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Log-Log Capital Distribution Curves I
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Figure: U.S. equity market, 1929-1999 (E.R. Fernholz (2002), p. 95)
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Log-Log Capital Distribution Curves II
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Figure: Capital distribution curves, U.S. equity market, 1968-2008

What kinds of models can describe this long-term stability?
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Definition of Hybrid Atlas Model

I Capitalizations X :=
{

(X1(t), . . . ,Xn(t)) , 0 ≤ t <∞
}

.
I Descending Order Statistics (lexicographic tie-breaks):

max
1≤i≤n

Xi(t) =: X(1)(t) ≥ X(2)(t) ≥ · · · ≥ X(n)(t) := min
1≤i≤n

Xi(t) .

The curves of the previous slides are (smoothed) maps

log k 7−→ 1
T

∫ T

0
log
(

X(k)(t)
X1(t) + · · ·+ Xn(t)

)
dt ,

for k = 1,2, · · · ,n over different decades [0,T ]
(for instance, Jan 1969 – Dec 1978; of course,
each decade has its own, associated market “size” n ).
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Log-Capitalizations
Log-capitalizations Yi(t) := log Xi(t) .
Descending Order Statistics: Y(1)(·) ≥ · · · ≥ Y(n)(·) .

Postulated Dynamics for Log-Capitalizations (schematically):

dYi(t) = (γ + γi + gk ) dt + σk dWi(t) if Y(k)(t) = Yi(t) ;

for 1 ≤ i , k ≤ n , 0 ≤ t <∞ , where W1(·), · · · ,Wn(·) are
independent standard Brownian Motions
System of Brownian particles interacting through their ranks.
Unique weak solution (BASS & PARDOUX, PTRF ’87).

company name i k th ranked company
Drift (“mean”) γi gk

Diffusion (“variance”) σk > 0
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Illustration (n = 3) of Interactions through Rank:
Linear and Kaleidoscopic Views

X3 X2 X1

X1(t)>X2(t)>X3(t)

X1(t)>X3(t)>X2(t)

X3(t)>X1(t)>X2(t)

Time

x1 > x2 > x3

x1 > x3 > x2

x3 > x1 > x2

x3 > x2 > x1

x2 > x3 > x1

x2 > x1 > x3

Paths in R+ × time A path in different wedges of Rn

6



Permutations and Polyhedral Chambers

For p ∈ Σn (symmetric group on n elements), define wedge

Rp :=
{
ξ ∈ Rn : ξp(1) > ξp(2) > · · · > ξp(n)

}
,

the polyhedral Weyl chamber of all points ξ ∈ Rn such that ξp(k)

is ranked k th among ξ1, · · · , ξn .

To wit: p(k) is the “index” (name) in the permutation p ∈ Σn
of the “particle” (coördinate) that occupies the k th rank among
ξ1, · · · , ξn .

FINE CHAMBERS (n!)
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• Consider also the “coarser” chambers

Q(i)
k : =

{
ξ ∈ Rn : ξi is ranked k th among ξ1, . . . , ξn

}
=

⋃
{p∈Σn : p(k)=i}

Rp ; 1 ≤ i , k ≤ n .

We resolve ties “lexicographically”, always in favor of the lowest
index (“name”) i .

This results in a partition of Rn into pairwise-disjoint chambers.

COARSE CHAMBERS (n2)
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Vector Representation as a System of Diffusions

dY (t) = C
(
Y (t)

)
dt + S

(
Y (t)

)
dW (t) ; 0 ≤ t <∞

with Interactions of the Mean-Field-Type, but "rough":

C(y) =
∑

p∈Σn

(
gp−1(1) +γ1 +γ , . . . , gp−1(n) +γn +γ

)′ ·1Rp(y)

=
n∑

k=1

((
gk + γ1 + γ

)
· 1

Q(1)
k

(y) , . . . ,
(
gk + γn + γ

)
· 1

Q(n)
k

(y)
)′
,

S(y) =
∑

p∈Σn

diag
(
σp−1(1) , . . . , σp−1(n)

)︸ ︷︷ ︸
sp

·1Rp(y) ; y ∈ Rn

= diag

(
n∑

k=1

σk · 1Q(1)
k

(y) , . . . ,
n∑

k=1

σk · 1Q(n)
k

(y)

)
.
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SEMIMARTINGALE REPRESENTATION
OF RANKED PROCESSES

Recall Y(1)(t) ≥ · · · ≥ Y(n)(t) , and denote

Λk ,`(t) := LY(k)−Y(`)(t)

the local time accumulated at the origin by the semimartingale
Y(k)(·)− Y(`)(·) ≥ 0 up to time t , for 1 ≤ k < ` ≤ n.

