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de la Vega’s Quote

“The Dutch call the option business “opsies,” a term derived from the
Latin word optio, which means choice, because the payer of the premium
has the choice of delivering the shares to the acceptor of the premium or
demanding them from him.”
de la Vega, Joseph (1688) Confusion de Confusiones, Amsterdam.
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What is Mathematical Finance?

Mathematical Finance is one of several competing scientific disciplines
aimed at understanding the behavior of financial markets.
There are other disciplines aiming to achieve similar goals, such as

Economics;

Theory of Finance;

Econometrics;

Statistics;

Econo-physics;

Actuarial science;

Etc.

Practitioners of each of these disciplines claim to possess a unique set of
tools and a special angle to deal with financial markets. There is a lot of
friendly (and not so friendly) competition among them.
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Mathematical Finance covers a large variety of financial
instruments

Important asset classes and topics of interest:

Equities;

Non-risky debt;

Risky debt;

Forex;

Commodities;

Derivatives written on the above assets;

Structure of financial exchanges and market intermediation (including
market making);

Asset and liability management and theory of investing;

Risk management;

Capital calculations, etc.
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Constituent parts

Investors;

Pension funds;

Asset managers;

Banks;

Insurance companies;

Hedge funds;

Various supporting players, such as custodians, credit rating agencies,
etc.
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Purposes of investing

Wealth preservation;

Wealth creation;

Life-time wealth transfer;

Intergenerational wealth transfer.

"The importance of money essentially flows from it being the link between
the present and the future." John Maynard Keynes
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Mathematical models

Stochastic nature of financial time series and their non-stationarity;

Different time scales of modern finance: from milliseconds to decades;

Different intellectual sources for model building: probability theory,
numerical methods, statistics, economics (the weakest link);

Main diffi culty: "fallacy of the historical data series";

Main purposes of the models: investing, trading, risk management,
speculation;

Important point: risk-neutral probability vs. real-world probability
pricing of derivatives.
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Brownian motion (BM)

1D BM Wt on a positive semi-axis;

2D BM
(
W 1
t ,W

2
t

)
, dW 1dW 2 = ρ12dt, in a positive quadrant;

3D BM
(
W 1
t ,W

2
t ,W

3
t

)
, dW idW j = ρijdt, in a positive octant.

Our strategy is to construct the corresponding Green’s function and
apply it to solve the relevant financial math problems.

In 1D case it is very simple, in 2D case it is not too complicated, in
3D case it is very diffi cult.
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One-dimensional case, Green’s function on positive
semi-axis

Green’s function can be constructed via the method of images:

G (τ, y0, y ′) =
1√
2πτ

(
e−

(y ′−y0 )2
2τ − e−

(y ′+y0 )2
2τ

)
.

Alternatively, Green’s function can be constructed via the eigenfunction
expansion method:

G (τ, y0, y ′) =
1√
2π

∫ ∞

0
sin (ky0) sin (ky) e−

k2τ
2 dk.

Needless to say that these expressions are in agreement with each other.
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One-dimensional case, Green’s function on a final interval

Finite interval 0 ≤ y ≤ L
Green’s function can be constructed via the method of images:

G (τ, y0, y ′) =
1√
2πτ

∞

∑
n=−∞

(
e−

(y ′−y0+2nL)2
2τ − e−

(y ′+y0+2nL)2
2τ

)
.

Alternatively, Green’s function can be constructed via the eigenfunction
expansion method:

G (τ, y0, y ′) =
2
L

∞

∑
n=1

sin
(
2πn
L
y0

)
sin
(
2πn
L
y ′
)
.

Needless to say that these expressions are in agreement with each other.
Close relation to the Poisson summation formula!
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Two-dimensional case

General pricing equation for the value function V (t, x , y) in the positive
quadrant:

Vt +
1
2
Vxx +

1
2
Vyy + ρxy Vxy − $V = 0.

It is supplied with appropriate boundary and terminal conditions at x = 0,
y = 0, t = T .
Changes of independent and dependent variables

U (t, x , y) = e$(T−t)V (t, x , y) ,
α = x , β = (−ρxy x + y)/ρ̄xy ,

α = r sin ϕ, β = r cos ϕ,

ρ̄xy =
√
1− ρ2xy .

