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Disclaimer for Derivatives, Diffusion, and Duality

The views represented herein are the author's own views and do not necessarily

represent the views of Morgan Stanley or its affiliates and are not a product of
Morgan Stanley Research.
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A Practitioner’'s Apology

@ While the results in this presentation are fairly new to me, I'm a bit
concerned that they won't be new to all of you.

@ | suspect that my results might be buried somewhere in the voluminous
literature on backward SDE's.

@ After you hear my talk today, I'll be grateful if someone can email me a
particular page number where the results I'm presenting today are explained.
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Duality Between Position and Price of the Underlying

@ Derivatives pricing was originated by Bachelier (1900) in a diffusion context.

@ Still in a diffusion context, Merton (1973) showed that the market risk from
selling a derivative can be eliminated by continuously revising a position in
the derivative's underlying asset. In this talk, we refer to this continuously
revised position as the derivative's delta.

@ This talk focusses exclusively on European-style derivatives whose payoff is
convex in the price of its underlying asset. We zero out carrying costs such
as interest and dividends. In our univariate diffusion setting, the derivative’s
value function will also be convex.

@ In this context, we give the sense in which a derivative’s delta is dual to the
price of its underlying asset.
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Duality Between Cash Borrowings and Claim Value

@ Suppose that an investor sells a univariate contingent claim with a convex
payoff at the valuation date t = 0. The claim seller holds the short position
in the claim statically until the claim matures at t = T.

@ To eliminate the claim's risk in our univariate diffusion context, suppose that
the claim seller also continuously trades in the spot market for the claim’s
underlying risky asset fromt=0tot=T.

@ To finance purchases of the underlying risky asset, the claim seller borrows
cash. These cash borrowings are offset by any sales of the underlying risky
asset. The premium inflow from the initial sale of the contingent claim also
offsets initial cash borrowings. In contrast, any final payout made by the
claim seller adds to the final cash borrowings.

@ In this talk, we give the sense in which the cash borrowings is dual to the
value of the overlying contingent claim.
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Functions vs. Stochastic Processes

@ We first introduce our two dualities at the function level, then graduate our
pair of dualities to the level of stochastic processes.

@ We use lower case letters to indicate (deterministic) functions and we use
upper case letters to indicate (scalar) stochastic processes.

@ For example, c(p, s) denotes the contingent claim value ¢ as a function of
the underlying’s price p at time s. In contrast, C; denotes the stochastic
process for claim value, evaluated at time t. If P; is the stochastic process
describing the underlying'’s price, then C; = c(Py, t) for t € [0, T].
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Fenchel Transform of Claim Value

@ For now, set s =0, so ¢(p) = c¢(p, 0) denotes the initial claim value c as a
function of the initial price p of its underlying. Let q = ¢’(p) be the initial
position in the underlying asset used to delta hedge the sale of the claim.

@ Let 5(q) be the initial cash borrowings, considered as a function of the initial
position q in the underlying. The initial purchase of q units of the underlying
adds to cash borrowings, while the initial sale of one unit of the claim
subtracts, so:

3(a) = ap — <(p),
where q = ¢/(p) and hence p = ¢’ *(q).

@ Since c is a convex function of p, we can interpret 5(q) as the following
Fenchel transform of ¢(p):

3(q) = SL;p[qp —c(p)]-
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Options as Optimizations

@ Recall that the cash borrowings function 5(q) is the Fenchel transform of the
claim value function c(p):

2(q) = SL;p[qp —c(p)] = ap — c(p),

where in the dual view, price p depends on position q since p = ¢'~1(q).

@ By the envelope theorem, 5'(q) = p. By the obvious convexity of 2(q), 2’(q)
is increasing in q, and hence q = o' ~(p).

@ Replacing q in the extremes of the top equation with 2’~%(p) and then
solving for c(p):

c(p) = pa' M (p) —2("(p)) = S(qup[qp —3(q)],

since 2(q) is convex.
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Cash Borrowings as Dual of Claim Value

@ Recall that the cash borrowings function 2(q) and the claim value function
c(p) can each be represented as:

3(q) = suplap — c(p)] = qp — c(p), where price p = c'~*(q).
P
c(p) = salp[qp —5(q)] = pq —2(q), where position q ='"!(p).

@ With price p and position q as conjugate variables, the convex cash
borrowings function 2(q) is dual to the convex claim value function ¢(p) and
vice versa.

