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Objective

Design numerical approximation for the equation :

∂tv + µ · Dv +
1
2
σ2 : D2v + F (t, x , v ,Dv ,D2v) = 0, v(T , .) = g

• Finite differences, finite elements : very efficient in 1− 2 dim,
curse of dimensionality, path dependency increases dimension

• Probabilistic representation =⇒ Monte Carlo / Probabilistic
numerical methods

• An important issue : extension to the path-dependent case ? ?

Nizar Touzi Branching Diffusions and Nonlinear PDEs



Unbiased simulation of SDEs
Age-dependent branching diffusions and semilinear PDEs

Intuition from the linear case

The heat equation :

∂tv +
1
2

∆v = 0, v(T , .) = g

has the following two possible probabilistic representations :

(i) v(0, x) = E
[
g(BT )|B0 = x

]
; with B a BM

(ii) v(t, x) = eβTE
[
g(BT )1I{T<τ}|B0 = x

]
; τ ∼ Exp(β) ⊥ B

Both representations are valid in the path-dependent case
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From linear representation (i) to nonlinear

Representation (i) extended by

• BSDEs (Pardoux & Peng, Bouchard & NT, Zhang, ...)

dvt = −Ft(vt , ζt)dt + ζtdBt , vT = g(BT )

• 2BSDEs (Cheridito, Soner, NT & Victoire, Fahim, NT & Warin,
Zhang & Zhuo, Possamaï & Tan)

dvt = −Ft(vt , ζt , γt)dt + ζtdBt , dζt = . . . dt + γtdBt , vT = g(BT )

New formulation : Soner, NT & Zhang, and Possamaï, Tan & Zhou
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A probabilistic numerical scheme for fully nonlinear PDEs

X n : discrete-time approximation of diffusion with drift µ and
diffusion σ = 1 (also d = 1 for simplicity)

Y n
tn = g

(
X n
tn

)
,

Y n
ti−1

= En
i−1
[
Y n
ti

]
+ f

(
X n
ti−1

,Y n
ti−1

,Zn
ti−1

, Γn
ti−1

)
∆ti , 1 ≤ i ≤ n ,

Zn
ti−1

= En
i−1

[
Y n
ti

∆Wti

∆ti

]
Γn
ti−1

= En
i−1

[
Y n
ti

|∆Wti |2 −∆ti
|∆ti |2

]
Then Y n

0 −→ v(0, x) as n→∞ + Error estimate...
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Automatic differentiation

=⇒ Integration by parts

∂xE[φ(Xt)] = E
[
φ(Xt)

Wh

h

]
For simplicity, consider the one-dimensional case Xt = x + Wt :

E[φx(x + Wh)] =

∫
φx(x + y)

e−y
2/(2h)

√
2π

dy

=

∫
φx(x + y)

y

h

e−y
2/(2h)

√
2π

dy

= E
[
φ(x + Wh)

Wh

h

]
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From linear representation (ii) to nonlinear

• Consider KPP equations

(KPP) ∂tv + µ · Dv + 1
2σ

2 : D2v + β
(∑n

i=1 piv
i − v

)
= 0

with pi>0 and
∑n

k=1 pi = 1

• Branching diffusions representation :

v(0, x) = E
[ ∏
k∈KT

g(Z k
T )
]
, where Z k : k − th particle

and

Kt :=
{
All particles alive at time t

}
[Skorokhod, Watanabe, McKean]
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Branching diffusion (n = 2)
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Generalized KPP equation

Let ai (t, x) be bounded functions, and consider the PDE

∂tv + µ(t, x) · Dv +
1
2
σ2(t, x) : D2v + β

( n∑
i=1

piai (t, x)v i − v
)

= 0

v(T , .) = g

Introduce the branching diffusion :
(τk)k iid Expo(β) : branching times
(Ik)k iid Multinomial(p1, . . . , pn) : number of decendents
Particle k dies out at the branching event Tk , and Ik
independent particles follow the diffusion with drift and
diffusion (µ, σ)
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The branching diffusion representation

Recall
KT := {particles present at T}
KT := ∪t≤TKt : all particles

Theorem (Henry-Labordère, Tan & NT SPA ’14)

v(0, x) = E
[
ψ0,x

]
where

ψ0,x :=
∏

k∈KT

g(Z k
T )

∏
k∈KT \KT

aIk (Tk ,Z
k
Tk

)

Moreover, this representation extends to the path-dependent case

• Numerical implications

• In the rest of he talk : extension to more general nonlinearities
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Regression versus branching diffusions methods

BSDE representation : (backward) regression-based methods =⇒
⊕ no explosion restrictions
	 High complexity, curse of dimension is back !
	 Markovian feature is crucial

Branching diffusions =⇒
⊕ Purely forward Monte Carlo
⊕ Suitable for path-dependency
⊕ Very easy to implement, complexity linear in d2

	 Need to control from explosion of solution
	 and of the variance (in the subsequent extensions)...
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Main objective

• Branching diffusion representation for a larger class of PDEs
(beyond KPP)

Including nonlinearity in the gradient

• Unbiased simulation / Monte Carlo approximation

Treat both Gradient and Hessian as nonlinearities...
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The constant diffusion case
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Outline

