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Introduction

Systemic risk: risk that in case of an adverse (local) shock
substantial parts of the system default due to contagion effects.

Aim: measurement and management of default contagion in
financial systems in terms of statistical network characteristics.

Tool: asymptotic analysis of default contagion in weighted,
directed, inhomogeneous random graphs.

I In the spirit of [Amini, Cont, Minca, 13], [Gai, Kapadia, 10],
[Hurd, 16], [Detering, M.-B., Panagiotou, Ritter, 15,16]
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Random financial network

Stylized features of financial networks:

I strong heterogeneity ( core/periphery structure)

I the graph is directed

I there are weights on the edges

I the graph is sparse: number of edges linear in network size

I The networks are large

Default Contagion in Random Financial Block Models



Random financial network

Strong heterogeneity:

I in degrees (connectivity)

I degree distribution might not have second moments ([Boss et
al., 2004], [Cont et al., 2013], [Craig and van Peter, 2014])

I in financial exposures

I in capital endowments

I assortative structure ([Hurd, 16])

I in connectivity

I in financial exposures
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Random financial network

I [Amini, Cont, Minca, 13], [Gai, Kapadia, 10], [Hurd, 16]:
configuration model

I degree distribution needs to have 2nd moment (no
core/periphery)

I exposures depend only on creditor

I no flexible assortativity

I [Detering, M.-B., Panagiotou, Ritter, 15,16]: inhomogeneous
random graph

I degree distribution without 2nd moment possible

I exposures depend only on creditor

I no flexible assortativity
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Random financial network

Figure: Inhomogeneous random graph with Pareto-distributed degrees
with shape parameter (a) 3.5 (bounded second moment) respectively
(b) 2.5 (unbounded second moment).
Node sizes scale with the corresponding degree.
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Random financial network

The directed, weighted block random graph:

I Financial instituions (vertices) [n] := {1, ..., n}

I Each bank i ∈ [n] is of a certain type αi ∈ [T ], where T ∈N

is fixed number of types (core/periphery: T = 2)

I We construct a random network with edge-weights (financial
exposures) in [R ], R ∈N.

I Each bank i ∈ [n] equipped with a set of non-negative
vertex-weights: for all r ∈ [R ], α ∈ [T ]

I w−,r ,α
i describes tendency of bank i to develop incoming edges

of weight r from institutions of type α

I w+,r ,α
i describes tendency of bank i to develop outgoing edges

of weight r to institutions of type α
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Random financial network

I A directed edge from i to j of weight r ∈ [R ] appears with
probability

pri ,j :=

{
R−1 ∧ n−1w

+,r ,αj

i w−,r ,αi
j , i 6= j ,

0, i = j .

I edge between banks appear independently

I no multiple edges of different weights between banks

I edge from i to j of weight r ∈ [R ]: i owes j the amount r

I Each bank i ∈ [n] is equipped with a capital level (net worth)
ci ∈N0 ∪ {∞}.
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Default contagion

Default cascades

I The set of initially defaulted banks:

D0 = {i ∈ [n] | ci ≤ 0}

I Default cascade D0 ⊆ D1 ⊆ ... ⊆ Dn−1 triggered by D0:

Dk =

{
i ∈ [n] : ci ≤

R

∑
r=1

r ∑
j∈Dk−1

X r
j ,i

}

where X r
j ,i is 1 if there is an edge of weight r going from j to i

and 0 otherwise.

I Dn := Dn−1 is the final default cluster in the network
generated by the fundamental defaults D0.
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Systemic risk indicator

In the following we will focus on the final fraction of defaulted
banks after contagion as systemic risk indicator:

|Dn|
n

 Asymptotic analysis for n→ ∞ of the default fraction via
generalized bootstrap percolation in our weighted, directed block
random graph.
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Asymptotic default fraction

I For each network size n, the (random) financial network
model is characterized by the empirical distribution of
(w−,r ,α

i ,w+,r ,α
i , ci , αi )i=1,...,n; i.e. by a corresponding random

vector
(W−,r ,α

n ,W+,r ,α
n ,Cn,An)

I For n→ ∞ we assume

(W−,r ,α
n ,W+,r ,α

n ,Cn,An) (W−,r ,α,W+,r ,α,C ,A)

I Further we assume

E[W−,r ,α
n ]→ E[W−,r ,α] < ∞ and E[W+,r ,α

n ]→ E[W+,r ,α] < ∞.
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Asymptotic default fraction

Define f r ,α,β : RV
+,0 → R, (r , α, β) ∈ V := R ×T 2, and g : RV

+,0 → R+,0 by

f r ,α,β(z) = E

[
W+,r ,αψC

(
∑

γ∈[T ]

W−,1,γz1,β,γ, . . . , ∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]
− z r ,α,β,

g (z) = ∑
β∈[T ]

E

[
ψC

(
∑

γ∈[T ]

W−,1,γz1,β,γ, . . . , ∑
γ∈[T ]

W−,R,γzR,β,γ

)
1{A = β}

]

where

ψl (x1, . . . , xR ) := P

 ∑
s∈[R ]

sXs ≥ l


for independent Poisson random variables Xs ∼ Poi(xs ).
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Asymptotic default fraction

I Define

S :=
⋂

(r ,α,β)∈V
{z ∈ RV

+,0 : f r ,α,β(z) ≥ 0}

I Let S0 denote the largest connected subset of S containing 0.