@ As an example, the BMS call value function under zero carrying costs and
strike K > 0 is:

c(p) = pN(ci(p)) — K(N(d2(p))-
@ The second equation and the envelope theorem imply that delta is simply:
c'(p) = N(di(p)),
and hence the cash borrowings function 2(q) = KN(dx(d; *(N~%(q)))).
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From Functions to Stochastic Processes

@ Assuming no frictions, no carrying costs, and no arbitrage, the FTAP says
that there exists an equivalent martingale measure Q such that all asset
prices are martingales.

@ In particular, we assume that the underlying asset price P is
time-inhomogeneous univariate diffusion:

dPt:a(Pt,t)th, t20,

where a(p,s) : R x RT — R is the dollar volatility function and W is a Q
standard Brownian motion.

@ As a consequence, the claim value function c(p,s) = EQ[f(P1)|Ps = p]
solves a terminal value problem and the claim value process C; satisfies:

dCt = Cl(Pt, t)dPt = C|1_»dl:)1_»7 where qt = C].(F)t7 t) for t € [0, T]

@ We say claim value C is a Q martingale transform of price P.
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Representing Gains and Cash Borrowings

@ Recall that the claim value process C; = EQ[f(P1)|P;] is a Q martingale
transform of its underlying asset price process P:

dCt - ql’dPt7 fOI' t S [07 T],
where the position process 9; is the claim’s delta ¢;(Py, t),t € [0, T].

@ In our complete market, the claim value C; is the time t cost of its
replicating portfolio:

C = 9Py — Dy, for t €0, T,
where J; is the cash borrowing process. Integrating by parts:
dC; = 9:dP; + P:bq; — dD; for t € [0, T],
where b signifies the use of a backward It6 integral.
@ The top equation implies:

d:)t - Ptbqt; fOI’ t e [O, T]
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Duality for Stochastic Processes

@ When the claim value process C; = EQ[f(P1)|P;] is a Q martingale
transform of its underlying asset price process P:

dCt = qtht7 fort € [O7 T],

then the last slide showed that changes in cash borrowing arise purely from
re-balancing the delta hedge:

d:)t - Ptbqt; for t e [O, T]

@ The backward increments b9; become forward increments if calendar time is
run backwards, i.e. if 1 = T — t, then:

dds = Pyd9s, for 1 € [0, T,
where hats denote reversed processes, i.e. 5j‘ =Dy, :E)j' = Py, elj =9,

@ If we regard 5j as the dual of G, Isj as the dual of 9¢, and élj as the dual
of P;, then this last equation dualizes the top one.

@ Moreover, we will show that we can construct a reversed cash borrowing
process J which is a Q martingale transform of a reversed position process 9!
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SDE for Price Process using Backward 1t Integral

@ Again recall that the underlying asset price P is a time-inhomogeneous
univariate diffusion under Q:

dPt = a(,Dl-7 t)th—’ te [0, T].

@ Assuming a(p, s) is differentiable in p, (heuristically) consider subtracting &
adding ay (P, t)dP.dW;:

dPy = —ai(Py, t)dPrdW; + [a( Py, t) + a1 (Py, t)dP]dW, telo, T]
@ Substituting the top equation in the first term after the = sign:
dP; = —a1 (P, t)a(Py, t)dt + a( Py, t) bW, tel0,T],

where recall the b indicates a backward It6 integral. When we reverse time
as we do on the next slide, the backward It6 integral will become the usual
forward It6 integral with respect to a standard Brownian motion.
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[td SDE for Reversed Price Process

@ Recall the SDE for the price P of the underlying asset:
dPt == _al(Pt, t)a(Pt7 t)dt+ a(Pt7 t)bV‘/t7 t 6 [07 T],

where a(p,s) : R x [0, T] — R is the function relating the asset’s dollar
volatility to the price level p and to the clock s which indexes the underlying
asset's price process. The coefficient a( P, t) multiplying backward
increments bW; is a stochastic process A;.

@ Now for t € [0, T], let $ = T — t be the time to maturity (aka term) of the
claim. Let lsj P: be the reversed price process and let AAj' A: be the
reversed vol process, both for 1 € [0, T]. We define this pair jointly by
thinking of A, = a(Py,1) as opposed to A, = a(Py, T —1).

@ With this convention in mind, existence results on backward SDE's suggest
there exists a standard Brownian motion B in the term clock 1 such that:

dP; = a1 (Py,1)a(Ps,1)d1 + a(Ps,1)d By, te o, T].
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Backward PDE for Claim Value Function

@ Recall our assumption that the underlying asset price P is
time-inhomogeneous univariate diffusion under Q:

dPt:a(Pt,t)th, tz 0

@ The claim value function c¢(p,s) = EQ[f(P1)|Ps = p] will be C%!. The
claim value process C; = ¢(Py, t) for t € [0, T], so by Itd's formula:

a?(Py, t)

dCt - 2

c11(Pe, t) + (P, t)| dt + 1 (P, t)a(Py, t)dW,, t € [0, T].

