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Problem formulation and Motivations



Problem formulation

Provide a PDE characterization of the viability sets
A(t) = {(z,p): Juecis t. E z(z;f[;’]”’(r))} >mv eV}

In which :

e )V is a set of admissible adverse controls

il is a set of admissible strategies

717 is an adapted R9-valued process s.t. Z:t[zﬁ]’ﬂ(t) =z

t,z

0 is a given loss/utility function
e m a threshold.



Application in finance

O Zu[ﬁ] (X:[Xﬁ]’ﬁ, Ytu@,ﬂ) where
. tht[xﬂ]’ﬁ models financial assets or factors with dynamics
depending on ¢
o Y;Lq?]y’ﬂ models a wealth process

e ¥ is the control of the market : parameter uncertainty (e.g.
volatility), adverse players, etc...

e u[V] is the financial strategy given the past observations of ¥J.

O Flexible enough to embed constraints, transaction costs, market
impact, etc...



Examples

At) == {(z,p) : Jue st B2 (T)| > mVd eV}
O Expected loss control for ¢(z) = —[y — g(x)]~

O Give sense to problems that would be degenerate under P — a.s.
constraints : B. and Dang (guaranteed VWAP pricing).



Examples

O Constraint in probability :
At) = {(z,p): Juec st P|ZZV(T) e O] > mv v eV}

for {(z) = 1,0, m € (0,1).
= Quantile-hedging in finance for O := {y > g(x)}.



Examples

O Matching a P&L distribution = Multiple constraints in
probability :

(Sueist P [dist (z;f[jw(r),o) < ’y,} >miVi<l, VideV)

(see B. and Thanh Nam)



Examples

O Almost sure constraint :
A(t) ={z:FJue st Z;t[f]’ﬂ(T) €cO0OP—-as. VUeV}

for £(z) = 1,0, m=1.
= Super-hedging in finance for O := {y > g(x)}.

Unfortunately not covered by our assumptions...



Setting for this talk
(see the paper for an abstract version)
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Brownian diffusion setting

O State process : Z'%}7 solves (1 and o continuous, uniformly
Lipschitz in space)

Z(s)=z+ /ts w(Z(r),u[d],, ;) dr + /ts a(Z(r),u[d],, V) dW,.

O Controls and strategies :
e Vis the set of predictable processes with values in V c RY.
e {lis set of non-anticipating mapsu:9 € V= U, i.e.

{1 =(0,s] Yo} C {u[t4] =(0,s] u[tr]} Vi, eV, s<T,

where U/ is the set of predictable processes with values in
UcRY

O The loss function £ has polynomial growth and is continuous.
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The game problem

O Worst expected loss for a given strategy :

J(t, z,u) = essggm;E [€ <Z;[219]’19(T)> ‘Ft:|

O The viability sets are given by

A(t) :={(z,p) : Jue st J(t,z,u) > pP—as.}.

Compare with the formulation of games in Buckdahn and Li

(2008).



Geometric dynamic programming principle

How are the properties
(z,m) € A(t) and (Z:17(6),7) € A(9)
related ?



O First direction : Take (z, m) € A(t) and u € 4l such that
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O First direction : Take (z, m) € A(t) and u € 4l such that

essggl;E [E <Zz[zl9]’ﬁ(7')> |.7-"t} >m

To take care of the evolution of the worst case scenario conditional
expectation, we introduce :

57 = essinf E [e (z,ff}j@'w@”9 (T)) \f,} .

Then
S? is a submartingale and S? > m for all ¥ € V,
and we can find a martingale MY such that

S? > M? and MY = S? > m.
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i > 1, such that
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Hence
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where
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uell vev
OIf Kis Isc

K(O(w), Z2YM (0)(w)) = K(ti, 1) — e > MZ(w) — 2€ on A;.

t,z



O We have for all stopping times 6 (may depend on u and ¥)
essinf E [( (z;‘[j@ﬂ]’”@eﬁ(T)) Fo| = 57 = M.
% '

If the above is usc in space uniformly in the strategies, 6 takes
finitely many values, we can find a covering formed of B; > (t;, z;),
i > 1, such that

I(ti, ziw) > MY — e on A; = {(0, 220 (0)) € B}

Hence
K(t,',Z,') > Mg —¢eonA;.
where
K(ti,z;) := esssupessinf E [E( Vbasdy 19(7')) \}'t} is deterministic.
uell vev
OIf Kis Isc

(ZH (8(w)), MY (w) — 3¢) € A(B(w))




O To get rid of £, and for non-regular cases (in terms of K and J),
we work by approximation : One needs to start from
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O To get rid of £, and for non-regular cases (in terms of K and J),
we work by approximation : One needs to start from
(z,m— ) € A(t) and obtain

(Z;‘,[Zﬁ]’ﬂ(@), M) e NO)P—as. VeV

~ |} (z,m): there exist (tn, zn, my) — (t,z,m)
"] such that (z,,m,) € A(t,) and t, >t forall n > 1

Remark : MY = l\/l{?fz = p+ [, aldW;, with o € A, the set of
predictable processes such that the above is a martingale.