Final form of the pricing equation:

Ut +
1
2

(
Urr +

1
r
Ur +

1
r2
Uϕϕ

)
= 0.

The new domain is an angle 0 ≤ ϕ ≤ v, where v = arccos
(
−ρxy

)
.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 11 / 44



Green’s function via the eigenfunction expansion method

Green’s function solves the forward equation:

Gτ −
1
2

(
Gr ′r ′ +

1
r ′
Gr ′ +

1
r ′2
Gϕ′ϕ′

)
= 0.

Initial condition:

G (0, r ′, ϕ′) =
1
r0

δ(r ′ − r0)δ(ϕ′ − ϕ0).

Boundary conditions:

G
(
τ, r ′, 0

)
= 0, G (τ, r ′,v) = 0, G (τ, 0, ϕ′) = 0, G (τ, r ′, ϕ′) →

r ′→∞
0.

Solution obtained through the eigenfunction expansion method:

G
(
τ, r0, r ′, ϕ0, ϕ′

)
=
2e−

r ′2+r20
2τ

vτ

∞

∑
n=1

Iνn

(
r ′r0
τ

)
sin
(
νnϕ′

)
sin (νnϕ0) ,

where νn =
nπ
v .
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Green’s function via the method of images

Define ψ = φ′ − φ0, s± = sign (π ± ψ), and f (p, q), h (p, q), p ≥ 0,
−∞ < q < ∞,

f (p, q) = 1− 1
2π

∫ ∞

−∞

e−p(cosh(2qζ)−cos(q))

ζ2 + 1
4

dζ,

h (p, q) =
1
2
[s+f (p,π + q) + s−f (p,π − q)] .

We can define a non-periodic solution of the heat equation as follows

H
(
τ, r0, r ′, ϕ0, ϕ′

)
=

1
2πτ

e−
r ′2+r20−2 cos(ψ)r

′r0
2τ h

(
r ′r0
τ
,ψ

)
,

and obtain Green’s function through the method of images:

G
(
τ, r0, r ′, ϕ0, ϕ′

)
=

∞

∑
n=−∞

[
H (τ, r0, r ′, ϕ0 + 2nv, ϕ′)
−H (τ, r0, r ′,−ϕ0 + 2nv, ϕ′)

]
.
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Three-dimensional case

General pricing equation for the value function V (t, x , y) in the positive
quadrant:

Vt +
1
2
Vxx +

1
2
Vyy +

1
2
Vzz + ρxy Vxy + ρxz Vxz + ρyz Vyz − $V = 0.

It is supplied with appropriate boundary and terminal conditions at x = 0,
y = 0, z = 0, t = T .
Changes of independent and dependent variables (Cholesky decomposition)

U (t, x , y , z) = e$(T−t)V (t, x , y , z) ,
α = x , β = (−ρxy x + y)/ρ̄xy ,

γ =
((

ρxy ρyz − ρxz

)
x +

(
ρxy ρxz − ρyz

)
y + ρ̄2xy z

)
/ρ̄xyχ,

α = r sin ϕ sin θ, β = r cos ϕ sin θ, γ = r cos θ,

ρ̄xy =
√
1− ρ2xy , χ =

√
1− ρ2xy − ρ2xz − ρ2yz + 2ρxy ρxzρyz .
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Three-dimensional pricing problem

Pricing problem:

Ut +
1
2

[
1
r

∂2

∂r2
(rU) +

1
r2

(
1

sin2 θ
Uϕϕ +

1
sin θ

∂

∂θ
(sin θUθ)

)]
= 0,

Computational domain (defined parametrically as function of ω):

r > 0,
0 ≤ ϕ ≤ v,

ϕ (ω) = arccos
(

1−ρxyω√
1−2ρxyω+ω2

)
,

θ (ω) = arccos

(
(ρxy ρxz−ρyz)+(ρxy ρyz−ρxz)ω√

ρ̄xy (ρ̄2xz+2ω(ρxz ρyz−ρxy )ω+ρ̄2yzω2)

