Branching Diffusions Representation for Nonlinear PDEs

Nizar Touzi Ecole Polytechnique, Paris

Joint work with Nadia Oudjane, Pierre Henry-Labordère, Xiaolu Tan and Xavier Warin

University of Southern California February 24, 2016

Objective

Design numerical approximation for the equation :

$$\partial_t v + \mu \cdot Dv + \frac{1}{2}\sigma^2 : D^2 v + F(t, x, v, Dv, D^2 v) = 0, \quad v(T, .) = g$$

 \bullet Finite differences, finite elements : very efficient in 1-2 dim, curse of dimensionality, path dependency increases dimension

 \bullet Probabilistic representation \Longrightarrow Monte Carlo / Probabilistic numerical methods

• An important issue : extension to the path-dependent case ??

Intuition from the linear case

The heat equation :

$$\partial_t v + \frac{1}{2}\Delta v = 0, \quad v(T,.) = g$$

has the following two possible probabilistic representations :

(i)
$$v(0,x) = \mathbb{E}[g(B_T)|B_0 = x]$$
; with B a BM

(ii)
$$v(t,x) = e^{\beta T} \mathbb{E}[g(B_T) \mathbb{1}_{\{T < \tau\}} | B_0 = x]; \tau \sim \mathsf{Exp}(\beta) \perp B$$

Both representations are valid in the path-dependent case

From linear representation (i) to nonlinear

Representation (i) extended by

• BSDEs (Pardoux & Peng, Bouchard & NT, Zhang, ...)

 $dv_t = -F_t(v_t, \zeta_t)dt + \zeta_t dB_t, \quad v_T = g(B_T)$

• 2BSDEs (Cheridito, Soner, NT & Victoire, Fahim, NT & Warin, Zhang & Zhuo, Possamaï & Tan)

 $dv_t = -F_t(v_t, \zeta_t, \gamma_t)dt + \zeta_t dB_t, \quad d\zeta_t = \dots dt + \gamma_t dB_t, \quad v_T = g(B_T)$

New formulation : Soner, NT & Zhang, and Possamaï, Tan & Zhou

A probabilistic numerical scheme for fully nonlinear PDEs

 X^n : discrete-time approximation of diffusion with drift μ and diffusion $\sigma = 1$ (also d = 1 for simplicity)

$$\begin{split} \mathbf{Y}_{t_{n}}^{n} &= g\left(X_{t_{n}}^{n}\right) ,\\ \mathbf{Y}_{t_{i-1}}^{n} &= \mathbb{E}_{i-1}^{n}\left[\mathbf{Y}_{t_{i}}^{n}\right] + f\left(X_{t_{i-1}}^{n}, \mathbf{Y}_{t_{i-1}}^{n}, \mathbf{Z}_{t_{i-1}}^{n}, \mathbf{\Gamma}_{t_{i-1}}^{n}\right) \Delta t_{i} , \ 1 \leq i \leq n ,\\ \mathbf{Z}_{t_{i-1}}^{n} &= \mathbb{E}_{i-1}^{n}\left[\mathbf{Y}_{t_{i}}^{n} \frac{\Delta W_{t_{i}}}{\Delta t_{i}}\right] \\ \mathbf{\Gamma}_{t_{i-1}}^{n} &= \mathbb{E}_{i-1}^{n}\left[\mathbf{Y}_{t_{i}}^{n} \frac{|\Delta W_{t_{i}}|^{2} - \Delta t_{i}}{|\Delta t_{i}|^{2}}\right] \end{split}$$

Then $Y_0^n \longrightarrow v(0,x)$ as $n \to \infty +$ Error estimate...

