
“Backward” martingale representation and
endogenous completeness in finance

Dmitry Kramkov (with Silviu Predoiu)

Carnegie Mellon University

1 / 19



Bibliography

Robert M. Anderson and Roberto C. Raimondo. Equilibrium in
continuous-time financial markets: endogenously dynamically
complete markets. Econometrica, 76(4):841–907, 2008.

J. Hugonnier, S. Malamud, and E. Trubowitz. Endogenous
completeness of diffusion driven equilibrium markets.
Econometrica, 80(3):1249–1270, 2012.

Frank Riedel and Frederik Herzberg. Existence of financial
equilibria in continuous time with potentially complete markets.
arXiv:1207.2010v1, July 2012.

Dmitry Kramkov and Silviu Predoiu. Integral representation of
martingales motivated by the problem of endogenous
completeness in financial economics. arXiv:1110.3248v3,
October 2012.

2 / 19



Martingale Integral Representation

(Ω,F1,F = (Ft)t∈[0,1],P): a complete filtered probability space.

Q: an equivalent probability measure.

S = (S j
t ): J-dimensional martingale under Q.

We want to know whether any local martingale M = (Mt) under Q
admits an integral representation with respect to S , that is,

Mt = M0 +

∫ t

0
HudSu, t ∈ [0, 1],

for some predictable S-integrable process H = (H j
t ).

I Completeness in Mathematical Finance.

I Jacod’s Theorem (2nd FTAP): the integral representation
holds iff Q is the only martingale measure for S .

I Easy to verify if S is given in terms of local characteristics
(“forward” description).
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Backward Martingale Representation

Inputs: random variables ζ > 0 and ψ = (ψj)

I The density of the martingale measure Q is defined by

dQ
dP

= const ζ.

I ψ is the terminal value for S :

St , EQ[ψ|Ft ], t ∈ [0, 1].

Problem
Determine (easily verifiable) conditions on ζ and ψ so that the
martingale representation property holds under Q and S.
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Radner equilibrium

Inputs:

I M agents with utility functions Um and initial random
endowments Λm,

I interest rate r = 0, J stocks with terminal values (dividends)
ψ = (ψj).

Output: stocks’ price process S = (S j
t ) such that

1. S1 = ψ.
2. Given the S-market, the agents’ optimal strategies (stock’s

quantities) Hm = (Hm,j
t ) satisfy the clearing condition:

M∑
m=1

Hm,j
t = 0, t ∈ [0, 1], j = 1, . . . , J.
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Construction of Radner equilibrium

Two steps:

1. Find static (Arrow-Debreu) equilibrium, that is, find a pricing
measure Q such that if economic agents can trade any payoff
ξ at the price

p = EQ[ξ],

then the clearing condition holds: the total wealth does not
change. Main tool: Brower’s fixed point theorem.

2. Define St = EQ[ψ|Ft ], t ∈ [0, 1], (ψ is the terminal
dividend) and verify endogenous completeness of the
S-market =⇒ Radner equilibrium.

Other applications: equilibrium based price impact models (a
project with Peter Bank; David German) and model’s completion
with options (Davis and Obloj).
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Diffusion framework
The random variables ψ = S1 and ζ = const dQ

dP are given by

ζ , G (X1)e
∫ 1
0 β(t,Xt)dt ,

ψj , F j(X1)e
∫ 1
0 α

j (t,Xt)dt +

∫ 1

0
f j(t,Xt)e

∫ t
0 α

j (s,Xs)dsdt

+

∫ 1

0

g j(t,Xt)

Yt
e
∫ t
0 (α

j (s,Xs)+β(s,Xs))dsdt, j = 1, . . . , J,

where Yt , E[ζ|Ft ] and

I F j ,G : Rd → R and f j , g j , αj , β : [0, 1]× Rd → R are
deterministic functions;

I X = (X i
t ) is a d-dimensional diffusion:

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ [0, 1],

with drift and volatility functions bi , σij : [0, 1]× Rd → R.
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Assumptions on functions

1. The functions F j = F j(x) and G = G (x) are weakly
differentiable and have exponential growth:

|∇F j |+ |∇G | ≤ NeN|x |.

