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Large Investor’s Price Impact

Large in the sense that their orders substantially change MMs’ inventory and
hence their quoted prices.
→ causing price impact.

MMs are risk averse.

Given MMs price-quoting, each investor places his flow of orders, aiming to
increase his individual expected utility.

Goal No. 1
Find the continuous-time optimal investment strategy under price-impact.

A key step: Optimal investment problem upon market impact can be written
as a constrained optimal investment problem in a fictitious market without
market impact.

→ Impose conditions that make the constraint set non-binding.

→ Exploit this representation to solve the problem (when possible).
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Large Investor’s Price Impact

Goal No. 2
What about derivative pricing and demand under price impact?

→ Hedging costs are not linear anymore.

→ Standard arbitrage-free arguments should be revisited.

→ Even if there is a derivative price that creates arbitrage, the induced gains are
limited, due to price impact.

→ Since, investors are utility maximizers, they may optimally ignore an
arbitrage!

Goal No. 3
Could these arbitrage prices arise endogenously?

→ Indeed, through a partial equilibrium argument in segmented markets of the
underlying assets.
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Assets & Market Makers

We begin with (Ω,F , {Ft}0≤t≤T ,P), where {Ft}0≤t≤T is the natural
filtration of a d-dimensional Brownian Motion and T > 0 the terminal time.

A random vector Ψ ∈ L0(FT ,Rd) denotes the payoff of the tradeable assets.

There are M risk averse market makers (MMs) that quote prices for Ψ at any
time t ∈ [0,T ].

The utility function of kth MM for terminal wealth is denoted by Uk and his
endowment by Σk

0 ∈ L0(FT ,R), k = 1, 2, ...,M and

Standing assumptions on utilities: strict concavity, increasing, smooth on
whole R with bounded absolute risk aversion.
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Market Makers’ Pricing Rule

Let {Qt}t∈[0,T ] denote the aggregate order flow to MMs.

Let Xt(Qt)t∈[0,T ] be the cash balance (price) asked by all the MMs at time t.

The way Xt(Qt) is determined is the following:

MMs’ Pricing Rule
1 At any time t ∈ [0,T ], the MMs’ total endowment after the transaction:

M∑
k=1

Σk
0 + Xt(Qt)− Q ′tΨ

is redistributed among MMs in a Pareto optimal way and

2 each MM remains at indifference, i.e, there is no increase on the expected
utility by entering into the trading of Ψ.

X When all MMs have exponential utility: → Xt(Qt) is the indifference pricing
of the representative MM with exponential utility and endowment
Σ0 :=

∑M
k=1 Σk

0 and some risk aversion γ.
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Some notation

Standing Assumption

For all q ∈ R, E[e−γΣ0+q|Ψ|] <∞.

Under the above assumption,

Nt(q) := E
[
e−γΣ0−γq′Ψ

∣∣Ft

]
, t ≤ T ,

is a strictly positive martingale, and by martingale representation we may write

Nt(q)

N0(q)
= E

(∫ ·
0

Hs(q)′dBs

)
t

, t ≤ T ,

for some adapted process H(q) such that
∫ T

0
|Ht(q)|2dt <∞.

Then, define the class of processes

Q ∈ API :=

{
Q adapted s.t.

∫ T

0

|Ht(Qt)|2dt <∞

}
,
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A useful representation

Consider a large investor who submits order flow {Qt}t∈[0,T ] to the MM(s).

Let {Vt(Qt)}t∈[0,T ] be his gains process, i.e. Vt(Qt) represents the cash
amount that he gets if he sells at time t his cumulative orders. For instance,

VT (QT ) = −XT (QT ) + Q ′TΨ.