)
,

θ = Θ (ϕ) .
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Spherical domain, source Lipton & Savescu
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Three-dimensional Green’s function

Green’s function satisfies the forward equation:

Gτ −
1
2

[
1
r ′

∂2

∂r ′2
(
r ′G
)
+
1
r ′2

(
1

sin2 θ′
Gϕϕ′ +

1
sin θ′

∂

∂θ′
(
sin θ′Gθ′

))]
= 0,

with initial condition:

G (0, r ′, ϕ′, θ′) =
1

r20 sin θ0
δ
(
r ′ − r0

)
δ
(

ϕ′ − ϕ0
)

δ
(
θ′ − θ0

)
,

and boundary conditions:

G
(
τ, r ′, 0, θ′

)
= G (τ, r ′,v, θ′) = G

(
τ, r ′, ϕ′, 0

)
= 0,

G (τ, r ′, ϕ′,Θ(ϕ′)) = G (τ, 0, ϕ′, θ′) = 0, G (τ, r ′, ϕ′, θ′) →
r ′→∞

0.
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Eigenfunction expansion for Green’s function

Construct Green’s function by using eigenfunction expansion method.

Separation of variables yields G (τ, r ′, ϕ′, θ′) = g (τ, r ′)Ψ
(

ϕ′, θ′
)
.

Similar to 2D case, the radial part has the form

g
(
τ, r ′

)
=
e−

r ′2+r20
2τ

τ
√
r ′r0

I√Λ2+1/4

(
r ′r0
τ

)
.

The angular part solves the following 2D eigenvalue problem:

1
sin2 θ′

Ψϕ′ϕ′ +
1

sin θ′
∂

∂θ′
(
sin θ′Ψθ′

)
= −Λ2Ψ,

Ψ
(
0, θ′

)
= 0, Ψ

(
v, θ′

)
= 0, Ψ (ϕ′, 0) = 0, Ψ (ϕ′,Θ(ϕ′)) = 0.
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Solution of 2D eigenvalue problem

The corresponding eigenvalue problem is solved via the finite element
method (FEM);

The spherical domain is mapped onto the domain Ω in the (ϕ, θ)
plane;

The variational (weak) formulation of the problem is used:∫
Ω

1
sin θ′

Ψϕ′Ψ̄ϕ′dΩ+
∫

Ω
sin θ′Ψθ′Ψ̄θ′dΩ = Λ2

∫
Ω
sin θ′ΨΨ̄dΩ.

The domain Ω is triangulated by using iterative algorithm to
construct adaptive mesh;

After each iteration the Delaunay triangulation method is used.
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Planar domain, source Lipton & Savescu

Figure:
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Mesh, source Lipton & Savescu

Figure:
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Details of FEM

Dimension of the space in which eigenvectors are searched for is equal
to the number of free points in the mesh;

Basis in this space is represented by basis functions Φi , 1 ≤ i ≤ n,
linear in each triangle;

The variational problem is approximated by a linear system

KΨ = Λ2MΨ.

Here K = (Kij ) is the stiffness matrix, M = (Mij ) is the mass matrix:

Kij =
∫

Ω∇Φi (A∇Φj ) dΩ,
Mij =

∫
Ω ΦiΦj sin θ′dΩ,

A =
( 1

sin θ′
0

0 sin θ′

)
.
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Eigenvectors, source Lipton & Savescu,

ρxy = 80%, ρxz = 20%, ρyz = 50%

Figure:
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Green’s function

Eigenfunction expansion for Green’s function:

G (τ, r ′, ϕ′, θ′) =
∞

∑
n=1

Cngn(τ, r ′)Ψn(ϕ
′, θ′).

