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Intro to variance swaps

» Let F' be forward price of an asset.

» Assume F; > 0 for all ¢.

> Define the process X :=log F.

» The floating leg of a pays (to the long side)

Z (Xti+1 - Xti)Q' (1)

t;€[0,7

» As sampling frequency increases: (1) 5 (X7

» A swap whose floating leg pays [X]r is called a

» Using risk-neutral pricing, the fair strike of a VS is E [X|p
» Question: how to compute E [X]p?



Non-parametric approach (with no jumps)

Suppose F; = exp(X;) with
1 2
dX; = _§Ut dt + o dWs.

In this setting, Neuberger (1990) and Dupire (1993) show VS
priced by

E[X]r = —2E (X7 — Xo) = —2E

Quick proof:

T
IE[X]T:IE/ oldt
0

T T
= —2E/ dX; +2E 1dW,y
0 0

= 2K (X7 — Xo). 0



Synthetic European contracts

As shown in Carr and Madan (1998), if h € C?(R") then for any
k € RT we have

h(Fr) = h(k) + b () ((FT oK) (k- FT)+)
+ /OH W'(K) (K — Fr)tdK + /:o R'(K)(Fr — K)TdK.
Taking expectations, we have
Eh(Fr) = h(k) + (k) (C(T, K) — )

+/0 W' (K) dK+/N W'(K)C(T, K)dK,

where and C(T', K) are European and call prices



Synthetic log contract and VIX

To price a VS, take h(F') = —2log(F/Fp).
E[X]r = ~2E log(Fr/Fy)

Foo g > 2
— PT,KdK+/ Z 0T, K)K, (2
| err sk [ Gemak @)
Discretized version of (2) is used to construct , the CBOE's

30-day forward looking measure of volatility.

Note: equation (2) prices VS correctly only when X experiences no

jumps.



Non-parametric pricing of VS with jumps
Suppose F; = exp() ,) where 7 is a continuous stochastic clock
(possibly correlated with Y) and V" is a

d t:bdt+ath+/zdﬁt(dz),
R

dNy(dz) = dNy(dz) — p(dz)dt,
1 2

b:—2a —/R(ez—l—z)u(dz).

In this setting Carr, Lee, and Wu (2011) show
E[X]|r = —-QE (Xr — Xo) = —QE log(Fr/ Fp).

The depends only on the Lévy process ¥ — not on the
clock
o+ [% 22v(dz)
o?/2+ [T (e* — 1 —z)v(dz)

Note: if v = 0 then @ = 2 (recover result of Neuberger/Dupire).




Features and limitations of time-changed Lévy processes

Features
» Allows for jumps, stochastic volatility and leverage effect

» Multiplier Q depends only on background Lévy process — not
time-change.

» Includes many popular models (e.g., Heston, Exponential
Lévy, etc.) in a single framework.

> In time-changed Lévy approach, the multiplier @
should be constant

Q _ —E [IOg F]T
~ Elog(Fr/Fy)’

Evidence from Carr, Lee, and Wu (2011) suggests @ is not
constant in time or across maturities.



Time-changed Markov Processes
Suppose F' is modeled by

Fy=exp(Y,,)

where 7 is a continuous stochastic clock possibly correlated with Y
and Y is any

d t:b(y;)dt+a(n)dwt+/zdﬁt(n,dz),
R

Here, dN,(Y;_,dz) is a compensated Poisson random measure
with state-dependent jumps

ANy (Y, dz) = dNy(Ys_, dz) — u(Ye—, dz)dt,

and the drift b(Y;) is fixed by a and p so that F' is a martingale

Vi) =~ ) = [ Ve ds) (& =1-2).



The generator of Y
Note that Y has generator

A= %aQ(y) (0% —9) + /Ru(y, dz)< -1- z8>

—/ﬂgu(y,dz)(ez—l—z)ﬁ,

where (. is the shift operator: 0. f(y) = f(y + 2).
Note, for analytic f, we have

(o)

fl) = 3 0 () = Fly+ ).
n=0

Formally, then, we re-write the generator A as follows:

A= %aQ(y) (0% —9) + /Ru(y,dz)< —1- z@)

- /Ru(y,dz) (ez —-1- 2)8.



The quadratic variation process [Y]
Note that d[Y]; is given by

d[Y]; = <a2(n)+/Rz2u(Yt,dz)) dt+/Rz2d]V(Yt_,dz).

martingale

Hence

EdY]; =E (aZ(Yt) —|—/Rz2u(Yt,dz)) dt.

Likewise, for G € dom(A) we have
dG(Y:) = AG(Y:)dt + martingale.
Hence

EdG(Y;) = EAG(Y;)dt.



Variance Swap Pricing

Suppose we can find a function G such that

—AG(y) =a2(y)+/RzZM(y7dZ).