@ By FTAP, C is a Q martingale, so the claim value function c(p, s) solves the
following well-known backward linear second-order parabolic PDE:

a(p, s
%Cll(pvs)ﬁ_cé(pas)zov pER,SE [07 T]

@ Barring pathologies on the dollar volatility function a(p, s) and the terminal
payoff function f(p), the claim value function ¢(p, s) is determined by the
PDE and the terminal condition ¢(P, T) = f(p). One can numerically solve
the terminal value problem by recursing backward in calendar time.
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Reversed Position Process is Driftless Under

@ Recall that the claim value function ¢(p, s) solves the following PDE:

2
#Cll(ﬂs) + c(p,s) =0, peR,sec[0,T],

subject to ¢(p, T) = f(p),p € R.

@ Recalling that the position function q(p, s) = ci1(p, s), differentiating w.r.t.
p implies that:

a*(p, s)

2
subject to q(p, T) = f'(p), p € R.

qll(p7 s)+a(p7 s)al(p7 S)Q1(p, 5)+Q2(P, S) = 07 pe Ra s€ [Oa T],

@ Now recall the 1t6 SDE for the reversed price process:
dPy = ai(Py,1)a(Py, 1)dt + a(Py,1)dBy,  1€0,T].

o Letting 43 = q(Py,1) for 1 € [0, T], the above PDE implies that 9y is a Q
local martingale in the 1 clock.
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Reversed Position Process is Driftless Diffusion

@ Recall that the reversed price process is defined so that its 1té6 SDE is:
dPy = ai(Py,1)a(Py, 1)dt + a(Py,1)dBy,  1€]0, T,

and that the reversed position process 93 = ¢;(Py,1) is a Q local martingale
in the 7 clock. As a result, It6's formula implies:

dqi = ql(lsiaj)a(lsjﬂj)déia e [07 T]

@ The assumed convexity of the claim value function c(p, s) in price p implies
that the position functlon q= c1(p7 s)is increasing in price p and hence is
invertible: p = ¢;*(q,s). Since 43 = ¢1(Py,1), Py = ¢; (93, 1), hence:

dPy = qy(c; (9y,1), 1)a(c; *(y,1),1)dBy = (3, 1)dBy, €0, T],

where 6(q, 5) = q;(c; *(a,5), s)a(c; (a, s),s) is the function relating the
normal volatility of position to position q and clock s.

@ Since the volatility of the reversed position process 9 has been expressed as
a function of just the reversed position 94 and reverse time 3, the reversed
position process 9 is a driftless diffusion under Q.
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Reversed Cash Borrowings is Driftless Under Q

@ Recall that with calendar time t running forward, all changes in the cash
borrowings process D arise solely due to changes in position 9:

th = Ptbqt, t e [07 T]

° Replacmg calendar time t with term £ = T — t, price P; with reversed price
Pj, and position 9; with reversed position Clj = C]_(Pj, 1), we get an It6 SDE
which determines the reversed cash borrowing process 31 = Dy

ddy = P;dd;,  1€0, T

@ Since the reversed position process 9 is driftless under Q and in clock 1, it
follows that the reversed cash borrowing process 5j = quj- - fj is also
driftless. Furthermore, differentiating the cash borrowing function
3(q) = ¢; 1(q)q — c(c; *(q)) with respect to position q returns price as a
function of position 2'(q) = ¢; *(q). As a result, the 1td SDE can be written

as:
ddy = 21(95,1)d9;, 1€ [0, T].
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Four [t6 SDE's

@ Supposing under Q that the underlying price P is driftless diffusion:
dP; = a(Py, t)dW,, t €10, T],
then changes in claim value C; = c(P;, t) arise purely from gains:
dC; = ¢ (P, t)dPy, te [0, T].

@ The price process P & the claim value C are both Q local martingales. In
contrast, the position process 9; = ¢1(Py, t) & the cash borrowings process
Dt = tht — Ct can both drift.

@ However when time reverses into term + = T — t, there exists a reversed
price process P4 which drifts so that the reversed position process
9t = c1(Ps, 1) is driftless diffusion:

@ Furthermore, the reversed claim value C; = c(Py, 1) drifts so that the
reversed cash borrowings process J1+ = 94P; — (4 is a Q local martingale:

dﬁj = 31(qj,j)d€|j, where 5(q,2) = cl_l(q,s)q — c(cl_l(q, s),s),1 € [0, T].
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PDE for Cash Borrowing Function

@ Recall that the claim value function c(p, s) solves the following PDE:

a(p,s)
2

Cll(pvs) + C2(pa S) = 07 pe R,S € [07 T]
@ This PDE is numerically solved by running s backwards from the terminal
condition ¢(p, T) = f(p), p € R to the initial value ¢(p,0), p € R.

