Endogenous Formation of Limit Order Books

Sergey Nadtochiy (based on joint work with R. Gayduk)

Department of Mathematics University of Michigan

Mar 21, 2016

Mathematical Finance Colloquium University of Southern California

Flash Crash

- On May 6, 2010, at 2:42pm all major stock indices (S&P 500, Dow Jones Industrial Average and Nasdaq Composite) suffered a huge and rapid loss (about 10%) in 5 minutes, and recovered by 3:07 pm.
- On **Aug. 24** the Dow Jones index dropped roughly 7% in the first five minutes of trading.

B. Pisani at CNBC: "Many market participants withheld liquidity when they weren't sure what the prices were...".

- I. Aldridge claims that "Flash Crashes have been frequent and their causes predictable in market microstructure analysis".
- Flash crash is an example of an **internal liquidity crisis**: i.e. the one is not justified by any external factors, but is generated by the **interaction** between market participants.

Image: Image:

ELE NOR

Flash Crash

- On May 6, 2010, at 2:42pm all major stock indices (S&P 500, Dow Jones Industrial Average and Nasdaq Composite) suffered a huge and rapid loss (about 10%) in 5 minutes, and recovered by 3:07 pm.
- On **Aug. 24** the Dow Jones index dropped roughly 7% in the first five minutes of trading.

B. Pisani at CNBC: "Many market participants withheld liquidity when they weren't sure what the prices were...".

- I. Aldridge claims that "Flash Crashes have been frequent and their causes predictable in market microstructure analysis".
- Flash crash is an example of an **internal liquidity crisis**: i.e. the one is not justified by any external factors, but is generated by the **interaction** between market participants.

EL OQO

Flash Crash

- On May 6, 2010, at 2:42pm all major stock indices (S&P 500, Dow Jones Industrial Average and Nasdaq Composite) suffered a huge and rapid loss (about 10%) in 5 minutes, and recovered by 3:07 pm.
- On **Aug. 24** the Dow Jones index dropped roughly 7% in the first five minutes of trading.

B. Pisani at CNBC: "Many market participants withheld liquidity when they weren't sure what the prices were...".

- I. Aldridge claims that "Flash Crashes have been frequent and their causes predictable in market microstructure analysis".
- Flash crash is an example of an **internal liquidity crisis**: i.e. the one is not justified by any external factors, but is generated by the **interaction** between market participants.

ELE NOR

Market Microstructure

- Classical models of Financial Mathematics: exogenous prices, trading mechanism hidden.
- Financial Economics: endogenous prices, trading mechanism hidden.
- Market Microstructure: study trading mechanism.
- Typically, two types of mechanisms are considered:
 - central market-maker ("quote-driven") exchanges;
 - and auction-style ("order-driven") ones.
- We focus on the **auction-style exchanges**.
- The main object of our study is the Limit Order Book (LOB).

= nac

Market Microstructure

- Classical models of Financial Mathematics: exogenous prices, trading mechanism hidden.
- Financial Economics: endogenous prices, trading mechanism hidden.
- Market Microstructure: study trading mechanism.
- Typically, two types of mechanisms are considered:
 - central market-maker ("quote-driven") exchanges;
 - and auction-style ("order-driven") ones.
- We focus on the **auction-style exchanges**.
- The main object of our study is the Limit Order Book (LOB).

= nan

Example of LOB

Figure: Limit buy (in red) and sell (in blue) orders.

Types of investigation

- Optimize agents' behavior, given a model for LOB.
 - Key empirical features of the market (such as market resilience and price impact) are modeled exogenously.
 - Then, the problem of **optimal execution** is solved.
 - Literature: Almgren, Chriss, Bouchaud, Obizhaeva, Wang, Schied, Zhang, Gatheral, Alfonsi, Stoikov, Avellaneda, Cont, Talreja, Jaimungal, Cartea, Cvitanic, Shreve, Gueant, Lehalle, Pham, Bayraktar, Ludkovski, Moallemi, Carmona, Lacker, Cheridito, Guo, Pham, Ma.
- Model LOB endogenously as an outcome of an equilibrium.
 - Fundamental price or demand is modeled exogenously, but LOB arises endogenously from the agents' behavior in equilibrium.
 - Literature: Lachapelle-Lasry-Lehalle-Lions, Carmona-Webster, Goettler-Parlour-Rajan, Foucault, Parlour.

ELE SOC

Types of investigation

- Optimize agents' behavior, given a model for LOB.
 - Key empirical features of the market (such as market resilience and price impact) are modeled exogenously.
 - Then, the problem of **optimal execution** is solved.
 - Literature: Almgren, Chriss, Bouchaud, Obizhaeva, Wang, Schied, Zhang, Gatheral, Alfonsi, Stoikov, Avellaneda, Cont, Talreja, Jaimungal, Cartea, Cvitanic, Shreve, Gueant, Lehalle, Pham, Bayraktar, Ludkovski, Moallemi, Carmona, Lacker, Cheridito, Guo, Pham, Ma.
- Model LOB endogenously as an outcome of an equilibrium.
 - Fundamental price or demand is modeled exogenously, but LOB arises endogenously from the agents' behavior in equilibrium.
 - Literature: Lachapelle-Lasry-Lehalle-Lions, Carmona-Webster, Goettler-Parlour-Rajan, Foucault, Parlour.

EL OQO

Our goals

- Develop a rigorous, precise and tractable modeling framework for auction-style exchanges.
 - Input: rules (mechanics) of the exchange + agents' beliefs about future demand for (or fundamental value of) the asset.
 - Output: agents actions in equilibrium.

- Study the internal liquidity effects (due to the agent's interaction). In particular,
 - how do changes in the rules of the exchange affect the liquidity?
 - how do changes in a relevant factor affect the agents beliefs and, in turn, the liquidity?

ELE NOR

"Putting a Speed Limit on the Stock Market"

The New York Times Magazine, by Jacob Goldstein, Oct. 8, 2013.

- "In the old days, the stock market worked because there were people so-called market makers... In the past decade, their jobs have been largely replaced by high-frequency traders who provide this middleman service."
- "A trader using a high-speed connection to jump in front of a deal... isn't really improving the market."
- "In practice, it can be difficult to distinguish between high-frequency traders who are simply adding liquidity and the ones who are profiting from unfair advantages."
- "IEX's computers will be set up with a tiny delay designed to prevent the fastest traders from getting a jump on everyone else."

EL OQO

"Putting a Speed Limit on the Stock Market"

The New York Times Magazine, by Jacob Goldstein, Oct. 8, 2013.

- "In the old days, the stock market worked because there were people so-called market makers... In the past decade, their jobs have been largely replaced by high-frequency traders who provide this middleman service."
- "A trader using a high-speed connection to jump in front of a deal... isn't really improving the market."
- "In practice, it can be difficult to distinguish between high-frequency traders who are simply adding liquidity and the ones who are profiting from unfair advantages."
- "IEX's computers will be set up with a tiny delay designed to prevent the fastest traders from getting a jump on everyone else."