1 Unbiased simulation of SDEs
The constant diffusion case
Regime switching and automatic differentiation

2 Age-dependent branching diffusions and semilinear PDEs
Complexity of the Monte Carlo approximation
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The constant diffusion case
Regime switching and automatic differentiation

Weak approximation of SDEs

Objective is to approximate without discretization error :

V0 := E
[
g(XT )

]
where X is solution of the SDE

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

W is a Brownian motion
µ and σ satisfy the Lipschitz bounded, σ−1 bounded
more conditions on µ and σ will pop up
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The constant diffusion case
Regime switching and automatic differentiation

Our algorithm in the case of constant diffusion σ = Id (I)

• (Nt) : Poisson process with intensity β, arrival times (τi )i≥1

• Set τ0 := 0, Ti := τi ∧ T , and

∆Ti := Ti − Ti−1, ∆WTi
:= WTi

−WTi−1

• Consider the “Euler discretization along the arrival times τi"

X̂Ti
= X̂Ti−1 + µ(Ti−1, X̂Ti−1)∆Ti + ∆WTi

,

for i = 1, . . . ,NT + 1

=⇒ branching diffusion with one descendent at each default
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The constant diffusion case
Regime switching and automatic differentiation

Unbiased simulation for constant diffusion

Define the exactly simulatable r.v.

ξ̂ := β−NT eβT
[
g
(
X̂T

)
− g

(
X̂TNT

)
1I{NT>0}

]∏NT
k=1 Ŵ

1
k

where

Ŵ1
k :=

(
µ(Tk , X̂Tk

)− µ(Tk−1, X̂Tk−1)
)
·

∆WTk+1

∆Tk+1

Theorem (Henry-Labordère, Tan & NT ’15)

Assume µ 1
2−Hölder in t, Lip in x , and g Lipschitz. Then

ξ̂ ∈ L2 and E
[
g(XT )

]
= E

[
ξ̂
]
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The constant diffusion case
Regime switching and automatic differentiation

Main ideas

Define
X̂0 := X0, dX̂t = µ(Θt)dt + σdWt

with Θt := (TNt , X̂TNt
). In other words,

X̂Tk+1 = X̂Tk
+

∫ Tk+1

Tk

µ
(
Tk , X̂Tk

)
ds +

∫ Tk+1

Tk

σdWs

i.e. the drift coefficient changes at each arrival time Tk
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The constant diffusion case
Regime switching and automatic differentiation

First main idea

Define u(t, x) := Et,x

[
g(XT )

]
, t ≤ T , x ∈ R

Proposition

Let β > 0, θ ∈ [0,T )× Rd , (t, x) ∈ [0,T )× Rd . Then

u(t, x) = eβ(T−t)Et,x ,θ

[
1I{NT =0} g

(
X̂T

)
+1I{NT>0}

1
β

∆µ · Du
(
T1, X̂T1

)]
where ∆µ := µ− µ(θ)
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The constant diffusion case
Regime switching and automatic differentiation

Sketch of proof of the lemma

The function ũ := e−β(T−t)Et,x

[
g(XT )

]
solves

−∂t ũ − µ · Dũ − 1
2
σ2 : D2ũ + βũ = 0 and ũ(T , .) = g

Equivalently, with φ := (µ− µ(θ)) · Dũ,

−∂t ũ − µ(θ) · Dũ − 1
2
σ2 : D2ũ + βũ = φ and ũ(T , .) = g

By the Feynman-Kac representation :

u(0,X0) = eβTE
[
e−βTg(X̂T ) +

∫ T

0
e−βtφ(t, X̂t)dt

]
= eβTE

[
g(X̂T )1I{τ≥T} +

1
β
φ(τ, X̂τ )1I{τ<T}

]
where τ is an independent Expo(β)
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The constant diffusion case
Regime switching and automatic differentiation

Second main idea : use Monte Carlo automatic
differentiation

By the last proposition,

u(t, x) = Et,x ,θ

[
eβ(T1−t)

(
1I{NT =0} g

(
X̂T

)
+1I{NT>0}

∆µT1

β
· Du

(
T1, X̂T1

))]
= Et,x ,θ

[
eβ(T1−t)

(
1I{NT =0} g

(
X̂T

)
+1I{NT =1}

∆µT1

β
· ∆WT2

∆T2
g
(
X̂T

)
+1I{NT>1}

∆µT2

β2 · Du
(
T2, X̂T2

))]
by the assumption. And so on...
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The constant diffusion case
Regime switching and automatic differentiation

Back to unit diffusion : square integrability lost... in general

Iterating as above, and passing to limits, we would arrive at

E[ξ] where ξ := β−NT eβTg
(
X̂T

) NT∏
k=1

Ŵ1
k

where, in the case of unit diffusion :

Ŵ1
k :=

[
µ(Tk , X̂Tk

)− µ(Tk−1, X̂Tk−1)
]
·

∆WTk+1

∆Tk+1

Notice that ∆WT1
∆T1

∼ (∆T1)−1/2, then :

µ Lip in x ,
1
2
− Hölder in t =⇒ ξ̂ ∈ L2
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The constant diffusion case
Regime switching and automatic differentiation

Gaining more integrability

Oudjane & Warin ’15 give up on the Expo(β) distribution =⇒
Age-dependent branching...

