forward price as

Ft = exp(Y φ
τt ), Y φ

t = Y Tt

where τ is a continuous time-change, Y is a diffusion absorbed at
endpoints L < R

dYt = −
1

2
σ2(Yt)dt+ σ(Yt)dWt,

and T is a Lévy subordinator

dTt = b dt+

∫ ∞

0
zdNρ

t (dz), EdNρ
t (dz) = ρ(dz)dt.

The process Y φ experiences jumps because the subordinator T
jumps.



Some spectral theory
The generator of Y , given by

A =
1

2
σ2(y)(∂2 − ∂),

dom(A) = {f ∈ C2([L,R]) : f(L) = f(R) = 0},

is self-adjoint on L2([L,R],m) where m is the speed measure of A

〈f,Ag〉m = 〈Af, g〉m, m(y) =
e−y

σ2(y)
.

By the spectral theorem, the operator g(A) is defined as

g(A) =
∑

n

g(λn)〈ψn, ·〉mψn, Aψn = λnψn.

In particular

resolvent : (A− z)u = h ⇒ u =
1

A− zh,

semigroup : u(t, y) = Eyh(Yt) ⇒ u(t, y) = etAh(y).



Aφ – the generator of Y φ
t = YTt

The subordinator T is characterized by its Laplace exponent

EeλTt = etφ(λ), φ(λ) = bλ+

∫ t

0
ρ(ds)(esλ − 1).

We compute the semigroup etA
φ

of Y φ as follows

etA
φ

h(y) = Eyh(Y
φ
t ) = EEy[h(YTt

)|Tt]
= EeTtAh(y) = etφ(A)h(y).

Therefore, the generator Aφ is given by

A
φ = lim

t→0

1

t

(
etA

φ − 1
)
= lim

t→0

1

t

(
etφ(A) − 1

)
= φ(A),

And the resolvent is given by

1

Aφ − z =
1

φ(A)− z .



VS pricing

The function G that prices the VS solves

A
φG(y) = h(y),

h(y) = −b σ2(y)−
∫ R−y

L−y
µ(y, dz) z2,

µ(y, dz) =

∫ ∞

0
ρ(ds)pY (s, y, y + z)dz,

pY (s, y, y + z) = etAδy+z(y).

The solution can be written down directly:

G =
1

Aφ
h =

1

φ(A)
h =

∑

n

1

φ(λn)
〈ψn, h〉mψn.

Specific solutions are computed by solving Aψn = λnψn and
computing φ(λ).



Simple example
Let background process Y have dynamics

dYt = −
1

2
σ2dt+ σdWt ⇒ A =

1

2
σ2(∂2 − ∂).

We need to solve eigenvalue problem

Aψn = λnψn, ψn(L) = ψn(R) = 0.

The solution is

ψn(y) = ey/2
√

σ2

R− L sin
(
αn(y − L)

)
, αn =

nπ

R− L,

λn =
−σ2
2

(
α2
n +

1

4

)
, n ∈ N.

Let the Lévy density of the subordinator T be exponential

ρ(ds) = Ce−ηs ds, ⇒ φ(λ) = bλ+
Cλ

η2 − ηλ,
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Figure 5: We plot h(FT ) = −G(logFT ) +G(logF0) +A(FT − F0),
(solid blue) and −Q log(FT /F0) (dashed black) as a function of FT . The
Lévy measure ρ of the subordinator is exponential: ρ(ds) = Ce−ηsds. In
this Figure, σ = 1, b = 0 (i.e., no diffusion component), C = 1, η = 1,

L = −2, R = 1, F0 = eY
φ
0 = 1, Q = 2.



Quick recap

◮ We have shown that, in the Time-change Markov process
setting, a VS has the same value as a European option with
payoff h(FT ) := −G(logFT ) +G(logF0).

◮ One can compute the value of this option Eh(FT ) using
co-terminal calls and puts

Eh(FT ) = h(κ) + h′(κ)
(
C(T, κ)− P (T, κ)

)

+

∫ κ

0
h′′(K)P (T,K)dK +

∫ ∞

κ
h′′(K)C(T,K)dK,

◮ For certain special cases, we can also compute Eh(FT )
directly from model parameters.

◮ This will allow us to show how the ratio −E [logF ]T
E log(FT /F0)

varies as
a function of F0.



Special case 1: European option pricing

Introduce ω > 0 and δ > 0. Let

a2(y) = 2ω2, µ(y, dz) = δ ω2ec(y) ν(dz),

This model falls under the “building around no jumps” setting of
example 3. Thus, we know the function G that prices the VS. We
wish to find u(t, y) := Ey G(Yt). From the KBE we have

(−∂t +A)u = 0, u(0, y) = G(y).

where A is the infinitesimal generator of Y .