Coeffi cients Cn - can be computed by imposing the initial condition:

G (0, r ′, ϕ′, θ′) =
1

r20 sin θ0
δ(r ′ − r0)δ(ϕ′ − ϕ0)δ(θ

′ − θ0),

and we obtain Cn = Ψn(ϕ0, θ0).
Final formula for Green’s function:

G
(
τ, r0, r ′, ϕ0, ϕ′, θ0, θ

′)=e− r ′2+r20
2τ

τ
√
r ′r0

∞

∑
n=1

I√
Λ2
n+

1
4

(
r ′r0
τ

)
Ψn(ϕ0, θ0)Ψn(ϕ

′, θ′).
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HFT in retrospective

Historically, "HFT" technologies were opposed to: (A) Racing pigeons;
(B) Telegraph; (C) Telephone; (D) Radio; (E) Screen trading; etc.

Yet, various HFT strategies persisted in spite of these objections.
Here is an interesting example.
In 15th century Florence state built galleys to send goods to London
and Bruges.
These were leased to the highest bidder, who, in turn, subleased them
to others.
An auction lasted until a candle burned out. Since everyone tried to
put their bid as late as possible, rules were changed.
Now an auction would end with the clock on the tower of Palazzo
della Signoria, which was audible but not visible.
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HF market participants

Algorithmic traders in high frequency (HF) electronic markets can be
roughly divided into the following categories:

Market makers, who provide liquidity and try to capture bid-ask
spread;

Systematic traders and arbitrageurs, who try to profit from price
dislocations and statistical relationships among different prices;

Agency brokers, who execute large trades for clients and earn fees.

We are interested in the agency broker point of view.
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LOB Imbalance - I, source Lipton, Pesavento, Sotiropoulos

Figure:
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LOB Imbalance - II, source Lipton, Pesavento, Sotiropoulos

Figure:
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A simple model

We model the number of shares qb and qa posted at a simple stochastic
process in a positive quadrant:(

dqb , dqa
)
=
(
dW b , dW a

)
,

where W b ,W a are correlated Brownian motions.
To capture the joint dynamics of the bid and ask queues and trade arrival,
we introduce another stochastic process to model the arrival of trades on
the near side of the book:(

dqb , dqa, dφ
)
=
(
dW b , dW a, dW φ

)
.

In what follows, we follow a recent paper "Trade arrival dynamics and
quote imbalance in a limit order book" by A. Lipton, U. Pesavento, M.
Sotiropoulos. References to prior art are mentioned in the end.
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2D-Problem formulation and solution

By using Cholesky-style transformations, we can write the exit
probability problem on the computational interval [0,v] in the form

Pφφ (φ) = 0,

P (0) = 0, P (v) = 1.

Its solution is straightforward

P (φ) =
φ

v
.

When expressed in the original (x , y) coordinates, this probability has
the form

P (x , y) =
1
2

1− arctan
(√

1+ρ
1−ρ

y−x
y+x

)
arctan

(√
1+ρ
1−ρ

)
 .
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2D-Hitting Probability
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Figure: Hitting probability in 2D.
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3D-Problem formulation

We wish to solve the following classical problem - compute the exit
probability for 3D Wiener process in a positive octant with absorbing
boundaries. To the best of our knowledge our solution is new.
By using Cholesky-style transformations, we can write the exit
probability problem in the computational domain Ω in the form

1

sin2 θ
Pφφ (φ, θ) +

1
sin θ

∂

∂θ
(sin θPθ (φ, θ)) = 0,

P (0, θ) = 0, P (v, θ) = 0, P (φ,Θ (φ)) = 1.

Introduce new variable ζ = ln
(
tan
(

θ
2

))
and rewrite the exit problem

as follows
Pφφ (φ, ζ) + Pζζ (φ, ζ) = 0,

P (0, ζ) = 0, P (v, ζ) = 0, P (φ,Z (φ)) = 1.

Computational domain is now a semi-infinite strip with curvilinear
boundary

ζ = Z (φ) = ln
(
tan
(

Θ (φ)
2

))
.
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3D-Problem solution - I

We look for the solution of the Dirichlet problem for the Laplace
equation in the form

P (φ, ζ) =
∞

∑
n=1

cn sin (knφ) eknζ , kn =
πn
v
.

It is clear that each individual term is a harmonic function. We choose
coeffi cients cn in such a way that P (φ,Z (φ)) = 1. Specifically,

∞

∑
n=1

cn sin (knφ) eknZ (φ) = 1.