These are the collision local times among particles, of order
`− k + 1 : double, if ` = k + 1 ; triple, if ` = k + 1 ; and so on.
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Lemma: For k = 1, . . . ,n , 0 ≤ t ≤ T , we have

dY(k)(t) =
(
γ + gk +

n∑
i=1

γi 1
Q(i)

k

(
Y (t)

))
dt + σk dBk (t)

+
1
2

[
dΛk ,k+1(t)− dΛk−1,k (t)

]
,

with the independent Brownian Motions (P. LÉVY’s theorem)

Bk (·) :=
n∑

i=1

∫ ·
0

1
Q(i)

k
(Y (t)) dWi(t) , k = 1, · · · ,n .
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LOCAL TIME

Reminder: The “right" Local Time at the origin, accumulated on
[0, t ] by a continuous semim’gale Y (·) = Y (0) + M(·) + V (·), is

LY (t) := Y +(t)− Y +(0)−
∫ t

0
1{Y (s)>0} dY (s)

= lim
ε↓0

1
2 ε

∫ t

0
1{0≤Y (s)<ε} d〈M〉(s) .

The resulting process LY (·) is increasing, continuous, flat off
the set {t ≥ 0 : Y (t) = 0} .

• If Y (·) ≥ 0 , this becomes

LY (t) =

∫ t

0
1{Y (s)=0} dY (s) =

∫ t

0
1{Y (s)=0} dV (s) .
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ALGEBRAIC PROPERTIES OF LOCAL TIME

• For continuous semimartingales Y1(·), · · · ,Yn(·) we have for
the local times at the origin (Yan, Ouknine; mid-80’s):

LY1∧Y2(t) + LY1∨Y2(t) = LY1(t) + LY2(t) , 0 ≤ t <∞

Banner & Ghomrasni (2008): More generally,

n∑
k=1

LY(k)(t) =
n∑

i=1

LYi (t) , 0 ≤ t <∞ .
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• They (B&G) also provide semimartingale representations for
the ranked processes in terms of Collision Local Times:

dY(k)(t) =
n∑

i=1

1
Q(i)

k
(Y (t)) dYi(t)

+
n∑

`=k+1

1
Nk (t)

dΛk ,`(t)−
k−1∑
`=1

1
Nk (t)

dΛk ,`(t) .

“Upward pressure” coming from the lower ranks, or “laggards"
( ` = k + 1, · · · ,n ), “downward pressure” from the upper ranks,
or “leaders" (` = 1, · · · , k − 1).
• Here we keep track of the “size of the crowd” in rank k via

Nk (t) := #
{

i : Yi(t) = Y(k)(t)
}

;

we also assume that all the semimatingales’ bounded variation
parts are absolutely continuous w.r.t. Lebesgue measure, and
that for all (i , j) we have Leb ({t ≥ 0 : Yi(t) = Yj(t)}) = 0 .
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Lemma: For k = 1, . . . ,n , 0 ≤ t ≤ T , we have

dY(k)(t) =
(
γ + gk +

n∑
i=1

γi 1
Q(i)

k

(
Y (t)

))
dt + σk dBk (t)

+
1
2

[
dΛk ,k+1(t)− dΛk−1,k (t)

]
.

Idea of Proof of Lemma: Why only the “nearest neighbor"
(or “simple collision") local times Λk ,k+1(·) and Λk−1,k (·) ?

Does this mean that triple (and higher-order) collisions do not
occur ? Far from it; example of BASS & PARDOUX (1987),
where all particles can collide at the origin at once, but can
then extricate themselves from this massive collision.
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Reason: For any three indices 1 ≤ i , j ,m ≤ n , the “rank-gap"
process

max
ν=i, j,m

Yν(·)− min
ν=i, j,m

Yν(·)

turns out (some relatively hard work here...) to dominate a
Bessel process

dR(t) =
δ − 1
2 R(t)

dt + dβ(t)

in dimension δ > 1, and analysis of its local time shows

LY(k)−Y(`)(·) ≡ Λk ,`(·) ≡ 0 , | k − ` | ≥ 2 .