イロト イポト イヨト イヨト

Automatic differentiation

 \Longrightarrow Integration by parts

$$\partial_{X} \mathbb{E}[\phi(X_{t})] = \mathbb{E}\left[\phi(X_{t})\frac{W_{h}}{h}\right]$$

For simplicity, consider the one-dimensional case $X_t = x + W_t$:

$$\mathbb{E}[\phi_x(x+W_h)] = \int \phi_x(x+y) \frac{e^{-y^2/(2h)}}{\sqrt{2\pi}} dy$$
$$= \int \phi_x(x+y) \frac{y}{h} \frac{e^{-y^2/(2h)}}{\sqrt{2\pi}} dy$$
$$= \mathbb{E}\left[\phi(x+W_h) \frac{W_h}{h}\right]$$

・ロト ・回ト ・ヨト ・ヨト

From linear representation (ii) to nonlinear

• Consider KPP equations

(KPP)
$$\partial_t \mathbf{v} + \mu \cdot D\mathbf{v} + \frac{1}{2}\sigma^2 : D^2\mathbf{v} + \beta\left(\sum_{i=1}^n p_i \mathbf{v}^i - \mathbf{v}\right) = 0$$

- with $p_i > 0$ and $\sum_{k=1}^n p_i = 1$
- Branching diffusions representation :

$$v(0,x) = \mathbb{E}\Big[\prod_{k\in\mathcal{K}_T} g(Z_T^k)\Big], \text{ where } Z^k: k- ext{th particle}$$

and

$$\mathcal{K}_t := \{ All \text{ particles alive at time } t \}$$

[Skorokhod, Watanabe, McKean]

イロト 不得下 イヨト イヨト

Unbiased simulation of SDEs Age-dependent branching diffusions and semilinear PDEs

Branching diffusion (n = 2)

Generalized KPP equation

Let $a_i(t, x)$ be bounded functions, and consider the PDE

$$\partial_t \mathbf{v} + \mu(t, \mathbf{x}) \cdot D\mathbf{v} + \frac{1}{2}\sigma^2(t, \mathbf{x}) : D^2 \mathbf{v} + \beta \left(\sum_{i=1}^n p_i a_i(t, \mathbf{x}) \mathbf{v}^i - \mathbf{v}\right) = 0$$
$$\mathbf{v}(T, .) = g$$

Introduce the branching diffusion :

- $(\tau_k)_k$ iid $\text{Expo}(\beta)$: branching times
- $(I_k)_k$ iid Multinomial (p_1, \ldots, p_n) : number of decendents
- Particle k dies out at the branching event T_k , and I_k independent particles follow the diffusion with drift and diffusion (μ, σ)

・ロト ・回ト ・ヨト ・ヨト

The branching diffusion representation

Recall

- $\mathcal{K}_{\mathcal{T}} := \{ \text{particles present at } \mathcal{T} \}$
- $\overline{\mathcal{K}}_{\mathcal{T}} := \cup_{t \leq \mathcal{T}} \mathcal{K}_t$: all particles

Theorem (Henry-Labordère, Tan & NT SPA '14)

 $v(0,x) = \mathbb{E}ig[\psi_{0,x}ig]$ where

$$\psi_{0,x} := \prod_{k \in \mathcal{K}_T} g(Z_T^k) \prod_{k \in \overline{\mathcal{K}}_T \setminus \mathcal{K}_T} a_{I_k}(T_k, Z_{T_k}^k)$$

Moreover, this representation extends to the path-dependent case

• Numerical implications

• In the rest of he talk : extension to more general nonlinearities

Regression versus branching diffusions methods

 $\mathsf{BSDE} \ \mathsf{representation}: \mathsf{(backward)} \ \mathsf{regression}\mathsf{-}\mathsf{based} \ \mathsf{methods} \Longrightarrow$

- \oplus no explosion restrictions
- \ominus High complexity, curse of dimension is back !
- ⊖ Markovian feature is crucial

Branching diffusions \Longrightarrow

- \oplus Purely forward Monte Carlo
- \oplus Suitable for path-dependency
- \oplus Very easy to implement, complexity linear in d^2
- \ominus Need to control from explosion of solution
- \ominus and of the variance (in the subsequent extensions)...