EL OQO

Effects of trading frequency: main results

- If the liquidity does not disappear in equilibrium, then the market efficiency increases with trading frequency.
- The **liquidity does not disappear** in equilibrium **only if** the agents are **market-neutral**.
- In addition, we show **why** exactly the **liquidity disappears** when the agents are not market-neutral and connect it to the **adverse selection** effect.

External demand and beliefs

- Time is discrete: $n = 0, 1, \dots, N$.
- External demand in the time interval (n-1, n] is given by the random function $D_n(p)$, $p \in \mathbb{R}$.
- $D_n(p)$ denotes the **total demand (both external and internal)** for the asset at price *p* and at all more favorable price levels, in the *n*th time period.
 - D⁺_n(p) = max(D_n(p), 0) is the maximum quantity that will be purchased at or below price p (via market orders),
 - $D_n^-(p) = -\min(D_n(p), 0)$ is the maximum quantity that will be **sold** at or above price *p*.
- The **fundamental price** (or, "tipping point" of the demand) p_n^0 is the unique solution to: $D_n(p) = 0$.
- Every agent models future demand (D_n(p)) using the same information F but different probability measures P^α << P, α ∈ A, which we call beliefs.

三日 のへの

State space and controls

- State space S = ℝ × A represents the inventory of an agent and her beliefs.
- As the beliefs do not change, the state process of an agent, (S_n) , represents her inventory.
- The control of an agent is given by adapted processes $(p_n, q_n, r_n)_{n=0}^{N-1}$, with values in $\mathbb{R}^2 \times \{0, 1\}$.
 - p_n is the **location** of a limit order placed at time n,
 - *q_n* is the **size** of the order (with **negative** values corresponding to **buy** orders).
 - r_n indicates whether the agent submits a **market order** (if $r_n = 1$) or a **limit order** (if $r_n = 0$).
- (μ_n)^N_{n=0} is the empirical distribution of the agents: μ_n(ds, dα) denotes the number of agents at states (ds, dα) at time n.

ELE OQO

Effects of trading frequency The setup

LOB, State Dynamics and Revenue

- The Limit Order Book (LOB) is a pair of processes $(\nu_n^-, \nu_n^+)_{n=0}^{N-1}$, with values in the space of finite sigma-additive measures on \mathbb{R} .
- The bid and ask prices at time n are given by

 $p_n^b = \sup \operatorname{supp}(\nu_n^-), \quad p_n^a = \inf \operatorname{supp}(\nu_n^+) \quad p_N^{a,b} = p_{N-1}^{a,b} + \Delta p_N^0,$

• State process S evolves as follows

 $S_{n+1} = \begin{cases} S_n - q_n, & r_n = 1, \\ S_n - q_n, & r_n = 0, q_n > 0, D_{n+1}^+(p_n) > \nu_n^+((-\infty, p_n)), \\ S_n - q_n, & r_n = 0, q_n < 0, D_{n+1}^-(p_n) > \nu_n^-((p_n, \infty)), \\ S_n, & otherwise \end{cases}$

• At every time step, the agent collects revenue: $-\Delta S_{n+1}p_n$, $-\Delta S_{n+1}p_n^a$ or $-\Delta S_{n+1}p_n^b$.

• At time *N*, the inventory is **marked to market**, adding $S_N^+ p_N^b - S_N^- p_N^a$.

LOB, State Dynamics and Revenue

- The Limit Order Book (LOB) is a pair of processes $(\nu_n^-, \nu_n^+)_{n=0}^{N-1}$, with values in the space of finite sigma-additive measures on \mathbb{R} .
- The bid and ask prices at time n are given by

 $p_n^b = \sup \operatorname{supp}(\nu_n^-), \quad p_n^a = \inf \operatorname{supp}(\nu_n^+) \quad p_N^{a,b} = p_{N-1}^{a,b} + \Delta p_N^0,$

• State process S evolves as follows

$$S_{n+1} = \begin{cases} S_n - q_n, & r_n = 1, \\ S_n - q_n, & r_n = 0, q_n > 0, D_{n+1}^+(p_n) > \nu_n^+((-\infty, p_n)), \\ S_n - q_n, & r_n = 0, q_n < 0, D_{n+1}^-(p_n) > \nu_n^-((p_n, \infty)), \\ S_n, & otherwise \end{cases}$$

• At every time step, the agent collects **revenue**: $-\Delta S_{n+1}p_n$, $-\Delta S_{n+1}p_n^a$ or $-\Delta S_{n+1}p_n^b$.

• At time *N*, the inventory is **marked to market**, adding $S_N^+ p_N^b - S_N^- p_N^a$.

LOB, State Dynamics and Revenue

- The Limit Order Book (LOB) is a pair of processes $(\nu_n^-, \nu_n^+)_{n=0}^{N-1}$, with values in the space of finite sigma-additive measures on \mathbb{R} .
- The bid and ask prices at time n are given by

 $p_n^b = \sup \operatorname{supp}(\nu_n^-), \quad p_n^a = \inf \operatorname{supp}(\nu_n^+) \quad p_N^{a,b} = p_{N-1}^{a,b} + \Delta p_N^0,$

• State process S evolves as follows

$$S_{n+1} = \begin{cases} S_n - q_n, & r_n = 1, \\ S_n - q_n, & r_n = 0, q_n > 0, D_{n+1}^+(p_n) > \nu_n^+((-\infty, p_n)), \\ S_n - q_n, & r_n = 0, q_n < 0, D_{n+1}^-(p_n) > \nu_n^-((p_n, \infty)), \\ S_n, & otherwise \end{cases}$$

• At every time step, the agent collects **revenue**: $-\Delta S_{n+1}p_n$, $-\Delta S_{n+1}p_n^a$ or $-\Delta S_{n+1}p_n^b$.

• At time *N*, the inventory is **marked to market**, adding $S_N^+ p_N^b - S_N^- p_N^a$.

Example of LOB

Figure: Limit buy (in red) and sell (in blue) orders.

Objective function and Equilibrium

• An agent aims to maximize the total expected revenue

$$\mathbb{E}^{\alpha}\left[S_{N}^{+}p_{N}^{b}-S_{N}^{-}p_{N}^{a}-\sum_{n=0}^{N-1}\Delta S_{n+1}\left(p_{n}\mathbf{1}_{\{r_{n}=0\}}+p_{n}^{a}\mathbf{1}_{\{r_{n}=1,q_{n}<0\}}+p_{n}^{b}\mathbf{1}_{\{r_{n}=1,q_{n}>0\}}\right)\right]$$

- Fix an empirical distribution (μ_n). The LOB (ν_n⁺, ν_n⁻) and controls (p_n(s, α), q_n(s, α), r_n(s, α)) form an equilibrium, if
 - the controls (p_n(s, α), q_n(s, α), r_n(s, α)) are optimal for an agent in state (s, α);
 - **2** and the collection of all limit orders $(p_n(s, \alpha), q_n(s, \alpha))$, over all (s, α) s.t. $r_n(s, \alpha) = 0$, should **reproduce the LOB** (ν_n^+, ν_n^-) :

$$\nu_n^+((-\infty,x]) = \int_{\mathbb{S}} \mathbf{1}_{\{p_n(s,\alpha) \leq x, r_n(s,\alpha)=0\}} q_n^+(s,\alpha) \mu_n(ds,d\alpha), \quad \forall x \in \mathbb{R},$$

and similarly for ν^- .