Then, using results from the previous page, we have

E[Y],, = IE/OTT d[v),

= IE/OTT (aQ(Yt) + /Rzzu(Yt,dz)> dt

T
=—E | AGY)dt
0

= _E/TT dG(Y:) + E martingale
0
=-EG(Y:,) + G(Yo).



Recall F; = exp(Y;,)
Continuity of time-change 7 implies: [log F'|r = [Y].,. Hence

E log F|; = —EG(log Frr) 4+ G(log Fp) .

A C

» A: Fair strike of a variance swap.
» B: Value of a European contract with payoff: —G(log Fr).
» C: Value of G(log F}y) zero-coupon bonds.

can be constructed from T-maturity calls/puts a la
Carr and Madan (1998).

» To price a VS, we must solve OIDE:

“AGE) = a¥(y) + /R 2u(y, d2).



Simplification

Define: H := G so that G(y) = [ H(y)dy. Then H solves

— =a? 22 z
H (y)+/]R wy, dz),

where

- %Cﬂ(y) (0-1)+ /R“(y’ 4z) (ezagza>

—/Ru(y,dz)(ez—l—z)

and

z0 0

e’ —1—20 1 et

D A
n=



Example 1: jump-intensity proportional to local variance
Introduce > 0. Assume

a*(y) ="y) o®, wly. dz) =" (y) v(dz),
Easy to check that H(y) is given by

o? + I
Q 0,2/2+IO? Qy7

where

Iy ::/Ru(dz) (e —1-2), I, ::/Ry(dz)z”, n>2.

Note: (take y(y) = 1).
Thus, we recover result of Carr, Lee, and Wu (2011):

E[log F]p = —E G(log Fr) + G(log Fy) = —Qlog(Fr/Fp).

Neuberger-Dupire C Carr-Lee-Wu C Carr-Lee-Lorig.



Limiting cases

The following limiting cases are useful:

No Jumps : v =0, H =2,
Pure Jumps : oc=0, H =15/1) =: Q.

We can use these limiting cases to build other exact solutions.



Example 2: building around pure jump solution

Introduce and § > 0. Assume

a’(y) =60%(y), ply,dz) =n(y)v(dz), =

Then H solves
0=dec (A H+2)+ (AgH + I2),
where we have defined operators Ag and

Ao = /Ry(dz) (W) _ /Ru(dz) (¢ —1—2),
—9—1.



Assume H is
H=> "H,. (4)
n=0

Insert expansion (4) into OIDE (6) and collect terms of

(%) : AoHy = —1I,
O( ) : AoHp = —e, (.A1H0+2),
O( n) : .A()Hn = —€C.A1Hn_1, n 2 2.

We need to study the operator Ag and its inverse



The operator Ay
Ap is a pseudo-differential operator (¥DO)

Ay = /Ry(dz) (628—81—28> - /Ry(dz) (e —1—2).

WDQ's are characterized by their action on oscillating exponentials

Agr = Oathn, Yy = e,
where ¢, called the of Ay, satisfies (0 — i)

:/Ry(dz) <€A_21A_W> —/Ry(dz) (€ —1—2).

The inverse operator Aal = Aio is given by

1 1 _
AO.:/RdA%wA,.)w, (u,v) :z/RdyU(y)v(y),



Using definition of Aio we find Hy = Qg and for n > 1:
_ U,

Hn - (QO - 2) T dAn¢T<¢/\17€c>x
— "

n—1
H d)\k:bT<w)\k+1’ 60¢Ak>a (5)
k=1 k

where is of
Noting that

(¥r,ec) = V2r6(A+ic) and (Y, ecthy) = 6(p — A +ic),

equation (5) becomes

Hy, = (QO _2)

V 27 w—inc o <_X—ikc)
1 stikc

(z)—inc e

No integrals! ©



Using H =), 0"H, we have

o
H:Q0—|— 0—22 566 P
n=1

If the measure v is such that
1. [g(e"® —1—ncz)v(dz) < oo forall n €N,

. 2.2
2. 1lmn~>oo fR(encz,nlfncz)z/(dz) - 0,

then the coefficients «,, satisfy

lim =0,
n—oo

¢—z‘nc k=1

and the series converges (and the radius of convergence is R)




Finally, using G(y) = [ H(y)dy, the function that prices the
variance swap is

G=Qoy+Yy &G,
n=1
(X
Qo —2 _ bnc <—7JC>7 n>1.
( 0 )nc ¢ mc]]‘_IO QZ)—ikc

In figures 1 and 2 we plot Qg log(Fr/Fy) and
h(Fr) = —G(log Fr) + G(log Fy) + A(Fr — Fp),

as a function of Fp
» The constant A is chosen so that h(Fr) has the same slope
as —Qolog(Fr/Fy) at Fr = Fy.
» Forward contracts (Fp — Fj) have no value since E Fp = Fy.
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Figure 1: We plot h(Fr) as a function of Fr (solid blue). For
comparison we also plot —Qq log(Fr/Fy) (dashed black). In this Figure,
Fy =10.0, ¢ =0.23, § = 0.22 and jumps are distributed with a Dirac
mass v ~ d,, with 2o = 1.0.