A (2) > (

Main objective

• Branching diffusion representation for a larger class of PDEs (beyond KPP)

Including nonlinearity in the gradient

• Unbiased simulation / Monte Carlo approximation

Treat both Gradient and Hessian as nonlinearities...

イロト イポト イヨト イヨト

Outline

- The constant diffusion case
- Regime switching and automatic differentiation
- Age-dependent branching diffusions and semilinear PDEs
 Complexity of the Monte Carlo approximation

・ロン ・四と ・ヨン

Weak approximation of SDEs

Objective is to approximate without discretization error :

 $V_0 := \mathbb{E}[g(X_T)]$

where X is solution of the SDE

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$$

- W is a Brownian motion
- μ and σ satisfy the Lipschitz bounded, σ^{-1} bounded
- $\bullet\,$ more conditions on μ and σ will pop up

Our algorithm in the case of constant diffusion $\sigma = I_d$ (I)

• (N_t) : Poisson process with intensity β , arrival times $(\tau_i)_{i\geq 1}$

• Set
$$au_0 := 0$$
, $T_i := au_i \wedge T$, and

$$\Delta T_i := T_i - T_{i-1}, \qquad \Delta W_{T_i} := W_{T_i} - W_{T_{i-1}}$$

• Consider the "Euler discretization along the arrival times τ_i "

$$\begin{split} \hat{X}_{\mathcal{T}_i} &= \hat{X}_{\mathcal{T}_{i-1}} + \mu(\mathcal{T}_{i-1}, \hat{X}_{\mathcal{T}_{i-1}}) \Delta \mathcal{T}_i + \Delta W_{\mathcal{T}_i}, \\ & \text{for } i = 1, \dots, N_{\mathcal{T}} + 1 \end{split}$$

 \Longrightarrow branching diffusion with one descendent at each default

Unbiased simulation for constant diffusion

Define the exactly simulatable r.v.

$$\hat{\xi} := \beta^{-N_T} e^{\beta T} \left[g(\hat{X}_T) - g(\hat{X}_{T_{N_T}}) \mathbb{1}_{\{N_T > 0\}} \right] \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$$

where

$$\hat{\mathcal{W}}_k^1 := \left(\mu(\mathcal{T}_k, \hat{X}_{\mathcal{T}_k}) - \mu(\mathcal{T}_{k-1}, \hat{X}_{\mathcal{T}_{k-1}}) \right) \cdot \frac{\Delta W_{\mathcal{T}_{k+1}}}{\Delta \mathcal{T}_{k+1}}$$

Theorem (Henry-Labordère, Tan & NT '15)

Assume $\mu \frac{1}{2}$ -Hölder in t, Lip in x, and g Lipschitz. Then

$$\hat{\xi} \in \mathbb{L}^2$$
 and $\mathbb{E}[g(X_{\mathcal{T}})] = \mathbb{E}[|\hat{\xi}|]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ÉCOLE POLYTECHNIQU

Main ideas

Define

$$\hat{X}_0 := X_0, \ d\hat{X}_t = \mu(\Theta_t)dt + \sigma dW_t$$

with $\Theta_t := (T_{N_t}, \hat{X}_{T_{N_t}})$. In other words,

$$\hat{X}_{T_{k+1}} = \hat{X}_{T_k} + \int_{T_k}^{T_{k+1}} \mu(T_k, \hat{X}_{T_k}) ds + \int_{T_k}^{T_{k+1}} \sigma dW_s$$

i.e. the drift coefficient changes at each arrival time T_k

イロン イヨン イヨン イヨン

ECOLE POLYTECHNIQUE

First main idea

Define
$$u(t,x) := \mathbb{E}_{t,x}[g(X_T)]$$
, $t \leq T$, $x \in \mathbb{R}$

Proposition

Let
$$\beta > 0$$
, $\theta \in [0, T) \times \mathbb{R}^d$, $(t, x) \in [0, T) \times \mathbb{R}^d$. Then