Π

Degeneracy

- In equilibrium, it may happen that **no agents post limit orders** on a particular side of the book.
- Instead, they may choose to
 - submit market orders: $r_n = 1$ (**impatience**);
 - or wait: $q_n = 0$ (adverse selection).
- This constitutes a liquidity crisis.
- An equilibrium with LOB ν is **non-degenerate** if $\nu_n^+(\mathbb{R}) > 0$ and $\nu_n^-(\mathbb{R}) > 0$, \mathbb{P} -a.s., for all n.

ELE DOG

Fundamental price in continuous time

- Every agent uses a **continuous time model** for the **demand**, on [0, T].
- An agent with beliefs α models the continuous-time fundamental price as

$$ilde{p}_t^0 = p_0^0 + \int_0^t \mu_s^{oldsymbol lpha} ds + \int_0^t \sigma_s dW_s^{oldsymbol lpha}, \qquad p_0^0 \in \mathbb{R},$$

where W^{α} is a BM, μ^{α} and σ are prog. mbl. stochastic processes, s.t. $|\mu^{\alpha}| \leq C$, $1/C \leq \sigma \leq C$ and

$$\mathbb{P}^{lpha}_t\left(\mathbb{E}^{lpha}\left(\left(\sigma_s-\sigma_{ au}
ight)^2\mid\mathcal{F}_{ au}
ight)\leqarepsilon(\Delta t)
ight)=1,$$

for $t \leq \tau \leq s \leq t + \Delta t$ and some determ. $\varepsilon(\Delta t) \rightarrow 0$.

- Given Δt > 0, the discrete time model is defined by discretizing the continuous time model. In particular, p⁰_n = p⁰_{nΔt}.
- The demand size $D_n \left(p + p_n^0 \right)$ is arbitrary, but "not too flat".
- The empirical distribution process (μ_n) is arbitrary, but dominated by a deterministic measure.

Sergey Nadtochiy (U of M) Endogenous Formation of Limit Order Books Univ of Southern California 15 / 30

ELE NOR

Asymptotic efficiency and market-neutrality

Proposition 1. For a sequence {Δt → 0}, assume that every discrete model admits a non-degenerate equilibrium. Denote the value function of an agent by V_n(s, α). Then, as Δt → 0,

 $\left|p_N^a - p_N^0\right|, \ \left|p_N^b - p_N^0\right|, \ \sup_{n=0,\ldots,N, \ s \in \mathbb{R}, \ \alpha \in \mathbb{A}} \left|V_n(s,\alpha)/s - p_n^0\right| \to 0$

• **Theorem 1**. Under the assumptions of Proposition 1, and with an additional assumption of "uniform continuity in probability" of the process

$$\mathbb{E}^{\alpha}_{\cdot}\int_{t}^{T}\mu_{s}^{\alpha}ds,$$

we must have: \tilde{p}^0 is a **martingale** under all \mathbb{P}^{α} (i.e. if this condition **fails**, any equilibrium is **degenerate**).

JOC ELE

Asymptotic efficiency and market-neutrality

Proposition 1. For a sequence {Δt → 0}, assume that every discrete model admits a non-degenerate equilibrium. Denote the value function of an agent by V_n(s, α). Then, as Δt → 0,

 $\left|p_{N}^{a}-p_{N}^{0}\right|, \left|p_{N}^{b}-p_{N}^{0}\right|, \sup_{n=0,\ldots,N, s\in\mathbb{R}, \alpha\in\mathbb{A}}\left|V_{n}(s,\alpha)/s-p_{n}^{0}\right| \to 0$

• **Theorem 1**. Under the assumptions of Proposition 1, and with an additional assumption of "uniform continuity in probability" of the process

$$\mathbb{E}^{\alpha}_{\cdot} \int_{t}^{T} \mu^{\alpha}_{s} ds,$$

we must have: $\tilde{\rho}^0$ is a **martingale** under all \mathbb{P}^{α} (i.e. if this condition **fails**, any equilibrium is **degenerate**).

Brownian motion with drift

- $\mathbb{A} = \{\alpha\}, \ \alpha \in \mathbb{R}.$
- $\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$, where $\sigma, p_0^0 \in \mathbb{R}$ and W is a Brownian motion.
- As all agents have the same beliefs, the equilibrium can be constructed so that the LOB is a combination of two delta-functions:

$$\nu_n^+ = h_n^a \,\delta_{p_n^a}, \qquad \nu_n^- = h_n^b \,\delta_{p_n^b}$$

- If N = 1, such an equilibrium can be constructed for any α ∈ ℝ, provided T is small enough.
- If $\alpha = 0$, such an **equilibrium can be constructed** for any *N* and any *T*. Moreover, as $\Delta t = T/N \rightarrow 0$,
 - the bid and ask prices, p^b and p^a , converge to the fundamental price p^0 ,
 - along with the expected execution prices V(s)/s.

・ロト ・ 一日 ト ・ 日 ト

ELE OQO

Brownian motion with drift

- $\mathbb{A} = \{\alpha\}, \ \alpha \in \mathbb{R}.$
- $\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$, where $\sigma, p_0^0 \in \mathbb{R}$ and W is a Brownian motion.
- As all agents have the same beliefs, the equilibrium can be constructed so that the LOB is a combination of two delta-functions:

$$\nu_n^+ = h_n^a \,\delta_{p_n^a}, \qquad \nu_n^- = h_n^b \,\delta_{p_n^b}$$

- If N = 1, such an equilibrium can be constructed for any α ∈ ℝ, provided T is small enough.
- If $\alpha = 0$, such an **equilibrium can be constructed** for any *N* and any *T*. Moreover, as $\Delta t = T/N \rightarrow 0$,
 - the bid and ask prices, p^b and p^a , converge to the fundamental price p^0 ,
 - along with the expected execution prices V(s)/s.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Brownian motion with drift

- $\mathbb{A} = \{\alpha\}, \ \alpha \in \mathbb{R}.$
- $\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$, where $\sigma, p_0^0 \in \mathbb{R}$ and W is a Brownian motion.
- As all agents have the same beliefs, the equilibrium can be constructed so that the LOB is a combination of two delta-functions:

$$\nu_n^+ = h_n^a \,\delta_{p_n^a}, \qquad \nu_n^- = h_n^b \,\delta_{p_n^b}$$

- If N = 1, such an equilibrium can be constructed for any α ∈ ℝ, provided T is small enough.
- If $\alpha = 0$, such an equilibrium can be constructed for any N and any T. Moreover, as $\Delta t = T/N \rightarrow 0$,
 - the bid and ask prices, p^b and p^a , converge to the fundamental price p^0 ,
 - along with the expected execution prices V(s)/s.