Based on the results of Bank & Kramkov [’15], we get the following:

Proposition

For Q ∈ API , and for all t ∈ [0,T ], the gains process takes the form

Vt(Qt) =
1

γ

∫ t

0

(Hs(Qs)− Hs(0))′(dBs − Hs(0)ds)− 1

2γ

∫ t

0

|Hs(Qs)− Hs(0)|2 ds

Investor’s investment problem, under endowment Σ1

u(x ; Σ1) := sup
Q∈API

E[U (x + VT (Q) + Σ1)].
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A fictitious related market
Define

dSt
St

= λtdt + dBt , t ∈ [0,T ],

for an adapted d-dimensional process λ, such that
∫ T

0
|λt |2dt <∞.

By construction, there is a unique measure Q0 on FT under which S is a
martingale. Q0 has density

dQ0

dP

∣∣∣∣
FT

= E

(
−
∫ T

0

λ′tdBt

)
.

Self-financing trading strategies are denoted by π (proportions of wealth) and the
induced wealth process’ dynamics

dXt(π)

Xt(π)
= π′t (λtdt + dBt) , t ∈ [0,T ].

With initial wealth X0 = eγx the terminal wealth is

XT (π) = exp

(
γx +

∫ T

0

π′t(dBt + λtdt)− 1

2

∫ T

0

|πt |2dt

)
.
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Some simple observations
Recall that large investor’s gain process is

Vt(Qt) =
1

γ

∫ t

0

(Hs(Qs)− Hs(0))′(dBs − Hs(0)ds)− 1

2γ

∫ t

0

|Hs(Qs)− Hs(0)|2 ds

A key observation

Set λt = −Ht(0), assume that πt = Ht(Qt)− Ht(0) and compare XT (π) with
VT (Q). We get that

XT (π) = eγx+γVT (Q) =⇒ x + VT (Q) =
1

γ
log(XT (π)).

For Q ∈ API we can construct π. For the reverse we need πt to belong in the
random constraint set Ko

t , where
Kt :=

{
Ht(q) : q ∈ Rd

}
, Ko

t :=
{
Ht(q)− Ht(0) | q ∈ Rd

}
.

Therefore, we define the acceptable strategies

A :=

{
π adapted :

∫ T

0

|πt |2dt <∞

}
, AC :=

{
π ∈ A : πt ∈ K0

t , t ≤ T
}
.
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A representation of optimal investment problem

Define the utility field Ũ(w , ω) : (0,∞)× Ω by

Ũ(w , ω) := U

(
1

γ
log(w) + Σ1(ω)

)
,

and the value functions

ũC (x ; Σ1) := sup
π∈AC

E[Ũ (XT (π),Σ1) |X0 = eγx ],

and
ũ(x ; Σ1) := sup

π∈A
E[Ũ (XT (π),Σ1) |X0 = eγx ].

Theorem
With the above notation

u(x ; Σ1) = ũC (x ; Σ1) ≤ ũ(x ; Σ1).
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An indicative example

Let U(x) = −e−αx and define

d P̃
dP

∣∣∣∣∣
FT

=
e−αΣ1

E[e−αΣ1 ]
.

Proposition

u(0; Σ1) = ũC (0; Σ1) =
α

γ
E[e−αΣ1 ]

(
sup
π∈AC

Ẽ
[

1

p
(XT (π))p |X0 = 1

])
ũ(0; Σ1) =

α

γ
E[e−αΣ1 ]

(
sup
π∈A

Ẽ
[

1

p
(XT (π))p |X0 = 1

])
where p := −α/γ.
X From exponential and price impact to power with no price impact (but with
constrains).
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On constrained problem

In the related literature on utility maximization under random constrains the
standard assumption is that constrained set is convex and closed.

However, here Ko
t is typically neither convex nor closed!

Bachelier model
Let

Σ0 =

∫ T

0

f ′t dBt and Ψ =

∫ T

0

ψ′tdBt ,

where f ∈ L2([0,T ];Rd) and ψ ∈ L2([0,T ];Rd×d). Then,

Nt(q) = e
1
2γ

2
∫ t

0
|fs+ψsq|2dsE

(
−γ
∫ t

0

(fs + ψsq)′dBs

)
t ∈ [0,T ].

Thus,
Ht(q) = −γ(ft + ψtq) and Ht(q)− Ht(0) = −γψtq.