Thus, we need to build a theory of Fourier series expansion with
respect to the following set of (non-orthonormal) basis functions

En (φ) = sin (knφ) eknZ (φ),
∞

∑
n=1

cnEn (φ) = 1.
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3D-Problem solution - II

Introduce the following integrals

Jmn =
∫ v

0
sin (kmφ) sin (knφ) e(km+kn)Z (φ)dφ,

Im =
∫ v

0
sin (kmφ) ekmZ (φ)dφ.

It is clear that
∑n Jmncn = Im ,
−→c = Ĵ−1−→I .

In general, this matrix problem is diffi cult to invert on the boundary
ζ = Z (φ), however, away from the boundary automatic
regularization kicks in, and everything works very well.
When the boundary is (approximately) linear, the corresponding
integrals can be found analytically.
As a by-product, we managed to find a new(?) solution of a
long-standing problem of exit probabilities for three correlated
Brownian motions in a positive octant.
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3D-Hitting probability, source Lipton, Pesavento,
Sotiropoulos

Figure:
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Calibration, source Lipton, Pesavento, Sotiropoulos

Figure:
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Conclusions

Mathematical finance is a thriving discipline which poses extremely
intricate and important questions.

It requires a diverse skill set and ability to apply both sophisticated
and simple tools in an appropriate fashion.

Its future belongs to people who are willing to analyzeh very big data,
and are able to extract some sense out of a seemingly never ending
time-series of disjoint data points.

Successful practitioners and academic should be prepared to deal with
extraordinary large data sets, industrial strength problems of
mind-boggling complexity, and heavy computational burdens.

The time of closed-form solutions is (sadly) passed once and for all,
or is it?

Come join the party!!

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 38 / 44



Bibliography - I

M. Avellaneda and J. Zhu. Distance to default. Risk, 14(12):125 129, 2001.
F. Black and J. Cox. Valuing corporate securities: some effects of bond indenture
provisions. Journal of Finance, 31:351 367, 1976.
Ch. Blanchet-Scaillet and F. Patras. Structural Counterparty Risk Valuation for
Credit Default Swaps. In T. Bielecki, D. Brigo, and F. Patras, editors, Credit Risk
Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and
Liquidity. Wiley, 2011.
J. Cariboni and W. Schoutens. Pricing credit default swaps under Lévy models.
Journal of Computational Finance, 10(4):71, 2007.
H. He, W.P. Keirstead, and J. Rebholz. Double lookbacks. Mathematical
Finance, 8(3): 201 228, 1998.
B. Hilberink and L.C.G. Rogers. Optimal capital structure and endogenous
default. Finance and Stochastics, 6(2):237 263, 2002.
J. Hull and A. White. Valuing credit default swaps II: modeling default
correlations. Journal of Derivatives, 8(3):12 22, 2001.
T. Hyer, A. Lipton, D. Pugachevsky, and S. Qui. A hidden-variable model for
risky bonds. Technical report, working paper, 1999.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 39 / 44



Bibliography - II

J. Kim, K. Ramaswamy, and S. Sundaresan. Does default risk in coupons affect
the valuation of corporate bonds? A contingent claim model. Financial
Management, (22):117 131, 1993.
H. Leland and K. Toft. Optimal capital structure, endogenous bankruptcy, and
the term structure of credit spreads. Journal of Finance, (51):987 1019, 1996.
A. Lipton. Mathematical Methods for Foreign Exchange: a Financial Engineer’s
Approach. World Scientific, 2001.
A. Lipton. Assets with jumps. Risk, 15(9):149 153, 2002.
A. Lipton and A. Sepp. Credit value adjustment for credit default swaps via the
structural default model. The Journal of Credit Risk, 5(2):123 146, 2009.
F. Longsta and E. Schwartz. A simple approach to valuing risky fixed and floating
rate debt. Journal of Finance, (50):789 819, 1995.
R.C. Merton. On the pricing of corporate debt: The risk structure of interest
rates. The Journal of Finance, 29(2):449 470, 1974.
F. Patras. A refection principle for correlated defaults. Stochastic processes and
their applications, 116:690 698, 2006.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 40 / 44