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

Zero-drift case

Figure: Bid and ask prices (left) and the associated expected execution prices (right), as functions of time horizon. Different curves correspond to different trading frequencies. Zero drift case.

Example

Value function and DPP

$$\mathcal{V}_{n}(s) = \mathrm{esssup}_{p,q,r} \mathbb{E}_{n}^{\alpha} J_{n}^{\nu,p,q,r}(s) \,,$$

- there always exists an optimal control $(\hat{p}, \hat{q}, \hat{r})$, s. t. $\hat{q}_n(s) \in \{0, s\}$;
- $V_n(s) = s^+ \lambda_n^a s^- \lambda_n^b$, with $\lambda_N^{a,b} = p_N^{a,b} \approx p_N^0$;
- for s > 0 (s = 1),

• if $\hat{q}_n(s) = s$ and $\hat{r}_n(s) = 0$, then $\lambda^a = V(s)/s = V(1)$ follows:

$$\lambda_n^{a} = \mathbb{E}_n^{\alpha} \lambda_{n+1}^{a} + \sup_{p \in \mathbb{R}} \mathbb{E}_n^{\alpha} \left[\left(p - \lambda_{n+1}^{a} \right) \mathbf{1}_{\left\{ p_{n+1}^{0} > p \right\}} \right],$$

and $p = \hat{p}_n(s)$ attains the above supremum,

- if $\hat{q}_n(s) = 0$ and $\hat{r}_n(s) = 0$, then $\lambda_n^a = \mathbb{E}_n^{\alpha} \lambda_{n+1}^a$.
- if $\hat{r}_n(s) = 1$, then $\lambda_n^a = p_n^b$.

$\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$.

- If α > 0 and N is large enough, the agents become overly optimistic: at some step n, λ^a_n = V_n(s)/s ≥ p⁰_n for s > 0.
- Then, the expected gain from executing a limit sell order at the ask price becomes negative:

 $\mathbb{E}_{n-1}\left[\left(ps-V_n(s)\right)\mathbf{1}_{\{p_n^0>p\}}\right] \leq \mathbb{E}_{n-1}\left[\left(ps-p_n^0s\right)\mathbf{1}_{\{p_n^0>p\}}\right] < 0, \quad \forall p \in \mathbb{R}.$

- Thus, it is **suboptimal** for the agents to post a **limit sell** order at any level at time *n* 1.
- This is precisely the **adverse selection** effect: if her limit sell order is executed, the agent will immediately **regret** it, because, in any such outcome, she will **expect** a **higher execution price**.
- It causes the agents with positive inventory to wait and stop providing liquidity – so that the LOB degenerates.

 $\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$.

- If α > 0 and N is large enough, the agents become overly optimistic: at some step n, λ^a_n = V_n(s)/s ≥ p⁰_n for s > 0.
- Then, the expected gain from executing a limit sell order at the ask price becomes negative:

 $\mathbb{E}_{n-1}\left[\left(ps-V_n(s)\right)\mathbf{1}_{\{p_n^0>p\}}\right] \leq \mathbb{E}_{n-1}\left[\left(ps-p_n^0s\right)\mathbf{1}_{\{p_n^0>p\}}\right] < 0, \quad \forall p \in \mathbb{R}.$

- Thus, it is suboptimal for the agents to post a limit sell order at any level at time n − 1.
- This is precisely the **adverse selection** effect: if her limit sell order is executed, the agent will immediately **regret** it, because, in any such outcome, she will **expect** a **higher execution price**.
- It causes the agents with positive inventory to wait and stop providing liquidity – so that the LOB degenerates.

 $\tilde{p}_t^0 = p_0^0 + \alpha t + \sigma W_t$, for $t \in [0, T]$.

- If α > 0 and N is large enough, the agents become overly optimistic: at some step n, λ^a_n = V_n(s)/s ≥ p⁰_n for s > 0.
- Then, the expected gain from executing a limit sell order at the ask price becomes negative:

 $\mathbb{E}_{n-1}\left[\left(ps-V_n(s)\right)\mathbf{1}_{\{p_n^0>p\}}\right] \leq \mathbb{E}_{n-1}\left[\left(ps-p_n^0s\right)\mathbf{1}_{\{p_n^0>p\}}\right] < 0, \quad \forall p \in \mathbb{R}.$

- Thus, it is **suboptimal** for the agents to post a **limit sell** order at any level at time n 1.
- This is precisely the adverse selection effect: if her limit sell order is executed, the agent will immediately regret it, because, in any such outcome, she will expect a higher execution price.
- It causes the agents with positive inventory to wait and stop providing liquidity – so that the LOB degenerates.

Figure: Ask prices p_n^a (in red) and the associated $\lambda_n^a = V_n(s)/s$ (in blue), as functions of time *n*. Different curves correspond to different trading frequencies. Positive drift: $\alpha > 0$.

Sergey Nadtochiy (U of M) Endogenous Formation of Limit Order Books

genous Formation of Limit Order Books Univ of Southern California 21 / 30

Technical result

$$X_t = \int_0^t \mu_u du + \int_0^t \sigma_u dB_u, \quad t \ge 0$$

• Assume that $|\mu| \leq {\it C}$, $1/{\it C} \leq \sigma \leq {\it C}$ and

$$\mathbb{E}\left(\left(\sigma_{s}-\sigma_{\tau}\right)^{2}\mid\mathcal{F}_{\tau}
ight)\leqarepsilon(\Delta t),\ \ \textit{a.s.},$$

for $0 \leq \tau \leq s \leq \Delta t$ and some determ. $\varepsilon(\Delta t) \rightarrow 0$.

• Then, $\exists C_1 > 0$ s.t., for all small enough t > 0 and all $x, z \ge 0$, $\mathbb{P}(X_t > x + z | X_t > x) \le C_1 e^{-z/\sqrt{t}}$

EL OQO

Effects of Trading Frequency: summary

- I have presented a **modeling framework** for market microstructure, in which the mechanics of the exchange are reproduced very closely and the LOB arises **endogenously**, as an outcome of the game between market participants.
- Using this framework, we have verified that, even in the absence of any significant fundamental shocks, the agents may choose **not to provide liquidity** in equilibrium.
- We have analyze the **liquidity effects** of changing the **trading frequency**. We find that **trading frequency** has dual effect on liquidity:
 - if the agents are **market-neutral**, higher frequency makes market **more efficient**,
 - but higher frequency increases the risk of degeneracy, if the agents' beliefs deviate from market-neutrality.
- Typically, the adverse selection causes LOB to degenerate.

EL OQO

Introduction

Goals:

- model how the agents form their beliefs (e.g. depending on a relevant market factor);
- develop a **quantitative model**, which can be **calibrated** to market data.
- Most of the changes in LOB occur between Market Orders.
- Hence, we formulate a **continuous time control-stopping game**, which **terminates** at the time when the **first market order** is submitted.

