Kriging Metamodels for Bermudan Option Pricing

Mike Ludkovski

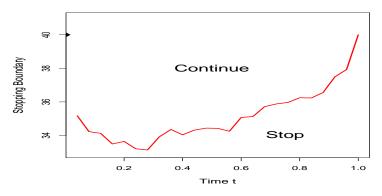
Dept of Statistics & Applied Probability UC Santa Barbara

USC Financial Math Seminar September 21 2015 Work supported by NSF DMS-1222262

Bermudan Option Pricing/ Optimal Stopping

- State process X, payoff h(t, X_t)
- Discrete-time: $t = 1, 2, \dots$ horizon T
- Value function $V(t,x) = \sup_{\tau < T} \mathbb{E}_{t,x} [h(\tau, X_{\tau})]$
- Optimization is over stopping times τ
- Solution: $\tau^* = \inf\{t : X_t \in \mathfrak{S}_t\} \land T$. Stopping region: $\mathfrak{S}_t = \{x : V(t,x) = h(t,x)\}$
- eq (X_t) is GBM; $h(t,x) = e^{-rt}(K-x)_{\perp}$ Bermudan Put

Stopping Rule via Timing Value



$$T(t,x) := \mathbb{E}_{t,x} \left[V(t+1,X_{t+1}) \right] - h(t,x) = \mathbb{E}_{t,x} \left[h(\tau_{t+1},X_{\tau_{t+1}}) \right] - h(x).$$

- Stopping decision is characterized by $\mathfrak{S}_t = \{x : T(t, x) < 0\}$
- To find τ^* , it's sufficient to evaluate the conditional expectation, i.e. approximate the sign of $T(t,\cdot)$ for $t=T-1,T-2,\ldots,0$

$f(x) := \mathbb{E}[h(X_{\cdot})|X_0 = x].$

- Input: Markov process X with state space X & (path-) Functional h(X.)
- Output: the conditional mean map $x \mapsto f(x)$
- Generalizes the problem of pointwise estimates at a fixed x
- Appears as a building block:
 - Optimal switching/impulse control
 - XVA
 - BSDEs
 - Capital Requirements/Insurance

Regression Monte Carlo

$$f(x) := \mathbb{E}[g(X_{\cdot})|X_0 = x].$$

- Classical Monte Carlo for a fixed x_0 : $\widehat{f}(x_0) := \frac{1}{N} \sum_{n=1}^{N} h(x_n^n)$ where x_i^n are N simulated paths
- Need to be able to predict f(x) for any $x \in \mathcal{X}$
- The state space \mathcal{X} is multi-dimensional and continuous
- \rightarrow Construct a grid $x^{1:N}$ and borrow information spatially
- Statistical regression: smooth + interpolate

RMC for Optimal Stopping

- Backwards induction in time ($\mathfrak{S}_T = \{x : h(t, x) \ge 0\}$)
- Given stopping sets: $\hat{\mathfrak{S}}_{t+1:T}$
- Starting at $X_t = x$, simulate trajectory $X_{t+1:T}^x$ and take $\tau' = \inf\{s > t : X_s^x \in \hat{\mathfrak{S}}_s\}$
- Pathwise future payoff $y := h(\tau', X_{\tau'}^x)$ satisfies

$$\mathbb{E}_{t,x}[Y_x] = C(t,x) \quad \Leftrightarrow \quad Y_x = C(t,x) + \varepsilon(x)$$

where C(t,x) = T(t,x) + h(t,x) is the **continuation value**

- Now generate a stochastic grid $(x_t^n)_{n=1}^N$ and paths $x_{t+1:T}^{1:N}$
- Obtain a sample $\{x_t, y_t\}^{1:N}$
- Estimate $\hat{C}(t,\cdot)$ and set $\hat{\mathfrak{S}}_t := \{x : \hat{C}(t,x) h(t,x) < 0\}$
- Popularized by Longstaff & Schwartz (2001)