Bibliography - III

A. Sepp. Analytical pricing of double-barrier options under a double-exponential
jump diffusion process: applications of Laplace transform. International Journal
of Theoretical and Applied Finance, 7(2):151 175, 2004.
M. Valuzis. On the probabilities of correlated defaults: a first passage time
approach. Nonlinear Analysis: Modelling and Control, 13(1):117 133, 2008.
C. Zhou. An Analysis of Default Correlations and Multiple Defaults. The Review
of Financial Studies, 14(2):555 576, 2001a.
C. Zhou. The term structure of credit spreads with jump risk. Journal of Banking
& Finance, 25(11):2015 2040, 2001b.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 41 / 44



Bibliography - IV

T. Parks. Medici Money. Norton, 2005.
R. Almgren, C. Thum, H. L. Hauptmann, and H. Li. Equity market impact. Risk,
18:57, 2005.
M. Avellaneda and S. Stoikov. High-frequency trading in a limit order book.
Quantitative Finance, 8:217—224, 2008.
E. Bacry and J.F. Muzy. Hawkes model for price and trades high-frequency
dynamics. SIAM Journal of Financial Mathematics, submitted, 2013.
J.-P. Bouchaud, J. D. Farmer, and F. Lillo. How markets slowly digest changes in
supply and demand. In T. Hens and K Schenk-Hoppe, editors, Handbook of
Financial Markets: Dynamics and Evolution.
J.-P. Bouchaud, D. Mezard, and M. Potters. Statistical properties of stock order
books: empirical results and models. Quantitative Finance, 2:251—256, 2002.
R. Cont and A. de Larrard. Order book dynamics in liquid markets: limit
theorems and diffusion approximations. Working paper, 2012.
R. F. Engle. The econometrics of ultra-high frequency data. Econometrica,
68:1—22, 2000.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 42 / 44



Bibliography - V

J. Hasbrouck. Measuring the information content of stock trades. Journal of
Finance, 46:179—207, 1991.
A. Lipton. A structural approach to pricing credit derivatives with counterparty
adjustments: additional thoughts. Global Derivatives, Trading and Risk
Management, Amsterdam, 2013.
A. Lipton and I. Savescu. CDSs, CVA and DVA - a structural approach. Risk,
26(4), 2013.
S. Stoikov R. Cont and R. Talreja. A stochastic model for order book dynamics.
Operations research, 58(3):549—563, 2010.
E. Smith, J.D. Farmer, L. Gillemot, and S. Krishnamurthy. Statistical theory of
the continuous double auction. Quantitative Finance, 3:481—514, 2003.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 43 / 44



Disclaimer

The views and opinions expressed in this presentation are those of the
author and do not necessarily reflect the views and opinions of Bank of
America Merrill Lynch.

A Lipton (Bank of America & University of Oxford)Three-dimensional Brownian motion 04/21 44 / 44


	Introduction
	de la Vega Quote
	What is Mathematical Finance?
	Subject Matter
	Nature of financial universe
	Purposes of investing
	Reasons for building mathematical models
	Brownian motion in a positive cone
	One-dimensional case
	One-dimensional case
	Two-dimensional case
	Green's function
	Green's function
	Three-dimensional case
	Three-dimensional pricing problem
	Spherical domain
	Three-dimensional Green's function
	Eigenfunction expansion for Green's function
	Solution of 2D eigenvalue problem
	Planar domain
	Mesh
	Details of FEM
	Eigenvectors
	Green's function
	HFT in retrospective

	LOB dynamics
	LOB
	HF market participants
	LOB Imbalance - I
	LOB Imbalance - II
	A simple model
	2D-Problem formulation and solution
	2D-Hitting Probability
	3D-Problem formulation
	3D-Problem solution - I
	3D-Problem solution - II
	3D-Hitting probability
	Calibration

	Conclusions
	Conclusions

	Bibliography
	Bibliography - I
	Bibliography - II
	Bibliography - III
	Bibliography - IV
	Bibliography - V
	Disclaimer