E SQA

Introduction

Goals:

- model how the agents form their beliefs (e.g. depending on a relevant market factor);
- develop a quantitative model, which can be calibrated to market data.
- Most of the changes in LOB occur between Market Orders.
- Hence, we formulate a **continuous time control-stopping game**, which **terminates** at the time when the **first market order** is submitted.

E SQA

Model Setup

- The time changes on [0, T].
- The fundamental price (p_t^0) changes by jumps
 - jump times are determined by a Poisson random measure N,
 - jump sizes are given by a random function adapted to 𝔽, where 𝑋 is an independent BM,
 - the above holds under every \mathbb{P}^{α} , with the same BM W.
- The demand size D_t(p + p⁰_t) is an arbitrary 𝔽^W-adapted random field (strictly decreasing in p and taking value zero at p = 0).
- The empirical distribution does not change: $\mu_n = \mu_0$.
- Agents always submit orders of the size s equal to their inventory.
- The **control** of each agent is given by (p_t, v_t) , where
 - *p_t* is the **location** of a **limit order** at time *t*,
 - v_t is the threshold for executing a market order: e.g. an agent with

ELE NOR

s > 0 submits a market order at $\tau^{v} = \inf\{t \in [0, T] : p_{t}^{b} \ge v_{t}\}.$

Objective and Equilibrium

- The game ends when "a non-zero mass of" market orders is executed.
- If an agent's limit order is executed at time t, before the end of the game, she receives spt.
- If an agent executes a market order at time t, before the end of the game, she receives sp^a_t or sp^b_t.
- If an agent has not executed any order by the end of the game, and
 - the game ends at time t, due to external market order, then her payoff is sp⁰_t,
 - the game ends at time t, due to internal market order, then her payoff is sp^a_t or sp^b_t.
- A combination of measure valued processes (ν_t⁻, ν_t⁺, θ_t⁻, θ_t⁺) and controls (ρ_t(s, α), ν_t(s, α)) is an equilibrium, if
 - $(p_t(s,\alpha),v_t(s,\alpha)) \text{ is optimal, given } (\nu_t^-,\nu_t^+,\theta_t^-,\theta_t^+);$

2 ν_t and θ_t are the **empirical distributions** of $\{p_t(s, \alpha)\}_{s,\alpha}$ and $\{v_t(s, \alpha)\}_{s,\alpha}$ w.r.t. μ .

ELE DOG

Objective and Equilibrium

- The game ends when "a non-zero mass of" market orders is executed.
- If an agent's limit order is executed at time t, before the end of the game, she receives spt.
- If an agent executes a market order at time t, before the end of the game, she receives sp^a_t or sp^b_t.
- If an agent has not executed any order by the end of the game, and
 - the game ends at time *t*, due to **external market order**, then her payoff is *sp*⁰_t,
 - the game ends at time t, due to internal market order, then her payoff is sp^a_t or sp^b_t.
- A combination of measure valued processes (ν_t⁻, ν_t⁺, θ_t⁻, θ_t⁺) and controls (p_t(s, α), ν_t(s, α)) is an equilibrium, if

($p_t(s, \alpha), v_t(s, \alpha)$ **)** is optimal, given $(\nu_t^-, \nu_t^+, \theta_t^-, \theta_t^+)$;

2 ν_t and θ_t are the **empirical distributions** of $\{p_t(s, \alpha)\}_{s,\alpha}$ and $\{v_t(s, \alpha)\}_{s,\alpha}$ w.r.t. μ .

ELE SOC

Two-player game

Under additional assumptions on the set of beliefs $\{\mathbb{P}^{\alpha}\}$, the **bid and ask prices**, as well as the **time of the first internal market order**, can be characterized by the solution to a **two-player controlled Dynkin game**:

$$\begin{split} V_t^a &= \mathrm{esssup}_{t \leq \tau^a \leq T, \, p^a} \mathbb{E}_t^{\alpha_0} \left(\int_0^{\tau^a \wedge \tau^b} \exp\left(-\int_t^s c_u^a(p_u^a, p_u^b) du \right) g_s^a(p_s^a, p_s^b) ds \right. \\ &+ \exp\left(-\int_t^{\tau^a \wedge \tau^b} c_u^a(p_u^a, p_u^b) du \right) \left(p_{\tau^a}^b \mathbf{1}_{\{\tau^a \leq \tau^b\}} + p_{\tau^b}^a \mathbf{1}_{\{\tau^b < \tau^a\}} \right) \right), \\ V_t^b &= \mathrm{essinf}_{t \leq \tau^b \leq T, \, p^b} \mathbb{E}_t^{\beta_0} \left(\int_0^{\tau^a \wedge \tau^b} \exp\left(-\int_t^s c_u^b(p_u^a, p_u^b) du \right) g_s^b(p_s^a, p_s^b) ds \right. \\ &+ \exp\left(-\int_t^{\tau^a \wedge \tau^b} c_u^b(p_u^a, p_u^b) du \right) \left(p_{\tau^b}^a \mathbf{1}_{\{\tau^b \leq \tau^a\}} + p_{\tau^a}^b \mathbf{1}_{\{\tau^a < \tau^b\}} \right) \right). \end{split}$$

I= nan

System of RBSDEs

The value functions and the associated optimal controls p^a , p^b and $\tau = \tau^a = \tau^b$ can be characterized by a system of RBSDEs:

$$\begin{cases} -\mathrm{d}V_t^a = \tilde{G}_t^a(V_t^a, V_t^b)\mathrm{d}t - Z_t^a\mathrm{d}W_t + \mathrm{d}K_t^a, \quad V_T^a = 0, \\ -\mathrm{d}V_t^b = \tilde{G}_t^b(V_t^a, V_t^b)\mathrm{d}t - Z_t^b\mathrm{d}W_t - \mathrm{d}K_t^b, \quad V_T^b = 0, \\ V_t^a \ge V_t^b, \quad \forall t \in [0, T], \\ \int_0^T (V_t^a - V_t^b)\mathrm{d}K_t^a = 0, \quad \int_0^T (V_t^a - V_t^b)\mathrm{d}K_t^b = 0, \end{cases}$$

where K^a , K^b are continuous increasing processes starting at zero, and

$$egin{array}{l} ilde{G}^a_t(V^a,V^b) = - ilde{c}^a_t(V^a,V^b)V^a + ilde{g}^a_t(V^a,V^b),\ ilde{G}^b_t(V^a,V^b) = - ilde{c}^b_t(V^a,V^b)V^b + ilde{g}^b_t(V^a,V^b), \end{array}$$

with Lipschitz bounded functions $\tilde{c}^{a,b}$ and $\tilde{g}^{a,b}$.