Hence, if ψt is invertible, Kt = Ko
t = Rd with πt = Ht(Qt)− Ht(0) implying

Qt = −(γψt)
−1πt .
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However, here Ko
t is typically neither convex nor closed!

Bachelier model
Let

Σ0 =

∫ T

0

f ′t dBt and Ψ =

∫ T

0

ψ′tdBt ,

where f ∈ L2([0,T ];Rd) and ψ ∈ L2([0,T ];Rd×d). Then,

Nt(q) = e
1
2γ

2
∫ t

0
|fs+ψsq|2dsE

(
−γ
∫ t

0

(fs + ψsq)′dBs

)
t ∈ [0,T ].

Thus,
Ht(q) = −γ(ft + ψtq) and Ht(q)− Ht(0) = −γψtq.

Hence, if ψt is invertible, Kt = Ko
t = Rd with πt = Ht(Qt)− Ht(0) implying

Qt = −(γψt)
−1πt .
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Solving the optimal investment problem
Impose the standing assumption and that large investor has exponential utility.
Then,

e−
αγ
α+γ (Σ1+Σ0)

E
[
e−

αγ
α+γ (Σ1+Σ0)

] = E

(∫ T

0

M ′tdBt

)
,

for some adapted process M with
∫ T

0
|Mt |2dt <∞.

A key assumption

Mt ∈ Kt , ∀t ∈ [0,T ].

Proposition

Under the standing and key assumptions, the constrain set is non-binding and
in fact,

u(0; Σ1) = ũC (0; Σ1) = ũ(0; Σ1)

= −E
[
e−γΣ0

]−α
γ × E

[
e−

αγ
α+γ (Σ0+Σ1)

]α+γ
γ

.

Also, π̂t = Mt − Ht(0), for all t ≤ T .
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Example I

Endowments as portfolios of Ψ

Let Σ0 = k ′0Ψ and Σ1 = k ′1Ψ for some k0, k1 ∈ Rd . Recall that

Nt(q) := E
[
e−γΣ0−γq′Ψ

∣∣Ft

]
, and

Nt(q)

N0(q)
= E

(∫ ·
0

Hs(q)′dBs

)
t

We immediately get that

Mt = Ht

(
αk1 − γk0

α + γ

)
, i.e., Mt ∈ Kt , ∀t ∈ [0,T ]

and since π̂t = Mt − Ht(0), we also get that

Q̂t ≡ q̂ =
αk1 − γk0

α + γ
, ∀t ∈ [0,T ].

X We have a similar situation when Σ0 = k ′0Ψ + Y0 and Σ1 = k ′1Ψ + +Y1,
where (Y0,Y1) and Ψ are independent.

M. Anthropelos (Un. of Piraeus) Price Impact: Strategies, Demand & Arbitrage LA, November 2019 18 / 27



Example I

Endowments as portfolios of Ψ

Let Σ0 = k ′0Ψ and Σ1 = k ′1Ψ for some k0, k1 ∈ Rd . Recall that

Nt(q) := E
[
e−γΣ0−γq′Ψ

∣∣Ft

]
, and

Nt(q)

N0(q)
= E

(∫ ·
0

Hs(q)′dBs

)
t

We immediately get that

Mt = Ht

(
αk1 − γk0

α + γ

)
, i.e., Mt ∈ Kt , ∀t ∈ [0,T ]

and since π̂t = Mt − Ht(0), we also get that

Q̂t ≡ q̂ =
αk1 − γk0

α + γ
, ∀t ∈ [0,T ].

X We have a similar situation when Σ0 = k ′0Ψ + Y0 and Σ1 = k ′1Ψ + +Y1,
where (Y0,Y1) and Ψ are independent.

M. Anthropelos (Un. of Piraeus) Price Impact: Strategies, Demand & Arbitrage LA, November 2019 18 / 27



Example II

Bachelier Model

Recall that Σ0 =
∫ T

0
f ′t dBt and Ψ =

∫ T

0
ψ′tdBt .