Serendipity (and relief): even if triple (or higher-order) collisions
occur, they just do not matter for the respective collision local
times.
. Related results in REIMAN & WILLIAMS (1988), and in very
recent work with M. SHKOLNIKOV & S. PAL.
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Recent work with T. ICHIBA & M. SHKOLNIKOV on the absence
of triple collisions (PTRF ’12, to appear):

A necessary condition is the concavity of the graph of the
variances

k 7−→ σ2
k , k = 1, · · · ,n .

. A sufficient condition is the concavity of the graph of

k 7−→ σ2
k , k = 0,1, · · · ,n ,n + 1 ,

where we set
σ0

2 = σ2
n+1 = 0 .

• Pathwise uniqueness, thus also strong solvability, holds for
the SDE for Y (·) , up until the first time a triple collision occurs.

OPEN QUESTIONS: Is there a condition that is both necessary
and sufficient for the absence of such triple collisions? Does
the solution ‘lose its strength’ after the first triple collision?
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These Local Times can be estimated...
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Figure: The estimated local time or “turnover" processes Λk,k+1(·)
for k = 10, 20, 40, ... , 5120; U.S. CRSP data, Jan 1990 – Dec 1999.
(From E.R. FERNHOLZ (2002) Stochastic Portfolio Theory, page 107.)
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Local Times as Cumulative Turnover across Ranks

Discussion: Such estimation comes from the construction of
rank-based portfolios that invest in an index-like fashion
(according to relative capitalization) in, say, the top k stocks.

The performance of such a portfolio relative to the entire
market, involves a leakage term proportional to the local time
Λk ,k+1(·) . This leakage measures essentially the “turnover"
between ranks k and k + 1 ; it can then be estimated based on
observable quantities.

Please note that this kind of turnover tends to increase,
as one goes deeper down the ranks
(that is, with increasing k) , just as the picture suggests.
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• The apparent linearity of the growth of local times is yet
another indication of an underlying stability or ergodic behavior.

(Recall that for, say, Brownian motion, local time grows like√
T ; whereas for processes with an invariant distribution and

stochastic stability, local time grows like T .)

What kinds of conditions can ensure such stochastic stability?

Very roughly speaking: Assign big growth rates (and big
variances) to the smallest stocks; then a stable capital
distribution does indeed emerge.
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STABILITY CONDITIONS

In particular, we shall assume, for every k = 1, . . . ,n− 1 and
p ∈ Σn :

n∑
k=1

gk +
n∑

i=1

γi = 0 ,
k∑
`=1

(
g` + γp(`)

)
< 0 .

These conditions ensure that “the cloud of particles" will stick
together: no sub-collection of particles can “form its own
galaxy", as it were, and drift apart without ever again making
contact with the rest.
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Example 1 – Atlas model:

g1 = · · · = gn−1 = −g < 0;

gn = (n − 1)g > 0;

γ1 = · · · = γn = 0.

The company with the lowest capitalization provides all the
growth – or support, as with the Titan of mythical lore – for the
entire structure. (Here, companies are totally “anonymous" as
far as their growth rates are concerned.)

Example 2 – Atlas model with stock-specific drifts:

g1, . . . ,gn as above;
n∑

i=1

γi = 0 , max
1≤i≤n

γi < g .

Now companies can have "eponymous" growth rates; e.g.

γi = g

(
1− 2i

n + 1

)
, 1 ≤ i ≤ n .
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STOCHASTIC STABILITY

The average (center of gravity)

Y (·) :=
1
n

n∑
i=1

Yi(·)

of the log-capitalizations

Y (t) = Y (0) + γ t +
1
n

n∑
k=1

σk Bk (t)

is Brownian motion with variance
∑n

k=1(σk/n)2 , drift γ .