AIM: Build an approximation of $\hat{C}(t,\cdot)$

- Choose an approximation architecture \mathcal{H} and loss function L
- Generate the grid $x_t^{1:N}$: Experimental Design
- Set $\hat{C}(t,\cdot) = \operatorname{arg\,min}_{C \in \mathcal{H}} L(C;(x,y)^{1:N})$
- Repeat over $t = T 1, T 2, \dots$

Traditionally:

- Data is generated using the transition density of X ("path-simulation")
- Least-Squares parametric regression, i.e. $\mathcal{H} = span(B_i(x), i = 1, \ldots, r)$
- (The implied loss function is $\mathbb{E}_{0,X_n}[\{\hat{C}(X_t) C(X_t)\}^2]$)

What is Metamodeling?

- Classical regression data is given and try to fit the "best curve"
- In metamodeling generating data (through efficient simulations) is part of the solution
- Also, typically look for a non-parametric model (dense H)
- Goes by many other names: response surface modeling, statistical learning, DACE (design and analysis of computer experiments), emulation
- Used extensively in machine learning; simulation optimization, computational statistics
- See eg Kleijnen (2015), Williams and Rasmussen (2006), Powell and Ryzhov (2012)
- Connects to CS, OR, stats communities (language barriers!)

Improving RMC

- Main concerns are Speed/memory convergence of RMC is slow; often need ≫ 10⁵ paths to obtain a good estimate
- Desire ability to handle a "black-box" setting, e.g. 5-D system with implicit dynamics, and limited known structure
- Timing optionality is now embedded in a ton of contracts wish to have a "universal" algorithm
- Traditional methods offer few performance guarantees
 (eg. sensitive to the choice of basis functions) and are hard to trust

- There has been extensive ongoing research on better regressions: Belomestny, Bouchard, Gobet, Kohler, Oosterlee, Stentoft, Tompaidis, ...
- Also analysis of error propagation through dependent regressions: Egloff (2004), Gobet and Warin (2006), Belomestny (2011), Gerhold (2011), Kohler (2012), Zanger (2013)

Contributions

- There has been extensive ongoing research on better regressions: Belomestry, Bouchard, Gobet, Kohler, Oosterlee, Stentoft, Tompaidis, ...
- Also analysis of error propagation through dependent regressions: Egloff (2004), Gobet and Warin (2006), Belomestry (2011), Gerhold (2011), Kohler (2012), Zanger (2013)
- Contribution 1: investigate impact of RMC experimental designs and suggest several (improved) choices
- Contribution 2: propose use of kriging metamodels
- RMC is often called Least Squares Monte Carlo. This puts misplaced narrow emphasis on a specific regression framework, and tends to ignore the design aspect. We advocate a shift in terminology to better align with the underlying problem.

Modeling Conditional Expectation

$$f(x) := \mathbb{E}[g(X_{\cdot})|X_0 = x].$$

Must impose some structure on f (X is a "nice" process, so f is "smooth")

- Project onto basis functions: $f(x) = \sum_{i=1}^{R} a_i H_i(x)$
- Smoothing spline (piecewise cubic)
- Piecewise linear
- Piecewise constant $f(x) = \sum_i a_i 1_{\{x \in B_i\}}$
- Fully nonparametric (kernel): $f(x) = \sum_i K(x, x^i) y^i$
- Gaussian process

- Data-generating process $Y(x) = C(t, x) + \varepsilon(x)$ where $\varepsilon(x) \sim N(0, \sigma^2(x))$
- Assume the continuation value $C(t,\cdot)$ lives in the function space \mathcal{H}_K Gaussian RKHS
- Means $C(t,\cdot)$ is a realization of a Gaussian random field with a covariance structure defined by K, $\mathcal{H} = span(K(\cdot,x):x\in\mathcal{X})$
- $K(x, x') := \mathbb{E}[f(x)f(x')]$ controls the spatial decay of correlation, i.e. smoothness of $C(t, \cdot)$
- e.g Gaussian kernel $K(x, x') = \tau^2 \exp(-\|x x'\|^2/\theta^2)$ elements of \mathcal{H}_K are C^{∞} , with lengthscale θ and fluctuation scale τ .
- Use L^2 projection: $\hat{C}(t,\cdot) = \arg\min_{C \in \mathcal{H}} \sum_{i=1}^{N} (C(x^i) y^i)^2$;
- Representer theorem implies that $\hat{C}(t,x) = \sum_{i=1}^{N} w_i K(x,x^i)$

