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Motivation
Forward interacting particles

o Leté', ... ¢"bei.id., Fo-measurable random variables and
consider

XM X
with

t t . . .
X =¢ 4 / by(X! law(X")) du + / ou( Xy, law(X)) dW,,
0 0

~» McKean-Vlasov SDE.
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How about backward particles?



Digression:

Functional inequalities for BSDEs
joint with D. Bartl



Transportation inequality

On a Polish space (E, d), we consider the Wasserstein distance

Wh(p,v) = inf{ fj dP(x,y)dm, m = p; pe = V}

ExE
and the Kullback-Leibler information divergence

E, [|og gﬂ if v <
+o0o else.

H(v|p) = {



Transportation inequality

¢ The probability measure p satisfies T,(C) if

Wo(p,v) < +/CH(v|p) forallv e P(E)
~» Talagrand (1996)



Transportation inequality

¢ The probability measure p satisfies T,(C) if

Wo(p,v) < /CH(v|pu) forallv e P(E)
Interesting application for us:
+ Concentration of measure phenomenon ~»

pun (F— / Fdu®" > x) < e — T,(C)

cf. Gozlan (2009)



Transportation inequality

These inequalities are known to hold for various diffusion, including

+ Brownian motion ~ Feyel & Ustiinel

« Stochastic differential equations ~ Djelllout-Guillin-Wu: Usturiel;
Pal; Saussereau.



Transportation inequality
T, for laws of BSDEs

Theorem

Let F:[0,T] x C x R™ x R™d — R™ and G : C — R™ be Lipschitz
continuous and let (Y, Z) satisfy

dYi=—-F(Y1, Z)dt+ Z;dWs, Y7 =G.

Then, the law of Y satisfies T,(C) with C = 2(Lg + TLF)?€?™*.
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Transportation inequality
T, for laws of BSDEs

Theorem

Let F:[0,T] x C x R™ x R™d — R™ and G : C — R™ be Lipschitz
continuous and let (Y, Z) satisfy

dYi = —-F(Y1, Z) dt+ Z,dWs, Y7 =G.

Then, the law of Y satisfies T,(C) with C = 2(Lg + TLF)?€?™*.

e The constant C is optimal

e If m=1;and Fi(w, y, z) = F:(2) is convex, it is enough to take
id < F < quadratic, and C = 2Lg.

e Method:
show that Y = ¢(W), with ¢ Lipschitz



Backward propagation of chaos
join with M. Lauriére



Backward particles

For x = (X1 yeen ,Xn) S (Rm)ns pUt
1 n
Ln(x) = E 2(5)({..
=

e Let (G',...,G") be i.i.d. Fr-measurable and consider the
system

. ) T . . n T
V-6 [ RYZ U du- Y [ 25w
t 1t

where (W' ..., W") are n independent Brownian motions.



Backward particles

For x = (x1,...,X,) € (R™)", put
1 n
== E Z (;X;'
i=1
e Let (G',...,G") be i.i.d. Fr-measurable and consider the
system

Y)"=G + /FU(YL’,’”,Z[;”,L”(YU))du—Z/t Zn dwk
t

where (W' ..., W") are n independent Brownian motions.
e Further consider the McKean-Vlasov BSDE

Y/ =G + /F (Y5, Z0, £(Yy)) du — /Z’dW’



Backward particles

Theorem
IfF [0, T] x C x R™ x R™9 x P»(R™) — R™ is Lipschitz continuous
(in (y, z, ;1)) and there is k > 2 such that E[|G|¥] < oo, then
sup E WE(L"(Y), £(Y)] < Crame
t

for some rate rymk 1 0 as n — oo.



Backward particles

Theorem
IfF [0, T] x C x R™ x R™9 x P»(R™) — R™ is Lipschitz continuous
(in (y, z, ;1)) and there is k > 2 such that E[|G|¥] < oo, then
sup E WS(L”(Y,),L(Y,))] < Cramk
t
for some rate rymk 1 0 as n — oo.

If k > m+5 and sup, E[|Z;|?(] < oo, then

E |supWE(L(Y1). L(Vy))| < Cn~ 7
t

I'nm.x is explicitly given, and depends on m and k.