Figure 2: We plot h(Fr) as a function of Fr (solid blue). For
comparison we also plot —Qq log(Fr/Fy) (dashed black). In this Figure,
Fy =10.0, ¢ = —0.21, § = 1.00 and jumps are jumps are distributed with
a Dirac mass v ~ §,, with zg = —1.0.



Example 3: building around no-jump solution

Introduce and § > 0. Assume

a®(y) =o’(y), wy dz) = sn(y)v(dz), 20) ~
Then H solves
around no jump:  0=0dc. (AogH + I2) + (A1H +2), (6)
Compare to
around pure jump: 0= (AgH + I2) + 0c. (A1 H + 2)

Just reverse roles of:

Ay +— A4 and 2 +— I,

x> X2



Reversing roles of ¢ and x (symbols of A, and A; resp.)

GzZy—{—ié” )
n=1

e n—1 _¢ )
= (2[0 — _[2) ne < _ch) N n Z 1.
ne - X—inc k=0 X—ikc

Conditions for convergence:

> [p(e"* —1—ncz)v(dz) < oo forall n € N,

Jr (€™ —1—ncz)v(dz)
n2c2

In figures 3 and 4 we plot 2log(Fr/Fp) and

> lim, oo = 0 (reciprocal of prev. cond.).

h(FT) = —G(log FT) + G(log Fo) + A(FT — Fo),

as a function of Fr. The constant A is chosen so that h(Fr) has
the same slope as —2log(Fr/Fy) at Fr = Fy.
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Figure 3: We plot h(Fr) as a function of Frp (solid blue). For comparison
we also plot —2log(Fr/Fy) (dashed black). In this Figure, Fy = 10.0,
¢=0.39, 6§ =1.25 and v = 4,, (Dirac measure) with zy = —1.50.



Figure 4: We plot h(Fr) as a function of Fr (solid blue). For
comparison we also plot —2log(Fr/Fy) (dashed black). In this Figure,
Fy =10.0, ¢ = —1.05, 6 = 1.00 and v = §,, (Dirac measure) with

zp = 1.75.



Example 4: subordinate diffusions
Model forward price as
F = exp(Y?), YP =Y

where 7 is a continuous time-change, Y is a diffusion absorbed at
endpoints L < R

1
dy; = —502(14)& + o(Y;)dWy,
and

dl, =bdt+ / 2dNf (dz), EdN{f (dz) = p(dz)dt.
0

The process Y'? experiences jumps because the subordinator T'
jumps.



Some spectral theory
The generator of Y, given by
A= Lo’w)(@~0),
dom(A) = {f € C*([L, R)) : f(L) = f(R) = 0},

is on L%([L, R],m) where m is the speed measure of A
eV

o2(y)

By the spectral theorem, the operator g(A) is defined as

Zg ) (¥, ) mtn, Athy = Anthn.

(fs49)m = (Af, @)m, m(y) =

In particular

1
A—=z
u(t,y) =Eyh(Ye) = ult,y) =c"h(y).

resolvent: (A —z)u=h = u= h,



A? — the generator of Y,” = Y7,

The subordinator T is characterized by its
t
BTt = et =bA + / p(ds)(e** —1).
0

We compute the semigroup e’ of Y as follows

e h(y) = Eyh(Y) = EE,[h(Yr,)|TH]
= Be"h(y) = *Wh(y).

Therefore, the is given by
T 1 tp(A)
= lim — <e —1) = lim — <e —1) = ¢(A),
t—0 ¢t t—0 ¢

And the resolvent is given by

1 1

AP =2 T GA) — 2




VS pricing
The function GG that prices the VS solves
APG(y) = (y),

R—y
= — O'2 — y4 2’2
=—bo*(y) /L 1y, dz)

-y
plod2) = [ plds)oy (s, -+ )
0
PY(Sv Y,y +z)= etA‘Sy-i-Z(y)'

The solution can be written down directly:

G = ﬂh——ﬂ Z¢ (U, hymton-

Specific solutions are computed by solving A, = A\, and
computing ¢(\).



Simple example
Let background process Y have dynamics

1
dY; = —502dt + odW; =  A=Zd%d*-0).