Equivalent System

- Denote $K_t = K_t^a + K_t^b$. Then can write $dK_t^a = \alpha_t dK_t$, $dK_t^b = (1 \alpha_t) dK_t$, for some $\alpha_t \in [0, 1]$.
- Assuming α is regular enough, we can change the variables, $Y_t^1 = V_t^a V_t^b$, $Y_t^2 = (1 \alpha_t)V_t^a + \alpha_t V_t^b$ and derive a system of RBSDEs for (Y^1, Y^2) :

$$\begin{split} Y &-dY_t^1 = \hat{G}_t^1(Y_t^1, Y_t^2) dt - Z_t^1 dW_t + dK_t, \quad Y_T^1 = 0, \\ &-dY_t^2 = \hat{G}_t^2(Y_t^1, Y_t^2) dt - Z_t^2 dW_t, \quad Y_T^2 = 0, \\ &Y_t^1 \ge 0, \\ &\int_0^T Y_t^1 dK_t = 0, \end{split}$$

where

$$\begin{split} \hat{G}_t^1(Y^1,Y^2) &= -\hat{c}_t^{1,1}(Y^1,Y^2)Y^1 + \hat{c}_t^{1,2}(Y^1,Y^2)Y^2 + \hat{g}_t^1(Y^1,Y^2), \\ \hat{G}_t^2(Y^1,Y^2) &= \hat{c}_t^{2,1}(Y^1,Y^2)Y^1 - \hat{c}_t^{2,2}(Y^1,Y^2)Y^2 + \hat{g}_t^2(Y^1,Y^2), \end{split}$$

with Lipschitz bounded functions $\hat{c}^{i,j}$ and \hat{g}^{i} , s.t. $\hat{c}^{i,i} > 0$.

JIN NOR

Dynamics between Market Orders: summary

- If the agents' beliefs are limited to the time of the first market order, it is possible to have a **non-degenerate equilibrium** without market-neutrality.
- Under additional assumptions, one can express the key elements of an equilibrium via a **two-dimensional system of RBSDEs**. This is one of the very few examples of tractable solutions to games with infinite number of players (e.g. mean field games).
- If Y is a relevant market factor, we can model the **compensator** of the jump measure of p^0 , and the **demand size** $D_t(p + p_t^0)$, under every \mathbb{P}^{α} , as functions of Y_t .
 - The driver of the system of RBSDEs, $\hat{G}_t(y^1, y^2)$, becomes a function of Y_t .
 - Then, the value functions and the **optimal strategies** of the agents can also be expressed as **functions** of *Y*.
 - Computing these functions, will allow us to see how **changes in** relevant factors affect agents' actions, and hence, the liquidity.

・ = ト + = ト = = のへで

Existence

Theorem 2

- Assume that
 - A is a **singleton**,
 - $\log \sigma$ "does not oscillate too much",
 - the total demand never exceeds the total supply,
 - and p^0 is a martingale.
- Then, for all small enough ∆*t*, the market model admits a **non-degenerate** equilibrium.

E SQA

Zero-drift case

Figure: Time zero bid-ask spread as a function of trading frequency (measured in the number of steps).

Figure: The maximum value of drift α that allows for a non-degenerate equilibrium, as a function of trading frequency (measured in the number of steps).

Sergey Nadtochiy (U of M) Endogenous Formation of Limit Order Books Univ of Southern California 33 / 30

- For the presented problem.
 - The continuum-player game is a limit of finite-player games.
 - A general existence result.
- How do the agents form their beliefs?
- Continuous time models.
- Test a class of such models against the market data.

Lemma

$$X_t = \int_0^t \mu_u du + \int_0^t \sigma_u dB_u, \quad t \ge 0, \quad X_0 = 0$$

• Assume that $|\mu| \leq C$, $1/C \leq \sigma \leq C$, and that there exists a deterministic $\varepsilon(\Delta t) \rightarrow 0$, as $\Delta t \rightarrow 0$, s.t.

$$\mathbb{E}\left(\left(\sigma_{see au}-\sigma_{ au}
ight)^2\mid\mathcal{F}_{ au}
ight)\leqarepsilon(\Delta t)$$

holds a.s. for all $0 \le s \le \Delta t$ and all stopping times $0 \le \tau \le s$.

• Then, $\exists C_1 > 0$ s.t., for all small enough $\Delta t > 0$,

$$\mathbb{P}\left(X_{\Delta t} > x + z \mid X_{\Delta t} > x\right) \le C_1 e^{-z/\sqrt{\Delta t}}, \qquad \forall x, z \ge 0.$$

ELE NOR

Lemma

$$X_t = \int_0^t \mu_u du + \int_0^t \sigma_u dB_u, \qquad t \in [0,1]$$

- Assume $\exists C > 1$, s. t. $|\sigma_{\tau}| \leq C$ and $|\mu_{\tau}| \leq C$ for any stopping time τ .
- Then the following holds.

•
$$\forall c > 0 \ \exists C_1 > 0, \text{ s.t.}$$

$$\mathbb{P}\left(\sup_{t \in [0,1]} X_t > x + z\right) \le C_1 e^{-cz} \mathbb{P}\left(\sup_{t \in [0,1]} X_t > x\right), \quad \forall x, z \ge 0.$$
• $\forall c > 0 \ \exists C_2, \varepsilon > 0, \text{ s.t.}$

$$\mathbb{P}\left(\sup_{t \in [0,1]} X_t > x\right) \le C_2 \mathbb{P}(X_1 > x), \quad \forall x \ge 0,$$
provided $|\sigma_{\tau}| \ge c, \ \mu_{\tau}^2 \le \varepsilon$ and $\mathbb{E}\left((\sigma_{s \lor \tau} - \sigma_{\tau})^2 | \mathcal{F}_{\tau}\right) \le \varepsilon$, for any

EL OQO

36 / 30

 $s \in [0,1]$ and any stopping time au.

Sketch of the proof of Thm 1

- We need to show that, if the agents have a **signal** about future price movements, then, they will choose **not to post limit orders**.
- Consider the agents who are **long** the asset (i.e. they are trying to sell) and post limit orders around the **ask price**.
- There are two reasons why they may choose not to post limit orders:
 - they are bearish then, they submit a market order;
 they are bullish then, they submit nothing and wait.
- If the long agents are **bearish**, eventually

 $\lambda_n^a = \lambda_{n+1}^a + \alpha \Delta t + \mathbb{E}_n^\alpha \left[\left(p_n^a - \lambda_{n+1}^a - \xi \right) \mathbf{1}_{\{\xi > p_n^a\}} \right] \le 0,$

while

$$p_n^b \approx \lambda_n^b \approx 0$$

Hence,

$$\lambda_n^a < p_n^b$$

and the agents submit a market order.

・ロト ・ 一日 ト ・ 日 ト

ELE DOG

Sketch of the proof of Thm 1

- We need to show that, if the agents have a **signal** about future price movements, then, they will choose **not to post limit orders**.
- Consider the agents who are **long** the asset (i.e. they are trying to sell) and post limit orders around the **ask price**.
- There are two reasons why they may choose not to post limit orders:

they are bearish – then, they submit a market order;
 they are bullish – then, they submit nothing and wait.