I Let z∗ and ẑ be the largest and smallest joint root in S0 of all
the functions f r ,α,β, (r , α, β) ∈ V , respectively.
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Asymptotic default fraction

Theorem: Let ẑ and z∗ be the smallest respectively largest joint
root in S0 of the functions {f r ,α,β}(r ,α,β)∈V . Then

g(ẑ) + op(1) ≤ n−1|Dn| ≤ g(z∗) + op(1).

In particular, if ẑ = z∗, then

n−1|Dn| = g(ẑ) + op(1).
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Measure of systemic risk: resilience/non-resilience

Identifying systemic risk for a given network with
characteristics (W−,r ,α,W+,r ,α,C ,A):

I Initially no defaulted banks: P(C = 0) = 0

I Then shock system: some vertices default ex post

I f.ex. banks default independently with probability ε > 0
I or only banks of certain types are affected by default
I ...

 new threshold sequence Cs with P(Cs = 0) > 0

I Compute final default fraction n−1|Ds
n| after contagion in

shocked system

I Systemic risk: small local shock spreads to substantial parts of
the system
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Measure of systemic risk: resilience/non-resilience

Theorem (resilient system): Assume that S0 = {0}. Then for
any ε > 0 there exists δ > 0 such that n−1|Ds

n| ≤ ε w.h.p. for
every ex post default shock satisfying P(Cs = 0) < δ.

I Small shocks remain local!
Final default fraction goes to 0 when shock goes to 0!
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Measure of systemic risk: resilience/non-resilience

f HzL
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Measure of systemic risk: resilience/non-resilience

Theorem (non-resilient system): Assume that S0 6= {0},
i. e. z∗ 6= 0. Consider any ex post default shock which is
independent of type A, vertex-weights W±,r ,α, and capital C .
Then w.h.p.

n−1|Ds
n| ≥ g(z∗) > 0

I Any small shock spreads to a substantial part (linear fraction)!
Lower bound independent of shock size!

In the paper we provide more general analysis that allows only
certain parts of system (certain types of banks) to be hit by ex
post default.
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Measure of systemic risk: resilience/non-resilience
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Measure of systemic risk: resilience/non-resilience

Example: influence of non-resilient subsystem

I Global system consisting of two subsystems (R=1, T=2)
given by

(W±,1,W±,2,C ,A)

I Subsystem of banks of type 1 assumed to be non-resilient.

I Subsystem of banks of type 2 assumed to be resilient.
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Applications

Now apply ex post shock to subsystem 1: P(Cs = 0,A = 1) > 0

I Assume there are some banks in subsystem 1 lending to banks
in the non-resilient sub-system 1:

W+,2|A=1 > 0 and P(W−,1 > 0,C < ∞,A = 2) > 0

I Then every howsoever small shock to the non-resilient
subsystem 1 spreads to a lower bounded fraction of finally
defaulted banks in subsystem 2 as well.
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Applications

Now apply ex post shock to subsystem 2: P(Cs = 0,A = 2) > 0

I Assume there are some banks in non-resilient subsystem 1
lending to banks in the resilient subsystem 1:

W+,1|A=2 > 0 and P(W−,2 > 0,C < ∞,A = 1) > 0

I Then every howsoever small shock to the resilient subsystem 2
spreads to a lower bounded fraction of finally defaulted banks
in subsystem 2.

I That is, by connecting to the non-resilient subsystem 1 the a
priori resilient subsystem 2 becomes non-resilient as well.
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Applications

Even connecting a priori resilient subsystems may result in a global
non-resilient system!

But:

Proposition: Consider a global financial network consisting of T
resilient subnetworks (R=1 for simplicity) and assume that there
exists a constant K < ∞ such that for all α 6= β ∈ [T ]

W±,β|A=α ≤ KW±,α|A=α

Then the global system is still resilient.
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Applications

Example: counterparty dependent exposures

I Core/periphery network (T = 2) with 2 posiible exposure
sizes (R = 2)

I p = 1/3 of all banks have type 1 (core), 1− p = 2/3 banks
have type 2 (periphery)

I each possible edge appears with probability 4/n

I all banks have capital C = 2
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Applications

Counterparty-dependent exposures:

I Exposures between core banks are of size 2, all other
exposures are of size 1

Creditor-dependent exposures:

I assign size 2 with probability p to any exposure of a core
bank, all other exposures are of size 1.

Proposition: The network with counterparty-dependent exposures
is non-resilient, while the network with creditor-dependent
exposures is resilient.
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Thank you!
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