2. The Jacobian matrix
(
∂F j

∂x i

)
has rank d almost surely under

the Lebesgue measure on Rd .

3. The maps t 7→ e−N|·|f j(t, ·) ,
(
e−N|x |f j(t, x)

)
x∈Rd ,

t 7→ e−N|·|g j(t, ·) and t 7→ αj(t, ·), t 7→ β(t, ·) of [0, 1] to L∞
are analytic on (0, 1) and Hölder continuous on [0, 1].

I Careful with item 3: stronger than pointwise analyticity!
Seems to be overlooked in the cited literature.
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Assumptions on the diffusion X

1. The map t 7→ bi (t, ·) of [0, 1] to L∞ is analytic on (0, 1) and
Hölder continuous on [0, 1].

2. The map t 7→ σij(t, ·) of [0, 1] to C is analytic on (0, 1) and
Hölder continuous on [0, 1]. Moreover, σ = σ(t, x) is
uniformly continuous with respect to x :

|σ(t, x)− σ(t, y)| ≤ ω(|x − y |).

for some strictly increasing function ω = (ω(ε))ε>0 such that
ω(ε)→ 0 as ε ↓ 0, and has a bounded inverse:

|σ−1(t, x)| ≤ N (uniform ellipticity for σσ∗).

I Counter-example on t-analyticity condition in σ = σ(t, x).
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Main result

Theorem
Assume that F = FX . Under the conditions above the martingale
representation property holds for the probability measure Q with
the density

dQ
dP

,
ζ

E[ζ]
,

and the Q-martingale

St , EQ[ψ|Ft ], t ∈ [0, 1].
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Comparison with the literature

Assumptions on functions: In Anderson and Raimondo (2008),
Hugonnier et al. (2012), and Riedel and Herzberg (2012)

I The Jacobian matrix
(
∂F j

∂x i

)
needs to have full rank only on

some open set (counter-example in our setting).
I The “small letter” functions, that is, the functions of (t, x)

should be (t, x)-analytic.

Assumptions on diffusion X :

I In Anderson and Raimondo (2008) X is a Brownian motion.
I In Hugonnier et al. (2012) the diffusion coefficients

b = b(t, x) and σ = σ(t, x) are either analytic with respect
to (t, x) or the transitional probability is C7.
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Idea of the proof when P = Q

ψj , F j(X1)e
∫ 1
0 α

j (t,Xt)dt+

∫ 1

0
e
∫ t
0 α

j (s,Xs)ds f j(t,Xt)dt, j = 1, . . . , J.

Ito’s formula implies that

S j
t , E[ψj |Ft ] = e

∫ t
0 α

j (s,Xs)dsuj(t,Xt)+

∫ t

0
e
∫ r
0 α

j (s,Xs)ds f j(r ,Xr )dr ,

where uj = uj(t, x) solves the parabolic equation:

uj
t + (L(t) + αj)uj + f j = 0,

uj(T , x) = F j(x).

Here L(t) the infinitesimal generator of X :

L(t) =
1

2

d∑
i ,j=1

(σσ∗)ij(t, x)
∂2

∂x i∂x j
+

d∑
i=1

bi (t, x)
∂

∂x i
.
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Idea of the proof when P = Q

Our assumptions imply that

1. uj(t, ·)→ F j as t → T in Sobolev’s spaces W1
p for all p > 1.

2. t → uj(t, ·) is an analytic map of (0, 1) to W2
p.

It follows that (t, x)→ det ux(t, x) is

1. continuous on [0, 1]× Rd ;

2. t-analytic on (0, 1);

3. det ux(1, x) = det Fx(x) 6= 0, x ∈ Rd a.s.

