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RMC  Contributions
Bermudan Option Pricing/ Optimal Stopping

@ State process X, payoff h(t, X;)
@ Discrete-time: t=1,2,... horizon T
@ Value function V(t, x) = sup, -7 E¢ x [A(7, X7)]
@ Optimization is over stopping times 7
@ Solution: 7* = inf{t : X; € S;}AT. Stopping region:
S ={x: V(t,x)=h(t x)}
@ eg (X;) is GBM; h(t, x) = e (K — x), — Bermudan Put
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RMC Contrbutions
Stopping Rule via Timing Value
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@ Stopping decision is characterized by &; = {x : T(t,x) < 0}
@ To find 7%, it’s sufficient to evaluate the conditional expectation,
i.e. approximate the sign of T(¢,-)fort=T-1,T-2,...,0
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RMC _Contributions
Conditional Expectation

@ Input: Markov process X with state space X & (path-) Functional
h(X)

@ Output: the conditional mean map x > f(x)

@ Generalizes the problem of pointwise estimates at a fixed x

@ Appears as a building block:

Optimal switching/impulse control
XVA

BSDEs

Capital Requirements/Insurance

v vy VvYy
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RMC _Contributions
Regression Monte Carlo

|

@ Classical Monte Carlo for a fixed xp: f(xo) NZN h(x) where
x" are N simulated paths

@ Need to be able to predict f(x) forany x € X

@ The state space X" is multi-dimensional and continuous
— Construct a grid x*N and borrow information spatially
@ Statistical regression: + interpolate
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RMC _Contributions
RMC for Optimal Stopping

@ Backwards induction in time (&7 = {x : h(t, x) > 0})

° stopping sets: S, 1.7

Starting at X; = x, simulate trajectory X{ ;.1 and take
7 =inf{s>t: XY € Gs}

Pathwise future payoff y := h(7’, X¥) satisfies

& Yy =C(t,x) +e(x)

where C(t, x) = T(t, x) + h(t, x) is the continuation value
@ Now generate a stochastic grid (x/"))_, and paths x¥.;
@ Obtain a sample {x;, y;}"V
° C(t,-) and set &; := {x : C(t,x) — h(t, x) < 0}
@ Popularized by Longstaff & Schwartz (2001)
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RMC _Contributions
Metamodeling

AIM: Build an approximation of C(t, -)
@ Choose an approximation architecture ‘H and loss function L
@ Generate the grid xt“N: Experimental Design
@ Set C(t,-) = argming 4, L(C; (x, y)'*N)
@ Repeatovert=T-1,T—-2,...
Traditionally:

@ Data is generated using the transition density of X
(“path-simulation”)

@ Least-Squares parametric regression, i.e.
H = span(Bj(x),i=1,...,r)
@ (The implied loss function is Eg x, [{C(X:) — C(X)}3))
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RMC _Contributions
What is Metamodeling?

@ Classical regression — data is given and try to fit the “best curve”

@ In metamodeling generating data (through efficient simulations) is
part of the solution

@ Also, typically look for a non-parametric model (dense H)

@ Goes by many other names: response surface modeling,
statistical learning, DACE (design and analysis of computer
experiments), emulation

@ Used extensively in machine learning; ,
computational statistics

@ See eg Kleijnen (2015), Williams and Rasmussen (2006), Powell
and Ryzhov (2012)

@ Connects to CS, , stats communities (language barriers!)
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RMC Contrbutions
Improving RMC

@ Main concerns are Speed/memory — convergence of RMC is slow;
often need > 10° paths to obtain a good estimate

@ Desire ability to handle a “black-box” setting, €.g. 5-D system
with implicit dynamics, and limited known structure

@ Timing optionality is now embedded in a ton of contracts — wish to
have a “universal” algorithm

@ Traditional methods offer few performance guarantees
(eg. sensitive to the choice of basis functions) and are hard to trust
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RNC Contributions
Contributions

@ There has been extensive ongoing research on better
regressions: Belomestny, Bouchard, Gobet, Kohler, Oosterlee,
Stentoft, Tompaidis, ...

@ Also analysis of error propagation through dependent regressions:
Egloff (2004), Gobet and Warin (2006), Belomestny (2011),
Gerhold (2011), Kohler (2012), Zanger (2013)
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RNC Contributions
Contributions

@ There has been extensive ongoing research on better
regressions: Belomestny, Bouchard, Gobet, Kohler, Oosterlee,
Stentoft, Tompaidis, ...