We need to solve eigenvalue problem

Aty = A, Yn (L) = ¥n(R) = 0.
The solution is

o2

. nm
wn(y) :ey/Q R_LSln <an(y_L)), Oy = m7
_ 2

Let the Lévy density of the subordinator 7' be exponential

CA
plds) = Ce " ds, = P(A) =bA+ 5——,
(ds) =0
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Figure 5: We plot h(Fr) = —G(log Fr) + G(log Fy) + A(Fr — Fp),
(solid blue) and —Qlog(Fr/Fy) (dashed black) as a function of Fr. The
Lévy measure p of the subordinator is exponential: p(ds) = Ce~"°ds. In
this Figure, 0 =1, b =0 (i.e., no diffusion component), C =1, n =1,
L=-2R=1Fy=e% =1 Q=2



Quick recap

v

We have shown that, in the Time-change Markov process
setting, a VS has the same value as a European option with
payoff h(Fr) := —G(log Frr) + G(log Fp).

» One can compute the value of this option E h(Fr) using
co-terminal calls and

Eh(Fr) = h(k) + () (C(T, K) — )

+/0 n'(K) dK+/K W' (K)C(T, K)dK,

v

For certain special cases, we can also compute E h(Fr)
directly from model parameters.

—E [log F]r
E log(Fr/Fo)

v

This will allow us to show how the ratio varies as

a function of Fj.



Special case 1: European option pricing

Introduce w > 0 and § > 0. Let
a’(y) = 2w, ply, dz) = §wec(y) v(dz),

This model falls under the “building around no jumps” setting of
example 3. Thus, we know the function G that prices the VS. We
wish to find :=E, G(Y;). From the KBE we have

(=0 +A)u=0, = G(y).

where A is the infinitesimal generator of Y.



The generator A of YV

The process Y has generator
A =de.Lo +
with
Loy = w2/ v(dz) (eza -1- z@) - w2/ v(dz) (ez -1- z) 0,
R R
= w2 (82 — 8) .

Lo and are WDOs with symbols ®, and respectively
o) = w2/ v(dz) (ei)‘z -1- Mz)
R

— W2 /R v(dz) <ez -1- z) i\,

=w? (=A% —i)).



Assume u is power series in ¢ (same game as for H)

U= Z 0" uy,.

n>0

Insert expansion for u and A = de Lo + L1
like powers of §.

0(50) : (—815 + Ll)uo =0,
000"): (=0 + L1)up = —ecLotn-1,

The formal solution is
0(5%) uo(t,y) = "' G(y)
t
O(6") - un(t,y) :/ ds
0

where the of operators

into KBE and collect

ecy'L“Oun—l (Sa y)a

is given by

= / AN (s, Yo,
R



Using (¢, ecLoha) = @y d(A — p —ic), one can find an explicit
expression for wu,,:

Un(t7 y) = /Rd)\ (k:Z:O H?#k(-)()\—ikc - XA—ijC)) -

n—1
X (H (I))\ikc> <¢,\7 G> w)\finc(y)'
k=0

» u(t,y) =K, G(Y;) =, 6"uy is price of option with no
time-change (7y = t)

» To price option with independent time-change 7, simply
condition on 7

u(t,y) =By G(Yr,) = EE[G(Yr,)|m] = Eu(r, ).

Analytic formulas result as long as Laplace transform is
known (e.g. 7+ = fg csds where ¢ is CIR).
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Figure 6: A plot of (M) as a function of Fy = e¥ (blue).
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Special case 2: European option pricing
Return to the subordinated diffusion setting

F = CXP(YT?), Y;‘,(z) =Y

where 7 is a continuous time-change, Y is a diffusion absorbed at
endpoints L < R and

We know the function G that prices the VS.

We also know how to compute

ult,y) = B,G(YY) = Z O (4, Gt (1)

If the time-change 7 is independent of Y¢ and we know its Laplace
transform Ee*™ = L(t, \), then the price can be computed by
conditioning on 7y

v(t,y) = Ey G(Y ) EE [G(Yf)h’t] = Eu(r, )
:ZL ¢n7 >m7/}n(y)

n
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E, [log F]r
—Ey log(Fr/Fo)
subordinated diffusion model. We let the Lévy measure p of the
subordinator be exponential: p(ds) = Ce "ds and we assume a
deterministic clock 74 = t. We use the following parameters: o = 1,
b=1,C=20,n=1,L=-2,R=1,T=3.

Figure 7: A plot of ( ) as a function of Fy = ¥ for the



Review

. We have shown that when F' is modeled as the exponential of

a time-changed Markov process F; = exp(Y7,) the VS is
priced by a European option whose payoff
— not on the time-change 7.

. For certain cases,

that prices the VS.

When Y is a Lévy process we recover the results of Carr, Lee,
and Wu (2011) (G(log Fr) = log Fr).

Carr-Lee-Wu C Carr-Lee-Lorig

When Y is not a Lévy process we find that the ratio
( Ey [log F]z

W) depends on the value of Fyy = €Y.
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