Then det ux(t, x) 6= 0 on [0, 1]× Rd a.s.. As

St = u(0,X0) +

∫ t

0
e
∫ s
0 α(r ,Xr )drux(s,Xs)σ(s,Xs)dWs ,

we deduce that every martingale is a stochastic integral under S .
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Elements of the proof

Parabolic PDEs:

I Evolution equations in Lp spaces (maximal regularity,
analyticity theorem by Kato and Tanabe).

I Elliptic equations in Sobolev spaces (sectoriality property).

I Interpolation theory (W1
p is the midpoint of Lp and W2

p in
complex interpolation).

Stochastic Analysis:

I Krylov’s variant of Ito’s formula (instead of C2 we can have
W2

p with p ≥ d under the uniform ellipticity condition).
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Counter-example on t-analyticity in σ = σ(t, x)

Xt = X0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ [0, 1].

Recall that b = b(t, x) and σ = σ(t, x) have

I only minimal classical regularity conditions with respect to x ;

I very strong analyticity assumptions with respect to t.

We gave an explicit (!) example which shows that the t-analyticity
assumption on the volatility matrix can not be removed. In our
construction,

I dimension d = J = 2 (will not work for d = 1)

I both σ and its inverse σ−1 are C∞-matrices on [0, 1]× R2

which are bounded with all their derivatives and have analytic
restrictions to [0, 12)× R2 and (12 , 1]× R2.

15 / 19



Counter-example on t-analyticity in σ = σ(t, x)
I g = g(t) is a C∞-function on [0, 1] which equals 0 on [0, 12 ],

while it is analytic and strictly positive on (12 , 1].
I h = h(t, y) is an analytic function on [0, 1]× R such that

0 ≤ h ≤ 1, h(1, ·) 6= const, and

∂h

∂t
+

1

2

∂2h

∂y2
= 0.

For instance, we can take

h(t, y) =
1

2
(1 + e

t−1
2 sin y).

I 2-dimensional diffusion (X ,Y ) on [0, 1]:

Xt =

∫ t

0

√
1 + g(s)h(s,Ys)dBs ,

Yt = Wt ,

where B and W are independent Brownian motions.
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Counter-example on t-analyticity in σ = σ(t, x)

Set
Q = P, ψ = (F (X1,Y1),H(X1,Y1)),

where

F (x , y) = x ,

H(x , y) = x2 − 1− h(1, y)

∫ 1

0
g(t)dt.

The determinant of the Jacobian matrix for (F ,H):

∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
= −∂h

∂y
(1, y)

∫ 1

0
g(t)dt 6= 0,

as h(1, ·) is non-constant and analytic.
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Counter-example on t-analyticity in σ = σ(t, x)

Ito’s formula shows that

St , E[F (X1,Y1)|Ft ] = Xt ,

Rt , E[H(X1,Y1)|Ft ] = X 2
t − t − h(t,Yt)

∫ t

0
g(s)ds,

As g(t) = 0 for t ∈ [0, 12 ], it follows that on [0, 12 ]

St = Bt ,

Rt = B2
t − t.

Clearly, the Brownian motion Y = W can not be written as a
stochastic integral with respect to (S ,R).
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Summary

I We gave conditions on diffusion X and functions F j , G , αj ,
β = β(t, x), and f j , g j so that the integral representation
holds for the measure Q and the Q-martingale S = (S j)
defined by dQ/dP = const ζ and S j

1 = ψj , where

ζ , G (X1)e
∫ 1
0 β(t,Xt)dt ,

ψj , F j(X1)e
∫ 1
0 α

j (t,Xt)dt +

∫ 1

0
f j(t,Xt)e

∫ t
0 α

j (s,Xs)dsdt

+

∫ 1

0

g j(t,Xt)

Yt
e
∫ t
0 (α

j (s,Xs)+β(s,Xs))dsdt, j = 1, . . . , J,

and Yt , E[ζ|Ft ].

I The diffusion coefficients of X have only minimal x-regularity.
However, they are t-analytical (a counter-example for σ).

I The study is motivated by the problem of endogenous
completeness in financial economics.
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