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Mean Field Games

Nash equilibria for n→∞ players (non-atomic game)
Anonymous: Interaction through empirical distribution of states
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Connecting Mean Field Game and n-Player Game

Convergence Forward:

Cardaliaguet–Delarue–Lasry–Lions, . . . : (closed-loop) n-player equilibria
converge to mean field equilibrium. Based on master equation, under
classical solution/monotonicity condition/uniqueness
Lacker, Fischer, Carmona–Delarue–Lacker, . . . : (open-loop) n-player
equilibria converge to weak mean field equilibria. Includes mixtures.
Based on compactness. Holds for closed-loop in certain settings
(Lacker, Cardaliaguet–Rainer).

Convergence Backward:

Mean field equilibria induce approximate n-player Nash equilibria.
Huang–Malhame–Caines, Lacker, Carmona–Delarue–Lacker,
Bensoussan–Sung–Yam–Yung, Cecchin–Fischer, Campi–Fischer, . . .
Hopefully these are close/similar to actual equilibria
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Our Main Question

Our question: Are mean field equilibria limits of n-player equilibria?
(Especially when there is more than one.)

I.e., are they “justified” by the n-player game?

Parallel work:

Cecchin–Dai Pra–Fischer–Pelino study a two-state game with unique
n-player equilibria, these converge to a mean field equilibrium as
expected; however, a second, less plausible mean field solution can
appear for certain parameter values and this solution is not a limit.
Delarue–Foguen Tchuendom study several approaches of selecting an
equilibrium in a linear-quadratic mean field game with multiple
equilibria, including the convergence of n-player equilibria. Different
approaches are shown to select different equilibria.
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Games of Optimal Stopping (Timing)

Agents aim to stop optimally
Interaction through proportion of players that have already stopped

Guiding idea: bank-run models as in Diamond–Dybvig

N., Carmona–Delarue–Lacker, Bertucci, Bouveret–Dumitrescu–Tankov
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Notion of Equilibrium

Full information, “open-loop”: all processes adapted to a common filtration

Agent space (I , I, λ), either I = {1, . . . , n} or I = [0, 1], λ uniform

Each agent i solves an optimal stopping problem: τ i

Compute proportion ρ−it = λ{j 6= i : τ j ≤ t} of other agents that
have stopped
Optimal stopping problem depends on ρ−it : fixed point

An Nash equilibrium consists of ρt = λ{i : τ i ≤ t} and (τ i )i∈I
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The Single-Agent Problem

Optimal stopping problem:

sup
τ∈T

E
[
erτ1{θ>τ}∪{θ=∞}

]
.

r is an interest rate
θ is the default of the bank

θ comes as a surprise, but has an observed subjective intensity γ i

First jump of a Cox process: θ law
= inf{t :

∫ t
0 γ

i
s ds = Exp (1)}.
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Specification in this Talk

Intensities

γ it = Y i
t + cρ−it , ρ−it = λ{j 6= i : τ j ≤ t}

Y i
t are i.i.d., increasing, right-continuous processes

Ft(y) := P{Y i
t ≤ y} the continuous c.d.f. at time t

Solution of single-agent problem:

τ i = inf{t : Y i
t + cρ−it ≥ r} (assume <∞)

Unique e.g. if Y i is strictly increasing
Assume all agents use this stopping rule

Multiplicity of Equilibria:
If everybody stops, you also want to stop (and vice versa)
“Strategic complementarity”
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Equilibria of the n-Player Game

If ρn is an n-player equilibrium and ρn(t)(ω) = k/n, then

#{Y i
t (ω) + c · k − 1

n
≥ r} = k and

#{Y i
t (ω) + c · k

n
< r} = n − k

This is also sufficient for the existence of ρn
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Minimal and Maximal Equilibria

Theorem: There exists an n-player equilibrium ρmn such that

ρmn (t) =
k

n
⇐⇒


#{Y i

t + c · k
n
≥ r} = k

#{Y i
t + c · k − l

n
≥ r} ≥ k − l + 1, 1 ≤ l ≤ k .

This equilibrium is minimal: ρmn (t) ≤ ρn(t) ∀ n-player equilibrium ρn.

Similarly, there exists a maximal equilibrium ρMn

The set of all equilibria ρn(t) = #{i : τ i ≤ t}/n can be constructed
recursively:
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Recursive Construction

1. Suppose that at time τ0, a group K ( I of agents has already
stopped. Then every remaining agent i /∈ K examines her criterion

θiK = inf{t : Y i
t + c · #K

n
≥ r}.

If θiK ≤ τ0, then player i must stop immediately. We add i to the set
K and repeat 1. until no further players are forced to stop. (Order
does not matter.)

2. A group J ⊆ K c may be able to stop together. Indeed, suppose that

θJK = inf{t : Y i
t + c · #K +#J − 1

n
≥ r}

satisfies θJK ≤ τ0 for all i ∈ J. Then it is optimal for all these agents
to stop together, but they do not have to. If they stop, we add J to K
and repeat from 1.
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Recursive Construction Cont’d

3. After all remaining groups of agents have decided whether to stop at
time τ0, we increment time until there exists a group or individual
agent wanting to stop, and start again at 1.