We have seen that Ko
t = Rd , so the crucial assumption holds.

Assume also that Σ1 =
∫ T

0
g ′tdBt .

What is the optimal demand?

We have seen that Ht(q)− Ht(0) = −γψtq, and we readily have that
∀t ∈ [0,T ]

Mt = − αγ

α + γ
(ft + gt) and π̂t = Mt − Ht(0) =

γ

α + γ
(γft − αgt) .

Thus, the equality −γψtQ̂t = Ht(Q̂t)− Ht(0) = π̂t gives

Q̂t =
1

α + γ
ψ−1
t (αgt − γft) .
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Introducing a derivative contract

Consider a single contingent claim with FT measurable payoff h.

MMs do not make the market of h.

However, investor could hedge his positions on h by trading the underlying
market Ψ through MMs.

Note that if Ko
t = Rd , ∀t ∈ [0,T ], large investor can fully hedge.

Indeed, for every u 6= 0 units of h, there is an order flow Q ∈ API and a (per
unit) initial capital h(u) such that

uh(u) + VT (Q) = uh.

In fact, h(u) is the MM’s indifference value of selling u units of h, given by

h(u) :=
1

γu
log
(
E0
[
eγuh

])
.

Note that the value h(u) is increasing for u > 0, but not linear.
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Derivative pricing, price impact and arbitrage

Arbitrage-free price for all positions

A price p ∈ R is an arbitrage-free price for all position in h, when:
For all Q ∈ API and u ∈ R, if up + VT (Q)− uh ≥ 0 a.s., then up + VT (Q) = uh
a.s.

Arbitrage-free price for position u

A price p ∈ R is an arbitrage-free price for a position u > 0 in h, when:
For all Q ∈ API , if up + VT (Q)− uh ≥ 0 a.s., then up + VT (Q) = uh a.s.

Proposition

The range of arbitrage-free prices for h is the singleton E0[h].

For any fixed u > 0, the range of arbitrage-free prices for h at position u is
the closed interval [−h̄(u); h̄(u)].

If p is an arbitrage-free price for position u > 0, then p is an arbitrage-free
price at all positions u′ ≥ u.
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Limited arbitrage

If the large investor gets a price for h different than E0[h], an arbitrage
opportunity arises thanks to his price impact.

However, because of not linearity, the arbitrage cannot be exploited for
arbitrarily large units of h.

In other words, the gains from the arbitrage are limited up to a certain
position u∗.

Note however that large investors is a utility maximizer with hedging needs.
Hence, exploiting the limited arbitrage may be less preferable than reducing
the risk exposure.

Investor may ignore certain cash in favor of a higher expected utility.

X But who is going to ask/bid an arbitrage price?
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Partial equilibrium in segmented markets

Suppose that there are two large investors, labeled A and B.

They trade with different MMs in segmented markets (possibly with
different securities too).

The large investors trade to each other the derivative h at a partial
equilibrium price & quantity (PEPQ), as introduced by A. and Žitković [’10].

A PEPQ of h is a pair (p∗, u∗) ∈ R2 if

u∗ ∈ argmax
u∈R

{uA(xA − p∗u,ΣA + uh)}
⋂

argmax
u∈R

{uB(xB + p∗u,ΣB − uh)}.

Proposition

Let both large investors have exponential utility and assume that γAΣA
0 − γBΣB

0

and h are not constants. Then,

i. There is a unique PEPQ.

ii. If the key assumption holds for both markets, PEPQ creates arbitrage
opportunity for at least one of the investors.

X However, the arbitrage cannot be arbitrarily large, or even exploited.
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Highlights...

The optimal investment problem under price impact can be written as an
optimal investment constrained problem without market impact.

There is a specific condition that guarantees that constrain set is non-binding
and the problem can be solved.

Derivative pricing upon price impact on the underlying market differs from
the standard arbitrage-free pricing.

Arbitrage is limited −→ Investors may optimally ignore it!

In segmented markets, arbitrage-price may arise as the equilibrium price!
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The End

Thank you for your attention!
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