$$u(t,x) = e^{\beta(T-t)} \mathbb{E}_{t,x,\theta} \Big[\mathbb{1}_{\{N_T=0\}} g(\hat{X}_T) \\ + \mathbb{1}_{\{N_T>0\}} \frac{1}{\beta} \Delta \mu \cdot \frac{\mathsf{D}u(T_1, \hat{X}_{T_1})}{\mathsf{D}u(T_1, \hat{X}_{T_1})} \Big]$$

where $\Delta \mu := \mu - \mu(\theta)$

・ロト ・ ア・ ・ ア・ ・ ア・

Sketch of proof of the lemma

The function
$$\widetilde{u} := e^{-\beta(T-t)} \mathbb{E}_{t,x}[g(X_T)]$$
 solves

$$-\partial_t \tilde{u} - \mu \cdot D \tilde{u} - rac{1}{2}\sigma^2 : D^2 \tilde{u} + \beta \tilde{u} = 0$$
 and $\tilde{u}(T, .) = g$

Equivalently, with $\phi := (\mu - \mu(\theta)) \cdot D\tilde{u}$,

$$-\partial_t \tilde{u} - \mu(\theta) \cdot D\tilde{u} - \frac{1}{2}\sigma^2 : D^2\tilde{u} + \beta\tilde{u} = \phi \quad \text{and} \quad \tilde{u}(T, .) = g$$

By the Feynman-Kac representation :

$$u(0, X_0) = e^{\beta T} \mathbb{E} \Big[e^{-\beta T} g(\hat{X}_T) + \int_0^T e^{-\beta t} \phi(t, \hat{X}_t) dt \Big]$$

$$= e^{\beta T} \mathbb{E} \Big[g(\hat{X}_T) \mathbb{1}_{\{\tau \ge T\}} + \frac{1}{\beta} \phi(\tau, \hat{X}_\tau) \mathbb{1}_{\{\tau < T\}} \Big]$$

where au is an independent $\mathsf{Expo}(eta)$

ÉCOLE POLYTECHNIQUE

Second main idea : use Monte Carlo automatic differentiation

By the last proposition,

$$\begin{split} \boldsymbol{u}(t,\boldsymbol{x}) &= \mathbb{E}_{t,\boldsymbol{x},\boldsymbol{\theta}} \Big[e^{\beta(T_1-t)} \Big(\mathbb{1}_{\{N_T=0\}} g\left(\hat{X}_T \right) \\ &+ \mathbb{1}_{\{N_T>0\}} \frac{\Delta \mu_{T_1}}{\beta} \cdot Du(T_1, \hat{X}_{T_1}) \Big) \Big] \\ &= \mathbb{E}_{t,\boldsymbol{x},\boldsymbol{\theta}} \Big[e^{\beta(T_1-t)} \Big(\mathbb{1}_{\{N_T=0\}} g\left(\hat{X}_T \right) \\ &+ \mathbb{1}_{\{N_T=1\}} \frac{\Delta \mu_{T_1}}{\beta} \cdot \frac{\Delta W_{T_2}}{\Delta T_2} g\left(\hat{X}_T \right) \\ &+ \mathbb{1}_{\{N_T>1\}} \frac{\Delta \mu_{T_2}}{\beta^2} \cdot Du(T_2, \hat{X}_{T_2}) \Big) \Big] \end{split}$$

by the assumption. And so on...

・ロト ・回ト ・ヨト ・ヨト

Back to unit diffusion : square integrability lost... in general

Iterating as above, and passing to limits, we would arrive at

$$\mathbb{E}[\xi] \quad \text{where} \quad \xi := \beta^{-N_T} e^{\beta T} g(\hat{X}_T) \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$$

where, in the case of unit diffusion :

$$\hat{\mathcal{W}}_k^1 := \left[\mu(\mathcal{T}_k, \hat{X}_{\mathcal{T}_k}) - \mu(\mathcal{T}_{k-1}, \hat{X}_{\mathcal{T}_{k-1}}) \right] \cdot \frac{\Delta \mathcal{W}_{\mathcal{T}_{k+1}}}{\Delta \mathcal{T}_{k+1}}$$