- Think of $C(t,\cdot)$ as a random element in \mathcal{H}_K with a Gaussian prior $C(t,x)\sim N(0,\tau^2)$
- The posterior conditional on $\mathcal{G} \equiv (x, y)^{1:N}$ is also Gaussian
- Marginally $C(t,x)|\mathcal{G} \sim N(m(x), v^2(x))$

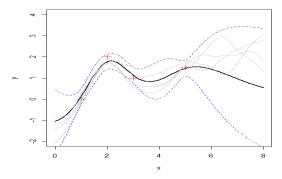
$$m(x) = \vec{k}(x)^{T} (\mathbf{K} + \Sigma)^{-1} \vec{y}$$

 $v(x, x') = K(x, x') - \vec{k}(x)^{T} (\mathbf{K} + \Sigma)^{-1} \vec{k}(x')$

- $K_{ij} = K(x^i, x^j)$, $\Sigma = diag(\sigma^2(x^i))$, $k_i = K(x, x^i)$
- Linear model in the infinite basis expansion defined by K

Kriging Example 1

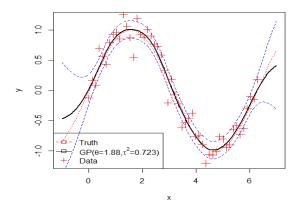
- The posterior is a measure on \mathcal{H}_K (i.e function-valued)
- Visually has a "football" shape- $v^2(x)$ has local minima at x^i 's.
- The mean m(x) is a linear combination of kernel eigenfunctions centered at design sites
- Outside the domain \mathcal{X}' , revert to prior $m(x) \to 0$, $v^2(x) \to \tau^2$
- Below: $\theta = 2, \tau = 1.5, \sigma^2(x) \equiv 0.2^2$



Kriging Example 2

- Global consistency converge to the truth as $N \to \infty$
- Optimized Matern-5/2 kernel

$$\dot{K}(x, x'; \tau, \theta) = \tau^2 (1 + (\sqrt{5} + 5/3) \|x - x'\|_{\theta}^2) \cdot e^{-\sqrt{5} \|x - x'\|_{\theta}}$$



Fitting a GP

- Need to know the kernel hyperparameters $-\tau, \theta$, et cetera. Use MLE (nonlinear optimization problem).
- \bullet θ is the lengthscale correlation decay
- τ^2 is the process variance has analytic MLE once θ is known
- GP is expensive compared to e.g LM; complexity is $O(N^3)$ for a design of size N
- Allows a lot of analytic formulas to understand the fit and its uncertainty
- Kriging is becoming the gold standard in the simulation/DACE communities
- Used DiceKriging package in R off-the-shelf use

Simulation Noise

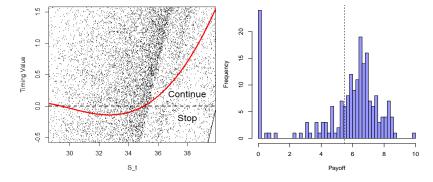


Figure: Left: scatterplot of $(x, H_t(X^x) - h(t, x))$ over 10,000 distinct $x \in \mathbb{R}_+$. Right: Histogram of N = 200 pathwise future payoffs $y^n \sim H_t(X^x)$ starting at x = 35 in a 1-D Bermudan Put problem; t = 0.6. The vertical dashed line indicates the empirical mean $\mathbb{E}[H_t(X^x)|X_t=35] \simeq Ave(y^{1:N})=5.49$. Note that in 24 out of 200 scenarios, the payoff y^n was zero, creating a point mass in the distribution of $H_t(X_t^x)$ and generating a significant negative skew. Other moments were $StDev(y^{1:N}) = 2.45$, $Skew(y^{1:N}) = -1.28$ and $Max(y^{1:N}) = 9.87$.