Recall here the independent Brownian Motions

Bk (·) =
n∑

i=1

∫ ·
0

1
Q(i)

k
(Y (t)) dWi(t) , k = 1, · · · ,n .
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Role of the stability conditions

n∑
k=1

gk +
n∑

i=1

γi = 0 ,
k∑
`=1

(
g` + γp(`)

)
< 0 :

There to guarantee that the process of deviations from the
center of gravity

Ỹ (·) :=
(
Y1(·)− Y (·), . . . ,Yn(·)− Y (·)

)
is positive recurrent, uniformly over compact sets.
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From the theory of R.Z. Khas’minskii (1960, 1980) we have
then the following stochastic stability result:

Proposition: The process Ỹ (·) is stable in distribution; to wit,
there is a unique invariant probability measure µ(·) such that
for every bounded, measurable f : Π → R we have, with Π :=
{y ∈ Rn : y1 + · · ·+ yn = 0} , the Strong Law of Large Numbers

lim
T→∞

1
T

∫ T

0
f
(
Ỹ (t)

)
dt =

∫
Π

f (y)µ(dy) , a.s.

Can this invariant measure be described ?
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Average Occupation Times
Setting f (·) = 1Rp(·) (respectively, 1

Q(i)
k

(·) ), we define the

average occupation times of X (·) in the polyhedral chambers
Rp (respectively, Q(i)

k ):

θp := µ(Rp) = lim
T→∞

1
T

∫ T

0
1Rp(X (t)) dt , p ∈ Σn ,

ϑk ,i := µ(Q(i)
k ) = lim

T→∞

1
T

∫ T

0
1

Q(i)
k

(X (t)) dt , 1 ≤ k , i ≤ n .

Equilibrium Identity:

γi +
n∑

k=1

gk ϑk ,i = 0 ; i = 1, . . . ,n .
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Example 2 – Atlas model with stock-specific drifts:

g1 = · · · = gn−1 = −g < 0; gn = (n − 1)g > 0 ;

n∑
i=1

γi = 0 , max
1≤i≤n

γi < g .

• In this case, the proportions of time the various stocks
occupy the lowest (“Atlas") rank are given by

ϑn,i =
1
n

(
1− γi

g

)
, i = 1, · · · ,n .

We shall obtain more general formulas for these quantities in a
short while ... .
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Strong Laws of Large Numbers

Stability implies a SLLN for Local Times: ∀ k = 1, · · · ,n − 1 :

lim
T→∞

1
T

Λk ,k+1(T ) = −2
k∑
`=1

(
g` +

n∑
i=1

ϑ`,i γi

)

= −2
∑

p∈Σn

θp

k∑
`=1

(
g` + γp(` )

)
> 0 , a.s.

• Typically, this quantity increases with rank k , much like the
picture we saw a moment ago: the higher the rank (to wit: the
bigger the k , the smaller the stock in terms of capitalization),
the bigger the intensity of “market turnover" around it.
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• This will be the case, for instance, under the condition
(satisfied in Examples 1, 2):

gk + γi < 0 ; ∀ 1 ≤ k ≤ n − 1 , 1 ≤ i ≤ n .

Together with
n∑

k=1

gk +
n∑

i=1

γi = 0 ,

this condition implies stochastic stability.

What can be said about ϑk ,i and µ ?
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EXAMPLE: Equal Variances, γ = γ1 = · · · = γn = 0
Just a bunch of Brownian motions with drifts determined by
their ranks. In this case the equations become

dYi(t) =
( n∑

k=1

gk1
Q(i)

k
(Y (t))

)
dt + dWi(t) = DiΦ(Y (t)) dt + dWi(t) .

A conservative diffusion, with drift given by a conservative
vector field and continuous, piecewise smooth potential

Φ(y) :=
n∑

k=1

gk y(k) , y ∈ Rn .

The stability conditions imply that Φ(·) vanishes on the axis
A := {y ∈ Rn : y1 = · · · = yn} , and

Φ(y) =
n−1∑
k=1

(
y(k) − y(k+1)

)( k∑
`=1

g`
)
< 0 , y ∈ Rn \ A .
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Now standard theory shows the existence of invariant measure
for the process Y(k)(·)− Y(k+1)(·) , k = 1, · · · ,n − 1 of
successive gaps, with unnormalized probability density
function in the form of a product-of-exponentials

e 2Φ(y) = exp
{
−

n−1∑
k=1

λk
(
y(k) − y(k+1)

)}
,

with (the stability conditions once again!)

λk := −2
k∑
`=1

g` > 0 , k = 1, · · · ,n − 1 .