@ Also analysis of error propagation through dependent regressions:
Egloff (2004), Gobet and Warin (2006), Belomestny (2011),
Gerhold (2011), Kohler (2012), Zanger (2013)

@ Contribution 1: investigate impact of RMC experimental designs
and suggest several (improved) choices

@ Contribution 2: propose use of kriging metamodels

@ RMC is often called Least Squares Monte Carlo. This puts
misplaced narrow emphasis on a specific regression framework,
and tends to ignore the design aspect. We advocate a shift in
terminology to better align with the underlying problem.
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RMC _ Contributions
Modeling Conditional Expectation

Must impose some structure on f (X is a "nice" process, so f is
"smooth")

@ Project onto basis functions: f(x) = >>7 | a;H(x)

@ Smoothing spline (piecewise cubic)

@ Piecewise linear

@ Piecewise constant f(x) = > ; ail(xery

@ Fully nonparametric (kernel): f(x) = 3=, K(x, x')y’

@ Gaussian process
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Batching
Stochastic Kriging

@ Data-generating process Y(x) = C(t, x) + (x) where
e(x) ~ N(0,0%(x))

@ Assume the continuation value C(t,-) lives in the function space
Hyi — Gaussian RKHS

@ Means C(t, ) is a realization of a Gaussian random field with a
covariance structure defined by K, H = span(K(-,x) : x € X)

e K(x,x") = E[f(x)f(x")] controls the spatial decay of correlation,
i.e. smoothness of C(t, )

@ e.g Gaussian kernel K(x, x') = 2 exp(—||x — x'||?/6?) — elements
of Hx are C*, with lengthscale ¢ and fluctuation scale 7.

e Use L2 projection: C(t,-) = argminggy SN (C(x') — y')2;
@ Representer theorem implies that C(t, x) = SN, w;K(x, x')
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o Kriging Regression Designs _Examples  IREEUE
Stochastic Kriging

@ Think of C(t,-) as a random element in Hx with a Gaussian prior
C(t,x) ~ N(0,72)

@ The posterior conditional on G = (x, y)"*N is also Gaussian

@ Marginally C(t, x)|G ~ N(m(x), v3(x))

m(x) = k(x)"(K+ %)y
v(x,x') = K(x,x') — k(x)T(K+ )" Tk(x')

® Kj=K(x',x)), £ = diag(c?(x')), ki = K(x, x")
@ Linear model in the infinite basis expansion defined by K
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Kriging Example 1
@ The posterior is a measure on Hg (i.e function-valued)
@ Visually has a “football” shape— v?(x) has local minima at x”’s.
@ The mean m(x) is a linear combination of kernel eigenfunctions
centered at design sites

@ Outside the domain X, revert to prior m(x) — 0, v3(x) — 7
@ Below: § =2, 7 = 1.5,02(x) = 0.22

2
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Kriging Example 2
@ Global consistency — converge to the truth as N — oo

@ Optimized Matern-5/2 kernel
K(x,x';7,6) = 72(1 + (V5 +5/3)|x = x'||3) - e~ V5Ix=x'lo

4'7,;
o | - \_\’.r
o
©
- 2 4 N
- AN
o NS
i N
-/ Truth X
= S 4
< =~ GP(e=1.88,1"=0.723)
+7 Data -+
: T T T T
0 2 4 6
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Batching
Fitting a GP

@ Need to know the kernel hyperparameters — 7, 4, et cetera. Use
MLE (nonlinear optimization problem).

@ ¢ is the lengthscale — correlation decay
@ 72 is the process variance — has analytic MLE once 6 is known

@ GPis compared to e.g LM; complexity is for a
design of size N

@ Allows a lot of analytic formulas to understand the fit and its
uncertainty

@ Kriging is becoming the gold standard in the simulation/DACE
communities

@ Used DiceKriging package in R — off-the-shelf use
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Batching
Simulation Noise
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Figure: Left: scatterplot of (x, Hy(X*) — h(t, x)) over 10,000 distinct x € R... Right: Histogram
of N = 200 pathwise future payoffs y" ~ H;(X*) starting at x = 35 in a 1-D Bermudan Put
problem; t = 0.6. The vertical dashed line indicates the empirical mean