Notice that $\frac{\Delta W_{T_1}}{\Delta T_1} \sim (\Delta T_1)^{-1/2}$, then : $\mu \text{ Lip in } x, \ \frac{1}{2} - \text{Hölder in } t \implies \hat{\xi} \in \mathbb{L}^2$

イロト 不得下 イヨト イヨト

Gaining more integrability

Oudjane & Warin '15 give up on the $Expo(\beta)$ distribution \implies Age-dependent branching...

$$-\partial_t u - \mu(\theta) \cdot Du - \frac{1}{2}\sigma^2 : D^2 u = \phi \text{ and } u(T,.) = g$$

with $\phi := (\mu - \mu(\theta)) \cdot Du$. By the Feynman-Kac representation :

$$u(0, X_0) = \mathbb{E}\Big[g(\hat{X}_T) + \int_0^T \phi(t, \hat{X}_t) dt\Big]$$

= $\mathbb{E}\Big[\overline{\rho}_T^{-1} g(\hat{X}_T) \mathbb{1}_{\{\tau \ge T\}} + \rho(\tau)^{-1} \phi(\tau, \hat{X}_\tau) \mathbb{1}_{\{\tau < T\}}\Big]$

where au is an independent r.v. with density ho, and $\bar{
ho}_T := \int_T^\infty
ho(t) dt$

Choose ρ so as to guarantee square integrability... Gamma distribution does the job $\rho(t) = \Gamma(\kappa)^{-1} \beta^{\kappa} t^{\kappa-1} e^{-\beta t}, \ \kappa \leq \frac{1}{2}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

Unbiased simulation of SDEs

- The constant diffusion case
- Regime switching and automatic differentiation

Age-dependent branching diffusions and semilinear PDEs Complexity of the Monte Carlo approximation

(4回) (4回) (日)

A class of semilinear PDEs with polynomial nonlinearity

Consider the PDE (unit diffusion for simplicity)

$$\partial_t u + \frac{1}{2}\Delta u + f(t, x, u, Du) = 0, \quad u_T = g$$

with nonlinearity

$$f(t,x,y,z) = \sum_{(\ell_i)_{0 \leq i \leq n} \in L} p_\ell c_\ell(t,x) y^{\ell_0} \prod_{i=1}^n (b_i(t,x) \cdot z)^{\ell_i}$$

- L finite subset of \mathbb{N}^{n+1}
- $p_\ell > 0$ with $\sum_{\ell \in L} p_\ell = 1$
- $b_i(t, x)$ bounded functions

Example : Burgers equation d = 1 and $f(t, x, u, u_x) = u u_x$

Branching diffusion for the Burger equation

Marked branching diffusion representation

- $(au_k)_k$ iid arrival times, $T_k := au_k \wedge T$
- If ${\mathcal T}_1 < {\mathcal T}$: particle dies out, and is replaced with probability p_ℓ by

 ℓ_i particles of type $i, i = 0, \ldots, n$

- For a particle $k \in \overline{\mathcal{K}}_{\mathcal{T}}$, denote by
 - D(k) its type
 - *k*− its parent particle
 ⇒ Particle *k* lives between *T_{k−}* and *T_k*

Using automatic differentiation

• Automatic differentiation :

$$\mathcal{W}_k := \mathrm{I}_{\{D(k)=0\}} + \mathrm{I}_{\{D(k)\neq 0\}} b_{D(k)}(T_{k-}, X_{T_{k-}}^k) \cdot \frac{\Delta W_{T_k}}{\Delta T_k}$$

The limiting random variable is :

$$\begin{split} \psi &:= \prod_{k \in \mathcal{K}_{T}} \bar{F}_{\rho}(\Delta T_{k})^{-1} \big[g(X_{T}^{k}) - \mathbb{I}_{\{D_{k} \neq 0\}} g(X_{T_{k-}}^{k}) \big] \mathcal{W}_{k} \\ &\times \prod_{k' \in \overline{\mathcal{K}}_{T} \setminus \mathcal{K}_{T}} \big[\rho(\Delta T_{k'}) \big]^{-1} b_{I_{k'}}(T_{k'}, X_{T_{k'}}^{k'}) \mathcal{W}_{k'} \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Sufficient condition for square integrability