Simulation Noise

- Knowing the distribution of simulation noise $\varepsilon(x)$ is fundamental for meta-modeling
- Simulation noise is highly state-dependent in RMC
- Also, distribution can be skewed/far from Gaussian
- Solution 1: treat it as a constant σ^2 (so-called "nugget"), can estimate along with other kernel hyper-parameters
- Solution 2: build an empirical estimate through replicating simulations at a fixed site x
- (Resembles a Monte Carlo forest)
- Solution 3: model $x \mapsto \sigma^2(x)$ via an auxiliary metamodel

Batching

- Generate M independent realizations $v^{(i)} \sim Y_x$ of pathwise payoffs starting at $X_t = x$
- Set the average $\overline{y}(x) = \frac{1}{M} \sum_{i=1}^{M} y^{(i)}(x)$
- Empirical $\frac{\tilde{\sigma}^2(x)}{\tilde{\sigma}^{-1}} := \frac{1}{M-1} \sum_{i=1}^{M} (y^{(i)}(x) \bar{y}(x))^2$
- The averaged simulations still follow the same statistical model but with signal-to-noise ratio improved by factor of M
- Size of macro-design \mathcal{Z}' is N/M much faster fitting
- Also, Y has almost-Gaussian simulation noise

Batched Kriging Metamodel for $T(t, \cdot)$

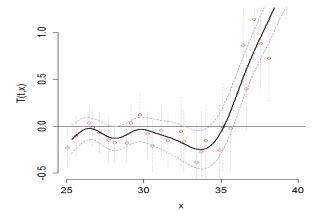


Figure: LHS design \mathcal{Z} of size N = 3000 with M = 100 replications. The vertical "error" bars indicate the 95% quantiles of the simulation batch at x, while the dotted lines indicate the 95% credibility interval (CI) of the kriging metamodel fit.

Deterministic Kriging

- If M is very large, $\tilde{\sigma}^2(x)/M \simeq 0$ and can view \bar{Y}_x as deterministic
- Metamodel becomes an interpolator

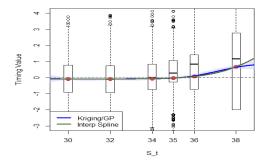
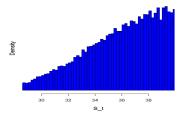
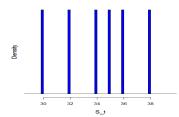


Figure: The boxplots summarize the distribution of $y^{(m)}(x^n)$'s, m = 1, ..., M = 1600. The dots indicate the batch means $\bar{y}(x^n)$ which are exactly interpolated by the two meta-models. $\mathcal{Z}' = \{30, 32, 34, 35, 36, 38\}.$

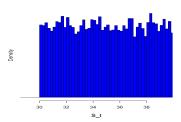
Regression Designs



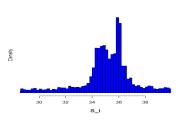
Based on $S_t | S_0$



Monte Carlo forest



Uniform in [30, 40]



Adaptive Grid

Experimental Design

- The meta-model should learn $C(t,\cdot)$ ${\mathcal Z}$ should cover the domain ${\mathcal X}$
- Space-filling designs lattice, low-discrepancy (Sobol)
- LHS Latin Hypercube sampling: random space-filling
- User must specify the effective \mathcal{X}' (typically a rectangle)

Experimental Design

- The meta-model should learn $C(t,\cdot) \mathcal{Z}$ should cover the domain \mathcal{X}
- Space-filling designs lattice, low-discrepancy (Sobol)
- LHS Latin Hypercube sampling: random space-filling
- User must specify the effective \mathcal{X}' (typically a rectangle)
- The design should reflect the underlying (X_t)
- **Empirical** sampling: \mathcal{Z} is constructed by drawing from X_t
- Automatically has the right "shape"
- This is the standard approach. Sensitive to X_0 (e.g. OTM Puts)