Backward particles
Idea

Lemma
Lipschitz continuity yields

Wa(L(Ye), £(Y2)) < € TWo(L"(Y1), £L(V1))
where Y .= (Y',...,Y") and (Y',2"),...,(Y", Z") are iid copies of
(Y, Z2) solving

Yi=G + /F (Yi,Z, £(Y,)) du — /Z’dW’

e Use results by and
to conclude.

e See also



Backward particles
Concentration

Theorem
If E[|G|¥] < oo for some k > 4, then

P(WalL"(Y0), £(Y)) > X) < Crax

With rh x k 1. 0 (as n — o) exponentially fast.



Backward particles
Concentration

Theorem
If E[|G|¥] < oo for some k > 4, then

P(Wa(L"(Y0), £(Y2)) = X) < Craxi
With rh x k 1. 0 (as n — o) exponentially fast.
If F is Lipschitz in w, and n large enough

2

P(Wz,c(Ln(Y),L‘(Y)) > X) ~ Onx



Backward particles

Proposition
If E[|G|¥] < oo for some k > 2, then

. . T . .
E[sup|v," - YiP +/O 2"~ Z|P ] < Cromyc



Backward particles

Proposition
If E[|G|¥] < oo for some k > 2, then

E[sup|Yt”” - Y|P +/ 1z" —z;|2dt] < Crompk-
t 0

If the interaction is "linear”, then ry m x = n—', optimal, dimension-free
rate! (see )
N
e Propagation of chaos: Wa ¢(0%7, L(Y)®K) < KCrp m k With
ok = law(Y'", ... YD),

o If the interaction is linear, then r, mx = n~".



FBSDE: infinite dimensional PDEs and large population
games
joint with M. Lauriére



Forward-backward particles
theoretical results

Now consider the system of FBSDEs

aXI" = By(X", I L(X, Y1) dt + o dW]
4V} = —FOG7, {7 27, L0, Vo)t + 7 2 W
Xé,n — 5/ Y;_,n — G()(;_,n7 Ln(xé_n))

with B, F, and G Lipschitz continuous functions of linear growth,

[Fe(x,y, 2, 1)l < C(1+ [y +[2] + Ma(p))
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Now consider the system of FBSDEs

aXI" = By(X", I L(X, Y1) dt + o dW]
4V} = —FOG7, {7 27, L0, Vo)t + 7 2 W
Xé,n — 5/ Y;_,n — G()(;_,n7 Ln(xé_n))

with B, F, and G Lipschitz continuous functions of linear growth,

[Fe(x,y, 2, 1)l < C(1+ [y +[2] + Ma(p))

and the Mckean-Vlasov FBSDE

dX[ = Bt()(f7 Yt,ﬁ(Xt, Yt)) dt + O’th
Yi = —F( X, Y1, Zt, L( X, Yr)) dt + Z; dW;
Xe=¢,  Yr=G(Xt,L(XT))

cf.



Forward-backward particles
theoretical results

Theorem
If there is k > 2 such that E[|£|¥] < oo, then

E |sup |X;" — X{|? +|Y;" — V{[? +/ 12"~ Z{? dt| < Crom,k
t 0

With rp m1k 4 0 @s n— oo.



Forward-backward particles
Approximation of the master equation

Take m = 1. Let us consider the PDE
O V(t, x, 1) + B(x, V(t,x, 1), v)0x V(t, x, 11) + tr (Oxx V (8, X, )oc”’)
+F(x, V(t,x, 1), 0x V(L x, u)o,v)
+ Jra 0 V(8 X, 1) (y) - By, V(E, X, 1), v)du(y)

+ Jro 3tr (8y0, V(8 X, p)(y)oa’) du(y) =0
V(T,x,n) = G(x, 1)

with (&, x, 1) € [0, T) x RY x P»(RY). The derivative

OV (t, %, p1)(y)

denotes the so-called L-derivative and v is the law of (&, U(t, &, 1))
when L(§) = p.
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Forward-backward particles
Approximation of the master equation

Take m = 1. Let us consider the PDE

OV (t, x, 1) + B(x, V(t, x, 1), v)0x V(t, X, p) + Str(Ou V(t, X, p)oo”)
+F(x, V(t,x, 1), 0x V(L x, n)o, v)
+ JraOu V(1 X, 1)(¥) - B(y, V(t, X, 1), v)du(y)
+ Jrantr (8y0, V(t, x, p)(y)oo’) du(y) = 0

V(T, x, ) = G(x, 1)

with (t,x, ) € [0, T) x RY x P»(RY). The derivative

aﬂ V(tv X, M)(y)

denotes the so-called L-derivative and v is the law of (&, V/(£,&, 1))
when L(§) = p.