For independent BM W, $au \sim
ho$, and $T_1 := au \wedge T$, define :

$$\begin{aligned} A_{p} &:= \max_{\ell} \frac{|g|_{\infty}^{p} \vee \|W_{T_{1}}\|^{p} \|b_{\ell} \cdot \frac{W_{T_{1}}}{T_{1}}\|^{p}}{\bar{F}_{\rho}(T)^{p-1}} \\ B_{p} &:= \max_{\ell} \|\Delta \tau\|^{p/2} \Big\|b_{\ell} \cdot \frac{W_{T_{1}}}{T_{1}}\Big\|^{p} \Big[|b_{\ell}|_{\infty} \sup_{t \leq T} \frac{t^{-\frac{p}{2(p-1)}}}{\rho(t)} \Big]^{p-1} \end{aligned}$$

Theorem (Henry-Labordère, Oudjane, Tan, NT, Warin '16)

Assume that g Lipschitz and, for some p > 1,

$$\int_{A_p}^{\infty} \left[B_p \sum |b_\ell|_{\infty} |x|^{|\ell|} \right]^{-1} dx > T$$

Then $v(0, x) = \mathbb{E}_{0,x}[\psi]$, and $\psi \in \mathbb{L}^2$

COLE OLYTECHNIQUE

The complexity of the algorithm

• Average number of particles in one simulation $m(t) := \mathbb{E}[\#\overline{\mathcal{K}}_t]$ satisfies, for $n_0 := \sum_{\ell} |\ell| p_{\ell}$,

$$m(t)=1+n_0\int_0^t m(t-s)\rho(s)ds.$$

When $\rho \sim \Gamma(\kappa, \theta)$, one has

$$m(T) = \gamma(\kappa, T/\theta) \sum_{k=0}^{\infty} \frac{n_0^k}{\Gamma(k\kappa)}.$$

• Number of v.a. simulated for one particle

$$d+1+1$$

• Number of computation for one particle

(日本) (日本) (日本)

Numerical example

• Define

$$u(t,x) = \cos(x_1 + \cdots + x_d) \exp(\alpha(T-t))$$

is solution of semilinear PDE

$$\partial_t u + \frac{1}{2}\Delta u + c \ u(b_1 \cdot Du) + b_0 = 0.$$

• For numerical implementation, we choose

$$\alpha = 0.2, \ \ c = 0.15, \ \ b_1 = (1 + \frac{1}{d}, 1 + \frac{2}{d}, \cdots, 2).$$

・ロト ・回ト ・ヨト ・ヨト

æ

A numerical example of dimension d = 20

Figure: Estimation and standard deviation observed in dimension d = 20 depending on the log of the number of simulation used.

• • = • • = •

Comments on the Monte-Carlo method

- Choice of ρ , $(p_{\ell})_{\ell \in L}$, the expression of nonlinearity ...
- possible to use importance sampling, particles method,...
- open to parallel computing

Monte Carlo approximation of nonlinear PDEs

Fully nonlinear PDEs... (e.g. HJB equations)

If $\mathcal{T}_1 < \mathcal{T}$: particle dies out, and is replaced with probability p_ℓ by

- i_{ℓ} particles of type 0
- j_ℓ particles of type 1 \Longrightarrow first order differentiation weight
- h_{ℓ} particles of type 2 \implies second order differentiation weight

Automatic differentiation for particles k of type D(k) = 2:

$$\frac{\Delta W_T^2 - \Delta T}{(\Delta T)^2} \quad !!$$

・ロ・ ・ 日・ ・ ヨ・

THANK YOU FOR YOUR ATTENTION

・ロト ・四ト ・ヨト