(Optimal Design is NP-Hard so heuristics are common)

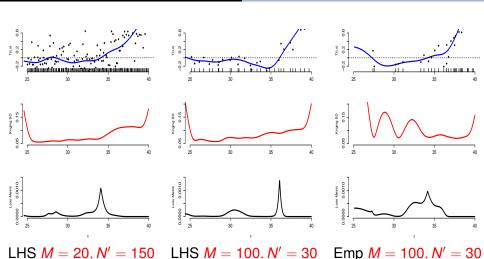


Figure: Three different designs for fitting a kriging metamodel of the continuation value. *Top* panels show the fitted $\hat{T}(t,\cdot)$ as well as the distinct design sites $x^{1:N'}$. *Middle* panels plot the corresponding surrogate standard deviation v(x). *Bottom* panels display the loss metric $\ell(x; \mathcal{Z})$.

Adaptive Design

- Recall that aim to learn the sign of $T(t, \cdot)$
- Gradually grow $\mathcal{Z}^{(k)}$, $k = N_0, \dots, N$
- Add new locations greedily according to acquisition function $x^{k+1} = \arg \max El_k(x)$
- Favor points where $m^{(k)}(x) \simeq 0$ (close to zero-contour) or $v^{(k)}(x)$ is large (reduce uncertainty)
- Loss from making the wrong stopping decision at (t, x) is

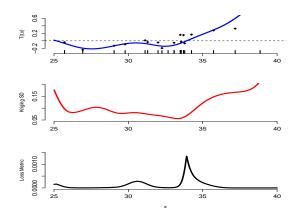
$$\ell(x; \mathcal{Z}) := \int_{\mathbb{R}} |y - h(t, x)| 1_{\{m(x) < h(t, x) < y \cup y < h(t, x) < m(x)\}} \mathcal{M}_{x}(dy)$$

• Analytic expression for $EI_k(x) := \mathbb{E}[\ell^{(k)}(x) - \ell^{(k+1)}(x)|\mathcal{Z}^{(k)}, x^{k+1} = x]$

- ZC-SUR strategy: maximizes stepwise expected reduction in loss
- See Gramacy-L. (SIFIN 2015)

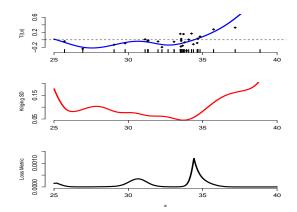
Sequential Design: K = 20

Initialize with a LHS design $\mathcal{Z}^{(20)}$



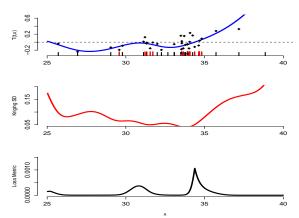
Sequential Design: K = 30

Zoom to the stopping boundary



Sequential Design: K = 40

Prefer regions that are more likely for X_t



Optimal Stopping for a 2D Stoch Vol Model

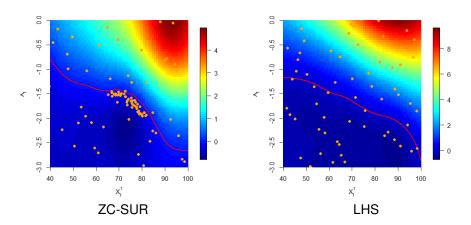


Figure: Adaptive vs LHS designs. Bermudan Put $e^{-rt}(100 - X_1)_+$ with a Heston SV model. Both designs used N = 10000 simulations. Color-coded according to T(t, x); contour indicates the stopping boundary.