Multiplicity of equilibria arises because of the choices taken by the
groups J
“Always no” leads to ρmn , “always yes” leads to ρMn
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Mean Field Game Equilibria

Note ρ−i (t) = ρ(t) and recall τ i = inf{t : Y i
t + cρ(t) ≥ r}

Fix t ≥ 0. If ρ(t) is an equilibrium,

ρ(t) = λ{i : τ i ≤ t} = λ{i : Y i
t + cρ(t) ≥ r}

= P{Y i
t + cρ(t) ≥ r}

= P{Y i
t ≥ r − cρ(t)}

= 1− Ft(r − cρ(t))

⇒ Fixed point equation for u = ρ(t):

Ft(r − cu) = 1− u
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Characterization of Mean Field Equilibria

0 ρm(t) ρ(t) ρM(t) 1

1

Theorem: A real function ρ : R+ → [0, 1] is a mean field game equilibrium
if and only if it is increasing, right-continuous and

Ft(r − cρ(t)) = 1− ρ(t), t ≥ 0.

There exist minimal and maximal equilibria ρm+, ρM .
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Limits of n-Player Equilibria

Theorem:
Let t ≥ 0 and U(t) = {u : 1− u = Ft(r − cu)}. If (ρn)n≥1 are n-player
equilibria, (ρn(t)) is asymptotically concentrated on U(t).

(I.e., any weak cluster point of (ρn(t)) is concentrated on U(t).)

Corollary:
If the mean field game has a unique equilibrium, any sequence of n-player
equilibria converges to it.

“Limits of n-player equilibria are (randomized) mean field equilibria”
Converse?
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Limit of the Minimal n-Player Equilibria

Obvious guess: ρmn → ρm in a suitable sense

Lemma: Let t ≥ 0. The equation u + Ft(r − cu) = 1 has the solutions:

u
0 1

u + Ft(r − cu)

ρm(t)

ρmrt(t)

ρMlt(t)

ρM(t)
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A Bad Case
Example: Let r = c = 1 and let Y i

t be i.i.d. increasing processes such that
Law(Y i

t ) =
1
2δ 1

2
+ 1

2δ2 for all 0 ≤ t < T (and Y i
t > r later). Then

Law(ρmn (t))→
1
2
δ 1

2
+

1
2
δ1, t < T .

Here ρm(t) ≡ 1/2 and ρmrt(t) ≡ 1
The limit is a mixture of these equilibria

Corollary: ρm(t) is not the limit of n-player equilibria

0
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Bad Case with Density

Example: As above, but with density f (y) = 4 1[ 3
8 ,

1
2 ](y) + 1[ 3

2 ,2](y).

Again, ρm(t) ≡ 1/2 and ρmrt(t) ≡ 1
The limit is a mixture of these equilibria

0
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The Good (and Generic) Case

Theorem: Assume that ρm(t) is not a local max, for a dense set of t.

Then the minimal n-player equilibrium ρmn “Fatou converges” in probability
to the minimal mean field equilibrium ρm+.

Assumption is “generic”
Cannot have convergence at every t

Right-continuity might be a philosophical matter in the first place
Similar result for the maximal equilibrium
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Interior Equilibria

u
0 1

u + Ft(r − cu)

We exclude the “tangential” case (positive and negative examples)

Increasing-Transversal Equilibria:

Theorem: Let ρ be a mean field equilibrium. Suppose that for all t in a
dense subset D ⊆ R+, the solution x := ρ(t) is increasing-transversal.
Then there exist n-player equilibria (ρn)n≥1 which Fatou converge in
probability to ρ.
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Decreasing-Transversal Equilibria

Assume that Ft admits a continuous density ft

Call a solution x of u + Ft(r − cu) = 1 strongly decreasing-transversal
if ∂u|u=x [u + Ft(r − cu)] < 0; i.e.,

α := cft(r − cx) > 1.

Theorem: Let ρ be a mean field equilibrium and suppose that the

complement of {t ≥ 0 : ρ(t) is strongly decreasing-transversal}

is not dense. Then there does not exist a sequence of n-player equilibria ρn
Fatou converging to ρ in probability.
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Decreasing-Transversal Equilibria: Static Result
Lemma: Fix t ≥ 0 and let x ∈ [0, 1] satisfy x + Ft(r − cx) = 1. If x is
strongly decreasing-transversal, then

lim
ε→0

lim
n→∞

P(∃ n-player equilibrium ε-close to x)< 1.

Bounds depend on
α := cft(r − cx) = 1− slope

Dotted: e−α

|1−α|

Dashed: 1−θ
α−1

where θ ∈ (0, 1) is defined
by θe−θ = αe−α.

Solid: e−α(
α−1

)(
1+2

√
2
|a0|

{
1−Φ

(√
2|a0|

)})
where a0 := 1− α + log(α) < 0,
Φ standard normal c.d.f.
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Crossings of Empirical C.D.F.
Relaxing the equilibrium condition results in different problem:
Crossings between a certain empirical c.d.f. (related to Ft) with the
theoretical uniform c.d.f.
Nair–Shepp–Klass studied the distribution of such crossings
Their result is used to obtain the dashed bound
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Expected Number of Equilibria Near x

Proposition: Fix t ≥ 0 and let x ∈ (0, 1) satisfy x + Ft(r − cx) = 1.
Let α := cft(r − cx) 6= 1. Then

lim
n→∞

E [#n-player equilibria close to x ] =
e−α

|1− α|
.

Solutions occur in a window of size an/
√
n for any an →∞

Implies the dotted bound

Lower Bound:
Uses the above bound and a second-moment argument
In particular, lim infn→∞ P(∃ n-player equilibria close to x) > 0
x is part of a mixture which is itself a limit of n-player equilibria

Marcel Nutz (Columbia) Convergence to the Mean Field Game 25 / 26



Conclusion

n-Player equilibria converge to randomized mean field game equilibria
Randomization may happen even for natural choices like the minimal
equilibrium
Not all mean field game equilibria are limits of n-player equilibria

Identification in other games?

Thank you
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