(Independence of successive gaps. Reversibility.)

In reality: Variances are not equal, but rather grow with rank
(the smaller the stock, the more volatile it tends to be). And of
course, growth rates should depend on name as well as rank...
.
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Linearly Growing Variances
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Figure: Smoothed variance by rank, U.S. Equity market, 1990-1999.

We shall assume that variances grow linearly with rank:

σ2
2 − σ2

1 = σ2
3 − σ2

2 = · · · = σ2
n − σ2

n−1 ≥ 0 .
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SEMIMARTINGALE REFLECTED
BROWNIAN MOTIONS

Recall the ranked semimartingale decomposition

dY(k)(t) =
n∑

i=1

1
Q(i)

k
(Y (t)) dYi(t) +

1
2

[
dΛk ,k+1(t)− dΛk−1,k (t)

]
of BANNER & GHOMRASNI (2008). Equivalently:

dY(k)(t) =
(
γ + gk +

n∑
i=1

γi 1
Q(i)

k

(
Y (t)

))
dt + σk dBk (t)

+
1
2

[
dΛk ,k+1(t)− dΛk−1,k (t)

]
.
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The vector Ξ(·) of “Successive Gaps"

Ξk (·) := Y(k)(·)− Y(k+1)(·) ≥ 0 , k = 1, · · · ,n − 1

then satisfies

d Ξk (t) =
(

gk +
n∑

i=1

γi 1
Q(i)

k

(
Y (t)

))
dt + σk dBk (t)

−
(

gk+1 +
n∑

i=1

γi 1
Q(i)

k+1

(
Y (t)

))
dt − σk+1 dBk+1(t)

−1
2

[
dΛk−1,k (·) + dΛk+1,k+2(·)

]
+ dΛk ,k+1(·) .

It is a semimartingale reflected Brownian motion in the
nonnegative orthant Rn−1

+ (HARRISON, REIMAN, WILLIAMS).
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• Finally, we define the indicator map Rn 3 ξ 7→ p ξ ∈ Σn

ξ pξ(1) ≥ ξ pξ(2) ≥ · · · ≥ ξ pξ(n) , so that p ξ = p ⇐⇒ ξ ∈ Rp ,

where pξ(k) is the name (index) of the coördinate that occu-
pies the k th rank among ξ1, · · · , ξn .

. We introduce also the Index Process

Pt := pY (t) 0 ≤ t <∞ ,

with values in the symmetric group Σn . The definition implies

YPt (1) = Y(1)(t) ≥ · · · ≥ Y(n)(t) = YPt (n) , 0 ≤ t <∞ .

Keeps track of “who is sitting in a particular rank k at any given
time".
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Invariant Distribution for Adjacent Gaps and Indices

Proposition: Under the stability and linearly-growing-variance
conditions, the invariant distribution ν(·) of (Ξ(·),P·) is

ν(A× B) =
( ∑

p∈Σn

n−1∏
k=1

λ−1
p,k

)−1
·
∑
p∈B

∫
A

exp
(
− 〈λp, z〉

)
dz

for every measurable set A× B ∈ (R+)n−1 × Σn .
Here λp := (λp,1, . . . , λp,n−1)′ is the vector with components

λp,k :=
−2
∑k

`=1
(
g` + γp(`)

)
(σ2

k + σ2
k+1)/2

> 0 ; p ∈ Σn , 1 ≤ k ≤ n − 1 .

Please compare with expression on slide 31.
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Discussion: The invariant measure ν(· , ·) of (Ξ(·),P·) satis-
fies the “Basic Adjoint Relationship” (BAR) of HARRISON &
WILLIAMS (1987) (chamber-by chamber, then globally thanks to
the linearly-growing-variance condition).

The particular form of ν(· , ·) leads to the density

P
(
Ξ(t) ∈ A

)
=
( ∑

p∈Σn

n−1∏
k=1

λ−1
p,k

)−1
·
∑

p∈Σn

∫
A

exp(−〈λp, z〉) dz

of sums-of-products-of-exponentials type, for the distribution
(under the invariant measure ν(· , ·) ) of the semimartingale
reflected Brownian motion process

Ξ(·) := (Ξ1(·), . . . ,Ξn−1(·))′

of adjacent gaps

Ξk (·) := Y(k)(·)− Y(k+1)(·) ≥ 0 , k = 1, . . . ,n − 1 .
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Discussion (cont’d): The assumption of linearly growing
variances is crucial in the Proposition.