Comparison in 1-D GBM Put

Batch Size	LHS Spline	LHS Kriging	Emp Kriging	Seq Kriging
M=3	2.306	2.304	2.306	2.303
M = 8	2.306	2.306	2.308	2.305
M = 20	2.292	2.305	2.286	2.295
M = 50	2.302	2.303	2.302	2.309
M = 100	2.302	2.303	2.304	2.311
M = 250	2.304	2.304	2.303	2.309

Table: Performance of different DoE approaches to RMC in the 1-D Bermudan Put setting, $h(t, x) = e^{-rt}(40 - x)_+$. All methods utilize $|\mathcal{Z}_t| = 3000$. The LHS input space was $\mathcal{X} = [25, 40]$. Results are based on averaging 100 runs of each method, and evaluating $V(0, X_0)$ on a fixed out-of-sample database of $N_{out} = 50,000$ scenarios.

2D Examples

Method	$\hat{V}(0,X_0)$	(StDev.)	#Sims	Time			
Brockwell Rhambarat SV5							
LSM $N = 5 \cdot 10^4$	15.98	(0.04)	2.5 · 10 ⁶	24			
LSM $N = 1.25 \cdot 10^5$	16.38	(0.03)	$6.25 \cdot 10^{6}$	52			
LHS km $N = 2500$	16.07	(0.16)	$1.07 \cdot 10^{6}$	25			
LHS km $N = 10000$	16.48	(0.06)	$4.8 \cdot 10^{6}$	168			
SUR km <i>N</i> = 4000	16.42	(0.11)	1.67 · 10 ⁶	65			
Agrawal, Juneja and Sircar							
LSM $N = 5 \cdot 10^4$	18.63	(0.03)	1.0 · 10 ⁶	25			
LSM $N = 1.25 \cdot 10^5$	18.81	(0.02)	$2.5 \cdot 10^{6}$	60			
LHS km $N = 2500$	18.79	(0.04)	$0.20 \cdot 10^{6}$	11			
LHS km $N = 10000$	18.88	(0.02)	$0.81 \cdot 10^{6}$	53			
SUR km $N = 4000$	18.86	(0.02)	$0.35 \cdot 10^{6}$	64			
SUR km <i>N</i> = 10000	18.90	(0.01)	0.80 · 10 ⁶	103			

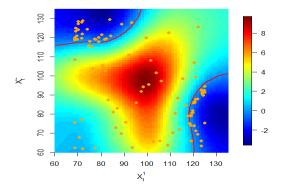
Kriging Performance

- Kriging appears very promising as a flexible, off-the-shelf regression framework
- Gives smooth, non-parametric fits for $C(t,\cdot)$
- Emphasizes the interpolation vs. smoothing aspect of metamodeling
- Easy implementation via public R packages
- Order of magnitude slower than a Least-Squares model (not important if simulations are the bottleneck)

- Batching has minimal effect on performance (but major effect on speed)
- (Random) space-filling designs allow to reduce size of design by a factor of 3-5
- Compared to standard LSM this reduces simulation budget by 25-50%
- Adaptive sequential designs
 - Yield further substantial savings (up to an order of magnitude)
 - Significant regression overhead as must fit multiple (kriging) metamodels
 - Worth it if in high dimensions d > 3 and simulation budget is very constrained

Bermudan Max Call $(\max(X_1, X_2) - K)_+$

- It is often nontrivial to specify a good domain \mathcal{X}'
- This is the advantage of the empirical design
- Sequential designs really begin to shine



- Finding conditional expectations is a metamodeling problem
- Can squeeze (a lot) of extra efficiency by jointly targeting experimental design + regression
- Lots more opportunities in this direction
- e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)
- Also more general control problems (optimal switching, sequential games, et cetera)

The Future

- Finding conditional expectations is a metamodeling problem
- Can squeeze (a lot) of extra efficiency by jointly targeting experimental design + regression
- Lots more opportunities in this direction
- e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)
- Also more general control problems (optimal switching, sequential games, et cetera)

```
RMC = Regression + Stochastic Grid
```

- Finding conditional expectations is a metamodeling problem
- Can squeeze (a lot) of extra efficiency by jointly targeting experimental design + regression
- Lots more opportunities in this direction
- e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)
- Also more general control problems (optimal switching, sequential) games, et cetera)

RMC = Regression + Stochastic Grid

THANK YOU!