@ Suppose one changes all 3 variables in the above PDE defininga =T — s,
q = ci(p,s), and 5(q,2) = qp — c(p, s). Then one can derive the PDE:

62(q,2 _ _
82, (@20 +2(a,2) = 0, where (a,2) = ay(c; *(a,5). Sale; (3., ),

forqeR,2=T —s, and s € [0, T], which confirms that the reversed cash
borrowing process 31 = quj — Cj,j € [0, T] is driftless under Q.
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Computationally Efficient Updating of Model Values

@ Recall that when cash borrowing is expressed as a function > of position g
and term e, it solves the following second order linear parabolic PDE:

62(q,2
%311((]72)4_32((]?2) 207 q ER726 [O? T]
@ This PDE can be numerically solved by running term 2 backwards from the

terminal condition 3(q, T) = q¢; *(g,0) — c(¢; *(g,0),0),q € R.

@ So if one wanted to update the model value of a claim from yesterday to
today, one need only transform yesterday's claim value profile to yesterday's
cash borrowings profile, shrink term by one day via the above PDE, and then
transform back to today’s claim value profile. This is usually much more
computationally efficient than directly re-solving for claim value by running
backwards in calendar time from the maturity date.
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Reviewing a Standard Approach To Claim Valuation

@ In the standard (primal) approach to contingent claim valuation, the
underlying price process P is specified as some driftless diffusion.

@ One then solves a backward PDE for claim value as a function of the price
of the underlying and calendar time.

@ If one wishes, the solution to this PDE can be differentiated to obtain claim
delta as a function of price and time.

@ One can obtain cash borrowings by price and time by subtracting the claim
value from the product of delta and price.

@ If the claim value function is convex, one can numerically invert the
increasing function relating delta to the price of the underlying to obtain the
price of the underlying as a function of delta and time.

@ As a result, one can also obtain cash borrowings as a function of delta and
time.
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A Dual Approach To Contingent Claim Valuation

@ In the dual approach to contingent claim valuation, the reversed position
process 9 is directly specified as some driftless diffusion.

@ One then solves a backward PDE for cash borrowings as a function of the
position and term.

@ The solution to this PDE can be differentiated to obtain price of the
underlying as a function of position and term.

@ One can obtain claim value by delta and term by subtracting the cash
borrowings from the product of position and the price of the underlying.

@ If the claim value function is convex, then one can numerically invert the
increasing function relating price of the underlying to delta in order to obtain
delta as a function of the underlying price and time.

@ As a result, one can also obtain the claim value as a function of the
underlying price and time.
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Applying Dual Approach To Call Valuation

@ Some technical issues arise when one wishes to specifically apply the dual
approach to European call valuation.

@ The payoff f(p) = (p — K)* is convex in p, but it is not strictly convex. As
a result, the reversed call delta process need not be driftless at zero term
(=expiry), but reversed call delta is a driftless diffusion whenever term is
strictly positive.

@ In diffusion models for price, the reversed call delta process is a
term-inhomogeneous diffusion whose state space is the unit interval [0, 1].
Furthermore, this diffusion is driftless after term zero. It is not immediately
obvious how to pick such a process, but fortunately, this state space is
exactly the state space in which probabilities reside. One can begin with a
time homogeneous diffusion on any regular domain, calculate analytically
friendly objects like hitting probabilities over infinite horizons, and then
finally deterministically change the clock that these probabilities run on to
induce a term-inhomogeneous driftless diffusion on the state space [0, 1] and
over a finite time interval (0, T].
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Wrapup: Derivatives, Diffusion, and Duality

@ We showed that in univariate driftless diffusion models for an underlying
asset price, the claim’s delta can be regarded as a conjugate process of price,
particularly when this position process is run backwards in time.

@ Similarly, the cash borrowing process can be regarded as a dual process for
claim value, again when time is reversed.

@ This alternative view has advantages in understanding greeks, numerically
updating claim values, and perhaps in developing new analytically tractable
models.

@ Just as Lévy processes are more easily analyzed in Fourier space, it would be
interesting to explore which processes are best understood in the
Fenchel-Legendre space that we have just outlined.

@ Furthermore, trading strategies which are purely delta-based or contingent
claims whose payoffs depend on delta (eg. American options) are perhaps
more easily analyzed in our dual space.
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