• If the long agents are **bearish**, eventually

$$\lambda_n^a = \lambda_{n+1}^a + \alpha \Delta t + \mathbb{E}_n^\alpha \left[\left(p_n^a - \lambda_{n+1}^a - \xi \right) \mathbf{1}_{\{\xi > p_n^a\}} \right] \le 0,$$

while

$$p_n^b \approx \lambda_n^b \approx 0$$

Hence,

$$\lambda_n^a < p_n^b$$

and the agents submit a market order.

Sketch of the proof: adverse selection

• If the long agents are **bullish**,

 $\lambda_n^{a} = \lambda_{n+1}^{a} + \alpha \Delta t + \mathbb{E}_n^{\alpha} \left[\left(p_n^{a} - \lambda_{n+1}^{a} - \xi \right) \mathbf{1}_{\{\xi > p_n^{a}\}} \right] \ge \mathbf{0},$

and, in turn, for any $p \in \mathbb{R}$,

$$\mathbb{E}_{n-1}^{\alpha}\left[(p-\lambda_n^a-\xi)\mathbf{1}_{\{\xi>p\}}\right]<0,$$

Hence, wherever the agents post their limit orders, they will **regret** doing it once the **orders are executed**, as, in that case, they would have been able to get more for their shares.

• This is precisely the adverse selection effect.

State process: implicit assumptions

$$S_m^{m,s,(p,q,r)} = s, \quad \Delta S_{n+1}^{m,s,(p,q,r)} = -q_n \mathbf{1}_{\{r_n=1\}}$$

 $-\mathbf{1}_{\{r_n=0\}}\left(q_n^+\mathbf{1}_{\left\{D_{n+1}^+(\rho_n)>\nu_n^+((-\infty,\rho_n))\right\}}-q_n^-\mathbf{1}_{\left\{D_{n+1}^-(\rho_n)>\nu_n^-((\rho_n,\infty))\right\}}\right)$

• In the above expression, we implicitly assume that each agent

- is small so that her order is fully executed once the demand reaches it;
- believes that her order will be **executed first among all orders with the same priority**.
- The latter assumption implies a possible **inconsistency** with the **market clearance condition**: i.e. the total executed demand may not coincide with the total change in the cumulative inventory.
- The above issue is resolved if $\nu_n(\cdot)$ is **continuous** and $r \equiv 0$.

ELE SQA

Equilibrium: comments

- The equilibrium we chose is **sub-game perfect**.
- It uses the typical assumption of a game with **continuum players**: each player is too small to affect the LOB.
- It is very similar to a Mean Field Game with purely common noise.
- However, it only defines a **partial equilibrium**, as μ is given **exogenously**.
- To make it a true equilibrium, we need to require, in addition, that

$$\mu_n = \mu_0 \circ \left((s, \alpha) \mapsto \left(S_n^{0, s, (p, q, r)}, \alpha \right) \right)^{-1}$$

We call this an equilibrium with **endogenous** μ .

• However, such additional restriction only makes sense if the model is consistent with the **market clearance** condition.

ELE NOR

Equilibrium: comments

- The equilibrium we chose is sub-game perfect.
- It uses the typical assumption of a game with **continuum players**: each player is too small to affect the LOB.
- It is very similar to a Mean Field Game with purely common noise.
- However, it only defines a **partial equilibrium**, as μ is given **exogenously**.
- To make it a true equilibrium, we need to require, in addition, that

$$\mu_n = \mu_0 \circ \left((s, \alpha) \mapsto \left(S_n^{0, s, (p, q, r)}, \alpha \right) \right)^{-1}$$

We call this an equilibrium with **endogenous** μ .

• However, such additional restriction only makes sense if the model is consistent with the **market clearance** condition.

Value function and DPP

$$V_{n}^{\nu}(s,\alpha) = \mathrm{esssup}_{p,q,r} J_{n}^{\nu,(p,q,r)}(s,\alpha),$$

• $V_n^{\nu}(s,\alpha) = s^+ \lambda_n^a(\alpha) - s^- \lambda_n^b(\alpha)$, with $\lambda_N^a(\alpha) = p_N^b$ and $\lambda_N^b(\alpha) = p_N^a$;

- there always exists an optimal control $(\hat{p}, \hat{q}, \hat{r})$, s. t. $\hat{q}_n(s, \alpha) \in \{0, s\}$;
- for *s* > 0,
 - if $\hat{q}_n(s,\alpha) = s$ and $\hat{r}_n(s,\alpha) = 0$, then the **expected execution price** λ^a follows:

$$\lambda_n^{\boldsymbol{a}}(\alpha) = \mathbb{E}_n^{\alpha} \lambda_{n+1}^{\boldsymbol{a}}(\alpha) + \sup_{\boldsymbol{p} \in \mathbb{R}} \mathbb{E}_n^{\alpha} \left[\left(\boldsymbol{p} - \lambda_{n+1}^{\boldsymbol{a}}(\alpha) \right) \mathbf{1}_{\left\{ D_{n+1}^+(\boldsymbol{p}) > \nu_n^+((-\infty,\boldsymbol{p})) \right\}} \right]$$

and $p = \hat{p}_n(s, \alpha)$ attains the above supremum,

- if $\hat{q}_n(s,\alpha) = 0$ and $\hat{r}_n(s,\alpha) = 0$, then $\lambda_n^a(\alpha) = \mathbb{E}_n^{\alpha} \lambda_{n+1}^a(\alpha)$,
- if $\hat{r}_n(s,\alpha) = 1$, then $\lambda_n^a(\alpha) = p_n^b$.

Terminal condition and LTC equilibrium

• To start the backward iteration, suggested by DPP, we need to resolve the last-time-step problem:

$$p_{N-1}(1,\alpha) \in \arg \sup_{\rho \in \mathbb{R}} \mathbb{E}_{N-1}^{\alpha} \left[\left(\rho - \rho_{N}^{b} \right) \mathbf{1}_{\left\{ D_{N}^{+}(\rho) > \nu_{N-1}^{+}((-\infty,\rho)) \right\}} \right],$$

$$p_{N-1}(-1,\alpha) \in \arg \sup_{\rho \in \mathbb{R}} \mathbb{E}_{N-1}^{\alpha} \left[\left(\rho_{N}^{a} - \rho \right) \mathbf{1}_{\left\{ D_{N}^{-}(\rho) > \nu_{N-1}^{-}((-\infty,\rho)) \right\}} \right],$$

• The equilibrium condition

$$\nu_{N-1}^+((-\infty,x]) = \int_{(0,\infty)\times\mathbb{A}} \mathbf{1}_{\{p_{N-1}(1,\alpha)\leq x\}} s\mu_{N-1}(ds,d\alpha), \quad \forall x\in\mathbb{R},$$

links ν_{N-1} and p_{N-1} , resulting in a **fixed-point problem** for ν_{N-1} .