It guarantees that the structural “Skew-Symmetry Condition”
(SSC) is satisfied, and that the process of adjacent gaps

Ξ(·) = (Ξ1(·), . . . ,Ξn−1(·))′

actually never visits the nonsmooth part of the boundary of the
positive orthant (R. WILLIAMS (1987)).

This condition also implies the absence of triple collisions for
the components of the original process Y (·) . Special case of a
theory developed by T. ICHIBA (2009) in his dissertation,
concerning the absence of triple collisions.
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Comment: With D the diagonal matrix of the covariance matrix
A = {ak`}1≤k ,`≤n−1 with

ak` :=
(
σ2

k + σ2
k+1
)

1{`=k} − σ2
k 1{`=k−1} − σ2

k+1 1{`=k+1} ,

and with the (n − 1)× (n − 1) "reflection matrix" (slide 34)

R :=


1 −1/2
−1/2 1 −1/2

. . . . . . . . .
−1/2 1 −1/2

−1/2 1

 ,

the Skew-Symmetry Condition (SSC) mandates

2
(
D− A

)
=
(
I− R

)
D + D

(
I− R

)
.

A compatibility condition between the covariance and the
reflection matrix - which ordinarily ‘fight each other’. When it
prevails, peace is restored; it is satisfied in the case of linearly
growing variances.
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The components of the column %k ∈ Rn−1 of the reflection
matrix

R =


1 −1/2
−1/2 1 −1/2

. . . . . . . . .
−1/2 1 −1/2

−1/2 1

 ,

provide the (non-tangential!) directions of reflection, when the
face of the boundary

Fk :=
{

(z1, · · · , zn−1
)′ | zk = 0

}
, k = 1, . . . ,n − 1

of the state-space S = (R+)n−1 is hit and the k th component of
Λ(·) increases.
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The BAR (Basic Adjoint Relationship) is

∫
S×Σn

[
A(p) f

]
(z) dν(z,p) +

1
2

n−1∑
k=1

∫
Fk

〈%k ,∇f (z)〉(z) dν0k (z) = 0

for f ∈ C2(S) , where

[
A(p) f

]
(z) :=

1
2

n−1∑
k=1

n−1∑
`=1

ak ,`
∂2f (z)

∂zk∂z`
+

n−1∑
k=1

bk (p)
∂f (z)

∂zk
,

ak` :=
(
σ2

k + σ2
k+1
)

1{`=k} − σ2
k 1{`=k−1} − σ2

k+1 1{`=k+1} ,

bk (p) :=
(
gk + γp−1(k)

)
−
(
gk+1 + γp−1(k+1)

)
.
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Average Occupation Times

Corollary: The long-term-average occupation times are

θp = µ
(
Rp
)

= ν
(
S, {p}

)
=

( ∑
q∈Σn

n−1∏
k=1

λ−1
q,k

)−1

·
n−1∏
k=1

λ−1
p,k

for each chamber Rp (p ∈ Σn ) , and

ϑk ,i =
∑

{p∈Σn : p(k)=i}

θp︸ ︷︷ ︸
, i = 1, . . . ,n .

Please recall

λp,k :=
−2
∑k

`=1
(
g` + γp(`)

)
(σ2

k + σ2
k+1)/2

> 0 ; p ∈ Σn , 1 ≤ k ≤ n − 1 .
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These DO satisfy (sanity check) the equilibrium identities

γi +
n∑

k=1

gk ϑk ,i = 0 ; i = 1, . . . ,n .

I If all γi = 0, then

ϑk ,i =
1
n

for 1 ≤ k , i ≤ n

(first-order model of BFK (2005), includes
the simple Atlas model as a special case).
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I Heat map of ϑk,i when
n = 10 ,
σ2

k = 1 + k ,

gk = −1 for 1 ≤ k ≤ 9,
g10 = 9 , and

γi = 1− (2i)/(n + 1)

for i = 1, . . . ,10 .  0.2 
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Distribution of Ranked Market Weights

Corollary: The invariant distribution of ranked market weights

M(k)(·) :=
X(k)(·)

X1(·) + · · ·+ Xn(·)
; k = 1, . . . ,n

has probability density function ℘(m1, . . . ,mn−1) given by

∑
p∈Σn

θp
λp,1 · · ·λp,n−1

mλp,1+1
1 ·mλp,2−λp,1+1

2 · · ·mλp,n−1−λp,n−2+1
n−1 m−λp,n−1+1

n

,

0 < mn ≤ mn−1 ≤ . . . ≤ m1 < 1 , mn := 1− (m1 + · · ·+ mn−1) .
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• This is a distribution of ratios of Pareto type.