References

JPC. KLEIJNEN Design and Analysis of Simulation Experiments, 2nd Edition, Springer, 2015.

CKI. WILLIAMS AND CE. RASMUSSEN Gaussian processes for machine learning, MIT Press. 2006.

M. KOHLER, A review on regression-based Monte Carlo methods for pricing American options, in Recent Developments in Applied Probability and Statistics, Springer, 2010, pp. 37-58.

BECT, J., GINSBOURGER, D., LI, L., PICHENY, V., AND VAZQUEZ, E., Sequential design of computer experiments for the estimation of a probability of failure. Statistics and Computing, 22(3), 773–793, (2012).

R. GRAMACY AND M. LUDKOVSKI Sequential Design for Optimal Stopping Problems SIFIN 6(1), 2015, pp. 748-775

M. LUDKOVSKI Kriging Metamodels for Bermudan Option Pricing, preprint, 2015 arXiv:1509.02179

R. HU AND M. LUDKOVSKI Sequential Design for Ranking Response Surfaces, preprint, 2015.

arXiv:1509.00980

Require: N – number of initial grid points

- 1: $\mathfrak{S}_{\tau} \leftarrow \mathcal{X}$
- 2: **for** $t = T 1, T 2, \dots, 0$ **do**
- $k \leftarrow 0$ 3:
- Generate an initial grid $\{x_t^{1:N}\}$, and corresponding classifier $\mathfrak{S}_{+}^{(0)}$ 4:
- 5: while the current grid needs refining do
- 6: $k \leftarrow k + 1$
- Generate new grid point(s) $\{x_t^{(k),n'}\}\ n'=1,\ldots,N^{(k)}$ 7:
- Simulate forward trajectories $x_{t+1:T}^{(k),1:N^{(k)}}$. Using $\hat{\mathfrak{S}}_{t+1:T}$ find $y^{(k),1:N^{(k)}}$ 8:
- Update the classifier to $\mathfrak{S}_t^{(k)}$ using new samples $(\mathbf{X}_t^{(k)}, \mathbf{y}^{(k)})^{1:N^{(k)}}$ 9:
- (Update the classifiers $\hat{\mathfrak{S}}_{t+1:T-1}$ using $x_{t+1:T-1}^{(k),1:N^{(k)}}$) 10:
- Save the overall grid $\{x_t\} \leftarrow \{x_t\} \cup \{x_t^{(k),1:N^{(k)}}\}$ 11:
- end while 12:
- 13: Generate final estimate of the classifier at time step t, \mathfrak{S}_t
- 14: end for
- 15: Simulate forward trajectories $X_{0:T}^n$ from $X^n = x_0$ using $\hat{\mathfrak{S}}_{0:T}$
- 16: **return** $V(0, x_0) \simeq \frac{1}{N} \sum_{n=1}^{N} h_{\tau^n}(X_{\tau^n}^n)$
- 17: **return** Estimated policy $\{\hat{\mathfrak{S}}_{0:T}\}$.

Sequential Design for Regression Monte Carlo

Generate the grids adaptively online. [Vanilla RMC re-uses the grids during forward simulations. We regenerate fresh paths at each step]

- Start with initial grid $\mathcal{Z}^{(n_0)} \equiv \{x_t^{1:n_0}\}$
- Build initial approximation $\mathfrak{S}_t^{(n_0)}$
- LOOP for $k = n_0, n_0 + 1, ...$
 - Identify promising regions
 - Generate new data $\{x_{t:T}^{k+1}\}$ and costs-to-go $y_t^{k+1} = h(x_{t+1}^k) h(x_t^{k+1})$.
 - Update the fit to $\mathfrak{S}_t^{(k+1)}$
- END LOOP
- Repeat above at each time-step t = T 1, ..., 1