Remark : The bounded variation part of S is useless : optimal
adverse player control should turn S in a martingale.
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By taking expectation
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t,z

so that
(z,m—¢€) € \(¢).



O To cover the general case by approximations, we need to start
with
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O To cover the general case by approximations, we need to start
with

(22 (0), Mi(07)) € A(0") P —as W0 €V,

where
A(t) :={(z,p): (t'.2,p') € B.t,z p) implies (2, p') € A(t')}.
O To concatenate while keeping the non-anticipative feature :
o Martingale strategies : o’ replaced by a: 9 € Vi a[)] € A
in a non-anticipating way (corresponding set 2l)
¢ Non-anticipating stopping times : §[¢] (typically first exit time
of (Z4[19), Mally from a ball.



The geometric dynamic programming principle

(GDP1) : If (z,m — ) € A(t) for some ¢ > 0, then 3 u € 4l and
{a?,9 € V} C A such that

(Zu[ﬂ]aﬂ(g)’ Mgi(e)) c /_\(0) P—as VJde.

t,z

(GDP2) : If (u,a) € 4 x A and ¢ > 0 are such that
(Z2U 019)), MEEN0[9])) € A, (O]9]) P — a.s. ¥V 9 € V
for some family (0[], ¢ € V) of non-anticipating stopping times,

then
(z,m—¢e)eNt), Ve >0.

Rem : Relaxed version of Soner and Touzi (2002) and B., Elie and
Touzi (2009).
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O Monotone case : £,y X X,y

RY x R with X} /M

) with values in

independent of y and YtuLﬂy Ty

O The value function is :

w(t,x,m) :=inf{y : (x,y,m) € A\(t)}.

O Remark :

e If pislsc and w > ¢, then

A(t) € {(x,y,m)  y > o(t, x, m)}.



O Monotone case : Z;‘[f]y’ﬂ = (XtuE?] i ;‘Lﬁy) with values in
RY x R with X, [19] v independent of y and Ytu[xﬂy19 Ty

O The value function is :

w(t,x,m) :=inf{y : (x,y,m) € A\(t)}.

O Remark :

e If pislsc and w > ¢, then

A(t) € {(x,y,m)  y > o(t, x, m)}.

e If ©is usc and ¢ > w then

°

Ab(t) 2 {(X7y7m) ny > (p(t,X, m) +77L} for some > 0.



v




Thm :
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Thm :

(GDP1) : Let ¢ € C be such that arg min(w, — ) = (t, x, m).
Assume that y > w(t,x, m — ¢) for some ¢ > 0. Then, there exists
(u,a) € 8 x A that

VAL (67) > o(67, XM (697), MEN67)) P — a5V 0 € V.

(GDP2) : Let p € C° be such that arg max(z* — ¢) = (t, x, m).
Assume that (u,a) € 4 x 2 and 5 > 0 are such that

u[19] 9
t X,y

Then,

(619]) > (019], Xe WM (019]), MLV (6[9])) 4+ P—a.s. ¥ 0 € V.

y>w(t,x,m—¢), Ve>0.

Remark : In the spirit of the weak dynamic programming principle
(B. and Touzi, and, B. and Nutz).
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PDE characterization - “waving hands” version

O Assuming smoothness, existence of optimal strategies...

Oy = w(t, x, m) implies
Yu[19],19(t+) > w(t+’Xu[19]719(t+)’ Ma[ﬁ](t—f—)) for all 9.

This implies dY*["17(¢) > dao(t, X*0(¢), Mel(t)) for all ¥

Hence, for all 9,

wy (x, y,u[d], ¥¢) > Eux[?l\];,z?:,a[z?]fw(t’X7 m)
UY(XLyuu[ﬁ]tuﬁt) = O-X(Xau[ﬁ]tuﬁt)wa(tuxa p)
+a[9]¢Dmwo(t, x, m)

with y = w(t, x, m)



PDE characterization - “waving hands” version

O Supersolution property

inf  sup (,uy(‘, w,u,v) — E;V’Maw> >0
Vev(u,a)e/\/"w ’

where

NVw :={(u,a) € UxR?:oy(-,w,u,v) =ox(-,u,v)Dyw + aDpw}.



PDE characterization - “waving hands” version

O Supersolution property

inf  sup (,uy(‘, w,u,v) — E;V’Maw> >0
Vev(u,a)e/\/"w ’

where
NVw :={(u,a) € UxR?:oy(-,w,u,v) =ox(-,u,v)Dyw + aDpw}.
O Subsolution property

. u[v],v,a[v]
sup inf /Ly(.7w, u[v]7 v) - r <0
(u[],a[)eNT]w veV < X,M ) =

where

Mz = {loc. Lip. (u[],a[]) s.t. (u[],a[]) € N'w(-)}.
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