In the special case

γ1 = · · · = γn = 0

it takes the far more appealing form

℘(m1, . . . ,mn−1) =
n−1∏
k=1

λk m1+λk−λk−1
k

(
1−m1 − · · · −mn−1

)1−λn−1

with

λk :=
(−4)

∑k
`=1 g`

σ2
k + σ2

k+1
, λ0 = λn = 0 .
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CAPITAL DISTRIBUTION CURVES

℘(m1, . . . ,mn−1) =

=
∑

p∈Σn

θp
λp,1 · · ·λp,n−1

mλp,1+1
1 ·mλp,2−λp,1+1

2 · · ·mλp,n−1−λp,n−2+1
n−1 m−λp,n−1+1

n

The invariant probability density for the ranked market weights
from the previous slide, allows us to describe the long term
average (and “expected”) slope of the capital distribution curve
at the various ranks k , thus also its shape:

lim
T→∞

1
T

∫ T

0

log M(k+1)(t)− log M(k)(t)
log(k + 1)− log k

dt =

Eν
(

log M(k+1) − log M(k)

log(k + 1)− log k

)
=
−Eν(Ξk )

log(1 + k−1)
= −

∑
p∈Σn

θp λ
−1
p,k

log(1 + k−1)
.
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Illustrations
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I n = 5000 , gn = c∗(2n − 1) , gk = 0 , 1 ≤ k ≤ n − 1 , γ1 = −c∗ , γi = −2c∗ , 2 ≤ i ≤ n , σ2
k =

0.075 + 6k × 10−5 , 1 ≤ k ≤ n. (i) c∗ = 0.02 , (ii) c∗ = 0.03 , (iii) c∗ = 0.04 .
I (iv) c∗ = 0.02 , g1 = −0.016 , gk = 0 , 2 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.016 ,

I (v) g1 = · · · = g50 = −0.016 , gk = 0 , 51 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.8 .

48



Parameter Estimation

in the context of these models: massive... .
Some preliminary results can be found in this paper

FERNHOLZ, E.R., ICHIBA, T. & KARATZAS, I. (2012) A
second-order stock market model. Annals of Finance, in press,

but a lot more work remains to be done.

These kinds of model have very good micro- and macro-scopic
behavior, but lousy meso-scopic behavior. Models that try to
amend this drawback are being developed by
• V. Papathanakos (using interesting SPDE theory); also by
• J. Teichmann and Ph.D. students in his group at ETH (using
the infinite-dimensional “Wasserstein diffusions"); also in
• Joint work with S. Pal and M. Shkolnikov (asymmetric
collisions).
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Connections

This theory allows us to compute growth-optimal and
universal portfolios, for long-term money management
(almost tailor-made for the “Empirical Bayes” theory of COVER

(1991), JAMSHIDIAN (1992); this is another story, and talk...).

The theory we presented relies heavily on

• The “semimartingale reflecting Brownian motion" analysis of
Queueing Networks in their heavy traffic limit approximation
(J.M. HARRISON, M. REIMAN, R. WILLIAMS),

and has strong connections with
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• The combinatorial analysis of interacting diffusions based
on COXETER groups (e.g., groups of orthogonal matrices
generated by reflections);

• The theory of POISSON-DIRICHLET distributions for the
market weights (CHATTERJEE AND PAL);

• Propagation of chaos results of SZNITMAN, JOURDAIN,
MALRIEU (all in the case of equal variances); and with

• Discrete-time models of competing particle systems
in Statistical Mechanics, such as SHERRINGTON-KIRKPATRICK

models of spin glasses, with similar invariant distributions
(M. AIZENMAN, A. RUZMAIKINA, P.L. ARGUIN).
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Refinements
Now let the number n→∞ of particles increase to infinity in
the model with γi ≡ 0 .