The generator A of Y

The process Y has generator

A = δecL0 + L1

with

L0 = ω2

∫

R

ν(dz)
(
ez∂ − 1− z∂

)
− ω2

∫

R

ν(dz)
(
ez − 1− z

)
∂,

L1 = ω2
(
∂2 − ∂

)
.

L0 and L1 are ΨDOs with symbols Φλ and Xλ respectively

Φλ = ω2

∫

R

ν(dz)
(
eiλz − 1− iλz

)

− ω2

∫

R

ν(dz)
(
ez − 1− z

)
iλ,

Xλ = ω2
(
−λ2 − iλ

)
.



Assume u is power series in δ (same game as for H)

u =
∑

n≥0

δnun.

Insert expansion for u and A = δecL0 + L1 into KBE and collect
like powers of δ.

O(δ0) : (−∂t + L1)u0 = 0, u0(0, y) = G(y),

O(δn) : (−∂t + L1)un = −ecL0un−1, un(0, y) = 0.

The formal solution is

O(δ0) : u0(t, y) = etL1G(y)

O(δn) : un(t, y) =

∫ t

0
ds e(t−s)L1ecyL0un−1(s, y),

where the semigroup of operators Pt := etL1 is given by

etL1 · =
∫

R

dλ etXλ〈ψλ, ·〉ψλ,



Using 〈ψµ, ecL0ψλ〉 = Φλ δ(λ− µ− ic), one can find an explicit
expression for un:

un(t, y) =

∫

R

dλ

(
n∑

k=0

etXλ−ikc

∏n
j 6=k(Xλ−ikc −Xλ−ijc)

)
· · ·

×
(

n−1∏

k=0

Φλ−ikc

)
〈ψλ, G〉ψλ−inc(y).

◮ u(t, y) := Ey G(Yt) =
∑

n δ
nun is price of option with no

time-change (τt = t)

◮ To price option with independent time-change τ , simply
condition on τt

v(t, y) := Ey G(Yτt) = EEy[G(Yτt)|τt] = Eu(τt, y).

Analytic formulas result as long as Laplace transform E eλτt is
known (e.g. τt =

∫ t
0 csds where c is CIR).
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Figure 6: A plot of
(

Ey [logF ]T
−Ey log(FT /F0)

)
as a function of F0 = ey (blue).

F0 → 0 :
µ(y,R)

a(y)
→ 0

(
Ey [logF ]T

−Ey log(FT /F0)

)
→ 2,

F0 →∞ :
µ(y,R)

a(y)
→∞

(
Ey [logF ]T

−Ey log(FT /F0)

)
→ Q0(= e!).



Special case 2: European option pricing
Return to the subordinated diffusion setting

Ft = exp(Y φ
τt ), Y φ

t = Y Tt

where τ is a continuous time-change, Y is a diffusion absorbed at
endpoints L < R and T is a Lévy subordinator.
We know the function G that prices the VS.
We also know how to compute

u(t, y) = EyG(Y
φ
t ) = etA

φ

G(y) =
∑

n

etφ(λn)〈ψn, G〉mψn(y).

If the time-change τ is independent of Y φ and we know its Laplace
transform E eλτt = L(t, λ), then the price can be computed by
conditioning on τt

v(t, y) := Ey G(Y
φ
τt ) = EEy[G(Y

φ
τt )|τt] = Eu(τt, y)

=
∑

n

L(t, φ(λn))〈ψn, G〉mψn(y).
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Figure 7: A plot of
(

Ey [logF ]T
−Ey log(FT /F0)

)
, as a function of F0 = ey for the

subordinated diffusion model. We let the Lévy measure ρ of the
subordinator be exponential: ρ(ds) = Ce−ηsds and we assume a
deterministic clock τt = t. We use the following parameters: σ = 1,
b = 1, C = 2.0, η = 1, L = −2, R = 1, T = 3.



Review

1. We have shown that when F is modeled as the exponential of
a time-changed Markov process Ft = exp(Yτt) the VS is
priced by a European option whose payoff G depends only on
the dynamics of Y – not on the time-change τ .

2. For certain cases, we can explicitly compute the function G
that prices the VS.

3. When Y is a Lévy process we recover the results of Carr, Lee,
and Wu (2011) (G(logFT ) = logFT ).

Carr-Lee-Wu ⊂ Carr-Lee-Lorig

4. When Y is not a Lévy process we find that the ratio(
Ey [logF ]T

−Ey log(FT /F0)

)
depends on the value of F0 = ey.
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