~» Mou & Zhang (2019), Wu & Zhang (2019), Cardaliaguet et. al
(2019), Chassagneux et. al (2015), Gangbo & Swiech (2015)



Forward-backward particles
Approximation of the master equation

OpVIN(t, X) + B(Xi, VI (1, X), 5 3004 S0 vine x)) )0 V" (1, X)
+%tl’ (8Xixi Vi’n(t’ X)UJ/)
+F (Xu vin(t, X), 0Vt X)o (), 5 o7 5(X17V”"(fvx)>) =0
V(T X) = G(x, L7(x)), X =(x1,..., %) € (RY)"
i=1,...,n

with (¢, x) € [0, T] x (R9)"



Forward-backward particles
Approximation of the master equation

OnvII(t, X) + B(xi, VA8, X), 7 3014 Sagvin(eey)) O V(8 X)
+3tr (S V(8 X)00”)
+F (x,-, VER(t, X), O VI (t X)a (X1)s D07 5(x,-,vf’“(r,x))) =0
Vi,"(T’x) = G(X,',Ln(X)), X = (X17"'7Xf7) € (Rd)n
i=1,...,n
with (¢, x) € [0, T] x (RY)"

Theorem
If the master equation as a unique solution V such that
V(t, &, L(€)) = Y for all Fy-measurable ¢ € L2(P), then

E[[V'"(t, &1, &) — V(t &1, 1)?] < Crne

for all t and all i.i.d. ¢ with law .



Idea

° recently gave conditions
under which
V(t,€ L(€) = Yi¢
e by classical FBSDE theory (e.qg. )

1 n
V1,"(t7§17...7£n): Ytt,g ,,,,, ¢

o thus, suffices to show Y€ " — ybe,
PDE-based approach to a similar result ~



Forward-backward particles
Extended mean-field games

Consider dX{ = aj+ 1 > o} dt + o dW/ and
T1 1 n

ir N i2 (a2 (2 2 i

J(o) = E[IX2+ [ 5t (5 2 ol d] min

Pontryagin for N-player game: &7 n-Nash ~ &'" = — Y7 + R,(Y7);
with , , '

dX{ =ay"+ 5 YL & dt + o dW] |

av! = S 2 AW, vl =20,

and Rn(Y")j=1,.n— 0



Forward-backward particles
Extended mean-field games

Let dX; = (as+ E[ay]) dt + o dW; and a flow of measures p. Find & s.t.

. T
|ng[|x%|2+/0 5of + (/xdm(x))zdt} and i = law(a).

Pontryagin for extended MFG: & = — Y with

dXt = —(Y[ + E[Yt]) dt+ O'dW[
dY, = Z,dW;, Yr=2Xr



Forward-backward particles
Extended mean-field games

Let dX; = (as+ E[ay]) dt + o dW; and a flow of measures p. Find & s.t.

, !
|ng[|x%|2 +/0 5of + (/xdut(x))z dt] and i = law(a).
Pontryagin for extended MFG: & = — Y with

dXt = —(Y[ + E[Yt]) dt+ O'dW[
dY, = Z,dW;, Yr=2Xr

By the above results:

See also works by Cardaliaguet, Delarue, Lasry & Lions (2009),
Lacker (2016, 2017, 2018), Fischer (2017), Nutz, San Martin & Tan
(2018)



Summary

e Functional inequalities for BSDE

e Backward propagation of chaos

+ explicit convergence rates
+ concentration inequalities

e Forward backward "particles”

+ approximation of master equation
+ convergence to extended MFG



Thank You!
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