- However, there is no fixed-point problem for ν_N : we can choose ν_N and, in turn, (p_N^a, p_N^b) arbitrarily, as the agents do not optimize their actions at time N.
- An equilibrium with LOB ν is **linear at terminal crossing (LTC)** if $\nu_N = \nu_{N-1} \circ (x \mapsto x + \Delta p_N^0)^{-1}, \quad \mathbb{P}\text{-a.s.}$

ELE NOR

Terminal condition and LTC equilibrium

• To start the backward iteration, suggested by DPP, we need to resolve the last-time-step problem:

$$\begin{bmatrix} p_{N-1}(1,\alpha) \in \arg \sup_{\rho \in \mathbb{R}} \mathbb{E}_{N-1}^{\alpha} \left[\left(\rho - \rho_{N}^{b} \right) \mathbf{1}_{\left\{ D_{N}^{+}(\rho) > \nu_{N-1}^{+}((-\infty,\rho)) \right\}} \end{bmatrix}, \\ p_{N-1}(-1,\alpha) \in \arg \sup_{\rho \in \mathbb{R}} \mathbb{E}_{N-1}^{\alpha} \left[\left(\rho_{N}^{a} - \rho \right) \mathbf{1}_{\left\{ D_{N}^{-}(\rho) > \nu_{N-1}^{-}((-\infty,\rho)) \right\}} \end{bmatrix},$$

• The equilibrium condition

$$\nu_{\mathsf{N}-1}^+((-\infty,x]) = \int_{(0,\infty)\times\mathbb{A}} \mathbf{1}_{\{p_{\mathsf{N}-1}(1,\alpha)\leq x\}} \, s\mu_{\mathsf{N}-1}(ds,d\alpha), \quad \forall x\in\mathbb{R},$$

links ν_{N-1} and p_{N-1} , resulting in a **fixed-point problem** for ν_{N-1} .

- However, there is no fixed-point problem for ν_N : we can choose ν_N and, in turn, (p_N^a, p_N^b) arbitrarily, as the agents do not optimize their actions at time N.
- An equilibrium with LOB ν is linear at terminal crossing (LTC) if

$$\nu_N = \nu_{N-1} \circ (x \mapsto x + \Delta p_N^0)^{-1}, \quad \mathbb{P}$$
-a.s.

Degeneracy

$$\lambda_n^a(\alpha) = \mathbb{E}_n^{\alpha} \lambda_{n+1}^a(\alpha) + \sup_{p \in \mathbb{R}} \mathbb{E}_n^{\alpha} \left[\left(p - \lambda_{n+1}^a(\alpha) \right) \mathbf{1}_{\left\{ D_{n+1}^+(p) > \nu_n^+((-\infty,p)) \right\}} \right],$$

If

$$\sup_{\rho\in\mathbb{R}}\mathbb{E}_n^{\alpha}\left[\rho-\lambda_{n+1}^{a}(\alpha)\mid D_{n+1}^+(\rho)>\nu_n^+((-\infty,\rho))\right]<0,$$

then, the agents at (s, α) choose to **wait**, in which case $q_n(s, \alpha) = 0$ and $\lambda_n^a(\alpha) = \mathbb{E}_n^{\alpha} \lambda_{n+1}^a(\alpha)$

- This may indeed occur in an equilibrium, and it can be attributed to the adverse selection effect.
- An equilibrium with LOB ν is **non-degenerate** if $\nu_n^+(\mathbb{R}) > 0$ and $\nu_n^-(\mathbb{R}) > 0$, for all n, \mathbb{P} -a.s..

ELE SOC

Assumptions

• There exists deterministic $arepsilon(\Delta t)
ightarrow$ 0, as $\Delta t
ightarrow$ 0, s.t., $\mathbb P$ -a.s.,

$$\mathbb{P}^{lpha}_t\left(\mathbb{E}^{lpha}\left(\left(\sigma_{see au}-\sigma_{ au}
ight)^2\mid\mathcal{F}_{ au}
ight)\leqarepsilon(\Delta t)
ight)=1,\quad \mathbb{P}- extbf{a.s.},$$

holds for all $t \leq s \leq t + \Delta t$, all stopping times $t \leq \tau \leq s$, and all $\alpha \in \mathbb{A}$.

• For any *n*, there exists a strictly decreasing random function $\kappa_{n-1}(\cdot)$, such that $\kappa_{n-1}(0) = 0$ and

 $\left|D_n\left(p+p_n^0
ight)
ight|\geq |\kappa_{n-1}(p)|\,,\quad orall p\in\mathbb{R},\quad \mathbb{P}-a.s.$

• For any *n*, there exists a deterministic measure μ_n^0 , s.t. $\mu_n \ll \mu_n^0$, P-a.s..

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Market neutrality as a necessary condition

Additional assumption. For any α ∈ A and any t ∈ [0, T), there exists a deterministic ε(·) ≥ 0, s.t. ε(Δt) → 0, as Δt → 0, and, for any t ≤ t' ≤ t" ≤ t + Δt,

$$\mathbb{P}_{t'}^{\alpha}\left(\left|\mathbb{E}_{t''}^{\alpha}\int_{t}^{T}\mu_{s}^{\alpha}ds-\mathbb{E}_{t'}^{\alpha}\int_{t}^{T}\mu_{s}^{\alpha}ds\right|\geq\varepsilon(\Delta t)\right)\leq\varepsilon(\Delta t),\quad\mathbb{P}^{\alpha}-a.s.$$

• Theorem 1

- Consider a family of {Δt > 0}, containing arbitrarily small Δt, and the associated market models satisfying the above assumptions.
- Assume that every model admits a non-degenerate LTC equilibrium.
- Then, for all $\alpha \in \mathbb{A}$, $\tilde{\rho}^0$ is a martingale under \mathbb{P}^{α} .
- Moreover, for all $\alpha \in \mathbb{A}$, $p_n^b < p_n^0 < p_n^a$, \mathbb{P}^{α} -a.s..

A ∃ ► A ∃ ► ∃ E

Existence: endogenous μ

- A is a singleton, σ_t is deterministic and non-increasing in t ∈ [0, T], and p⁰ is a martingale.
- For any *n*, there exists a strictly decreasing continuous (deterministic) function $\kappa_n(\cdot)$, with $\kappa_n(0) = 0$, s.t. $D_n(p_n^0 + p) = \kappa_n(p)$.
- Theorem 3
 - Consider a market model and an initial empirical distribution μ_0 .
 - Let the above assumptions hold, and assume that, in addition,

$$\mu_0^{1,c} > \sum_{n=1}^{N-1} \sup_{p \in \mathbb{R}} D_n^+(p), \qquad \mu_0^{2,c} > \sum_{n=1}^{N-1} \sup_{p \in \mathbb{R}} D_n^-(p)$$

Then, there exists an empirical distribution process μ, with the prescribed μ₀, s.t. the associated market model and μ admit a non-degenerate LTC equilibrium, in which the agents do not post market orders, the LOB is continuous (i.e. has no mass points in R), and

$$\mu_n = \mu_0 \circ \left((s, \alpha) \mapsto \left(S_n^{0, s, (p, q, r)}, \alpha \right) \right)^{-1}$$