• The market weights exhibit phase transitions: depending on
the size of a parameter, they either: (i) all converge to zero in
probability; (ii) all but one converge to zero in probability; (iii)
the point process generated by them converges weakly to a
POISSON-DIRICHLET distribution (CHATTERJEE AND PAL);

• The empirical measure of the "configuration of particles" is
characterized by evolution equations of the MCKEAN-VLASOV

type (but very non-smooth), and by partial differential equations
of the porous medium form with convection (recent work of M.
SHKOLNIKOV at Stanford/Berkeley/INTECH).

• Concentration of Measure results (T. ICHIBA, S. PAL, M.
SHKOLNIKOV, to appear in PTRF).

• Large Deviation results (A. DEMBO, M. SHKOLNIKOV, S.
VARADHAN, O. ZEITOUNI,very recent).

52



Some References

BANNER, A., FERNHOLZ, E.R., & KARATZAS, I. (2005)
Atlas models of equity markets. Annals of Applied Probability
15, 2296-2330.

ICHIBA, T. & KARATZAS, I. (2010) On collisions of Brownian
particles. Annals of Applied Probability 20, 951-977.

ICHIBA, T., PAPATHANAKOS, V., BANNER, A., KARATZAS, I.
& FERNHOLZ, E.R. (2011) Hybrid Atlas Models. Annals of
Applied Probability 11, 609-644.

ICHIBA, T., KARATZAS, I. & SHKOLNIKOV, M. (2011) Strong
solutions of stochastic equations with rank-based coëfficients.
Probability Theory and Related Fields, to appear. Available at
arxiv.org/pdf/1109.3823.

53



HARRISON, J.M. & WILLIAMS, R. (1987) Brownian models of
open queueing networks with homogeneous customer popula-
tions. Stochastics 22, 77-115.

HARRISON, J.M. & WILLIAMS, R. (1987) Multidimensional
reflected Brownian motions having exponential stationary
distributions. Annals of Probability 15, 115-137.

WILLIAMS, R. (1987) Reflected Brownian motion with skew
symmetric data in a polyhedral domain. Probability Theory
and Related Fields 75, 459-485.

KHAS’MINSKII, R. (1980) Stochastic Stability of Differential
Equations. Sijthoff and Noordhoff, The Netherlands.

54



YAN, J.A. (1985) A formula for local times of semimartingales.
Northeast Mathematical Journal 1, 138-110.

OUKNINE, Y. (1990) Local times of the product and the
maximum of two semimartingales. Lecture Notes in
Mathematics 1426, 477-479.

BANNER, A. & GHOMRASNI, R. (2008) Local times of ranked
continuous semimartingales. Stochastic Processes and Their
Applications 118, 1244-1253.

BASS, R. & PARDOUX, E. (1987) Uniqueness for diffusions
with piecewise constant coëfficients. Probability Theory and
Related Fields 76, 557-572.

55



PAL, S. & PITMAN, J. (2008) One-dimensional Brownian par-
ticle systems with rank-dependent drifts. Annals of Applied
Probability 18, 2179-2207.

CHATTERJEE, S. & PAL, S. (2010) A phase transition beha-
vior for Brownian motions interacting through their ranks. Pro-
bability Theory and Related Fields 147, 123-159.

CHATTERJEE, S. & PAL, S. (2011) A combinatorial analysis of
interacting diffusions. Journal of Theoretical Probability, to
appear.

SHKOLNIKOV, M. (2012) Large systems of diffusions interact-
ing through their ranks. Stochastic Processes and Their Appli-
cations 122, 1730-1747.

56



ICHIBA, T., PAL, S. & SHKOLNIKOV, M. (2011) Concentration
of measure for Brownian particle systems interacting through
their ranks. Probability Theory and Related Fields, to appear.

COVER, T. (1991) Universal Portfolios. Mathematical Finance
1, 1-29.

JAMSHIDIAN, F. (1992) Asymptotically Optimal Portfolios.
Mathematical Finance 2, 131-150.

KARATZAS, I., PAL, S. & SHKOLNIKOV, M. (2012) Brownian
particles with asymmetric collisions. Submitted for publication.

57


	Introduction
	Hybrid Atlas models
	Stability