−∂tu − µ(θ) · Du − 1
2
σ2 : D2u = φ and u(T , .) = g

with φ := (µ− µ(θ)) · Du. By the Feynman-Kac representation :

u(0,X0) = E
[
g(X̂T ) +

∫ T

0
φ(t, X̂t)dt

]
= E

[
ρ̄−1
T g(X̂T )1I{τ≥T} + ρ(τ)−1φ(τ, X̂τ )1I{τ<T}

]
where τ is an independent r.v. with density ρ, and ρ̄T :=

∫∞
T ρ(t)dt

Choose ρ so as to guarantee square integrability...
Gamma distribution does the job
ρ(t) = Γ(κ)−1βκtκ−1e−βt , κ ≤ 1

2
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Outline

1 Unbiased simulation of SDEs
The constant diffusion case
Regime switching and automatic differentiation

2 Age-dependent branching diffusions and semilinear PDEs
Complexity of the Monte Carlo approximation
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A class of semilinear PDEs with polynomial nonlinearity

Consider the PDE (unit diffusion for simplicity)

∂tu +
1
2

∆u + f (t, x , u,Du) = 0, uT = g

with nonlinearity

f (t, x , y , z) =
∑

(`i )0≤i≤n∈L

p`c`(t, x)y `0
n∏

i=1

(
bi (t, x) · z

)`i
L finite subset of Nn+1

p` > 0 with
∑

`∈L p` = 1
bi (t, x) bounded functions

Example : Burgers equation d = 1 and f (t, x , u, ux) = u ux
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Branching diffusion for the Burger equation
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Marked branching diffusion representation

• (τk)k iid arrival times, Tk := τk ∧ T

• If T1 < T : particle dies out, and is replaced with probability p` by

`i particles of type i , i = 0, . . . , n

• For a particle k ∈ KT , denote by
D(k) its type
k− its parent particle
=⇒ Particle k lives between Tk− and Tk
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Using automatic differentiation

• Automatic differentiation :

Wk := 1I{D(k)=0} + 1I{D(k)6=0}bD(k)(Tk−,X
k
Tk−

) · ∆WTk

∆Tk

The limiting random variable is :

ψ :=
∏

k∈KT

F̄ρ(∆Tk)−1[g(X k
T

)
− 1I{Dk 6=0}g

(
X k
Tk−

)]
Wk

×
∏

k ′∈KT \KT

[
ρ(∆Tk ′)

]−1
bIk′ (Tk ′ ,X

k ′
Tk′

)Wk ′
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Sufficient condition for square integrability

For independent BM W , τ ∼ ρ, and T1 := τ ∧ T , define :

Ap := max
`

|g |p∞ ∨ ‖WT1‖p‖b` ·
WT1
T1
‖p

F̄ρ(T )p−1

Bp := max
`
‖∆τ‖p/2

∥∥∥b` · WT1

T1

∥∥∥p[|b`|∞ sup
t≤T

t
− p

2(p−1)

ρ(t)

]p−1

Theorem (Henry-Labordère, Oudjane, Tan, NT, Warin ’16)

Assume that g Lipschitz and, for some p > 1,∫ ∞
Ap

[
Bp

∑
|b`|∞|x ||`|

]−1
dx > T

Then v(0, x) = E0,x [ψ], and ψ ∈ L2
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The complexity of the algorithm

• Average number of particles in one simulation m(t) := E[#Kt ]
satisfies, for n0 :=

∑
` |`|p`,

m(t) = 1 + n0

∫ t

0
m(t − s)ρ(s)ds.

When ρ ∼ Γ(κ, θ), one has

m(T ) = γ(κ,T/θ)
∞∑
k=0

nk0
Γ(kκ)

.

• Number of v.a. simulated for one particle

d + 1 + 1

• Number of computation for one particle

Cd
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Numerical example

• Define

u(t, x) = cos(x1 + · · ·+ xd) exp(α(T − t))

is solution of semilinear PDE

∂tu +
1
2

∆u + c u(b1 · Du) + b0 = 0.

• For numerical implementation, we choose

α = 0.2, c = 0.15, b1 = (1 +
1
d
, 1 +

2
d
, · · · , 2).
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A numerical example of dimension d = 20

Figure: Estimation and standard deviation observed in dimension d = 20
depending on the log of the number of simulation used.
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Comments on the Monte-Carlo method

• Choice of ρ, (p`)`∈L, the expression of nonlinearity ...

• possible to use importance sampling, particles method,...

• open to parallel computing
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Monte Carlo approximation of nonlinear PDEs

Fully nonlinear PDEs... (e.g. HJB equations)

If T1 < T : particle dies out, and is replaced with probability p` by
i` particles of type 0
j` particles of type 1 =⇒ first order differentiation weight
h` particles of type 2 =⇒ second order differentiation weight

Automatic differentiation for particles k of type D(k) = 2 :

∆W 2
T −∆T

(∆T )2 !!
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