E[H;(X*)|X; = 35] ~ Ave(y'N) = 5.49. Note that in 24 out of 200 scenarios, the payoff y” was
zero, creating a point mass in the distribution of H;(X*) and generating a significant negative
skew. Other moments were StDev(y'N) = 2.45, Skew(y'"N) = —1.28 and Max(y":N) = 9.87.
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Batching
Simulation Noise

@ Knowing the distribution of simulation noise =(x) is fundamental
for meta-modeling

@ Simulation noise is highly state-dependent in RMC
@ Also, distribution can be skewed/far from Gaussian

° : treat it as a constant o2 (so-called “nugget”), can
estimate along with other kernel hyper-parameters
) : build an empirical estimate through replicating

simulations at a fixed site x
@ (Resembles a Monte Carlo forest)
° : model x — 02(x) via an auxiliary metamodel
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Batching
Batching

@ Generate /// independent realizations y() ~ Y, of pathwise
payoffs starting at X; = x

e Set the average y(x) = & >V, y((x)

@ Empirical 72(x) := 5 M, (v (x) — y(x))?

@ The averaged simulations still follow the same statistical model but
with signal-to-noise ratio improved by factor of M

@ Size of macro-design 2’ is N/M — much faster fitting
@ Also, Y has almost-Gaussian simulation noise
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i
Batched Kriging Metamodel for T(t,-)
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Figure: LHS design Z of size N = 3000 with M = 100 replications. The vertical “error” bars
indicate the 95% quantiles of the simulation batch at x, while the dotted lines indicate the 95%
credibility interval (CI) of the kriging metamodel fit.

Ludkovski Adaptive RMC



Batching
Deterministic Kriging

e If Mis very large, 72(x)/M =~ 0 and can view Yy as deterministic
@ Metamodel becomes an interpolator
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Figure: The boxplots summarize the distribution of y(™(x")’s, m = 1,..., M = 1600. The dots

indicate the batch means y(x™) which are exactly interpolated by the two meta-models.
Z' = {30, 32, 34, 35, 36, 38}.
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Regression Designs Sequential Design

Regression Designs

Based on S;|S Uniform in [30, 40]

30 32 34 36 38 30 B2
s_t

Monte Carlo forest
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Adaptive Grid
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Sequential Design
Experimental Design

@ The meta-model should learn C(t,-) — Z should cover the domain
X

@ Space-filling designs — lattice, low-discrepancy (Sobol)
@ LHS Latin Hypercube sampling: random space-filling
@ User must specify the effective X’ (typically a rectangle)
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Sequential Design
Experimental Design

@ The meta-model should learn C(t,-) — Z should cover the domain
X

@ Space-filling designs — lattice, low-discrepancy (Sobol)

@ LHS Latin Hypercube sampling: random space-filling

@ User must specify the effective X’ (typically a rectangle)

@ The design should reflect the underlying (X;)

@ Empirical sampling: Z is constructed by drawing from X;

@ Automatically has the right “shape”

@ This is the standard approach. Sensitive to Xj (e.g. OTM Puts)

(Optimal Design is S0 heuristics are common)
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Regression Designs Sequential Design
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Figure: Three different designs for fitting a kriging metamodel of the continuation value. Top

panels show the fitted AT(t, -) as well as the distinct design sites x"N'. Middle panels plot the
corresponding surrogate standard deviation v(x). Bottom panels display the loss metric ¢(x; Z).



Sequentia Design
Adaptive Design

@ Recall that aim to learn the sign of T(t,-)

@ Gradually grow 29 k= Ny,...,N

@ Add new locations greedily according to acquisition function
xk*1 = argmax Ely(x)

@ Favor points where m*)(x) ~ 0 (close to zero-contour) or v{¥)(x)
is large (reduce uncertainty)

@ Loss from making the wrong stopping decision at (¢, x) is

U(x; Z) = /R Y = h(t, ) {m(x)<n(tx)<y U y<h(tx)<m(x)3Mx(dy)
@ Analytic expression for
El(x) := E[(K) (x) — ekt (x)| 2(K) | xk+1 = x]
@ ZC-SUR strategy: maximizes stepwise expected reduction in loss
@ See Gramacy-L. (SIFIN 2015)

Ludkovski Adaptive RMC



Sequentia Design
Sequential Design: K = 20

Initialize with a LHS design z(20)
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Sequential Design
Sequential Design: K = 30

Zoom to the stopping boundary
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Sequential Design
Sequential Design: K =40

Prefer regions that are more likely for X;
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Examples Summary Conclusion

Optimal Stopping for a 2D Stoch Vol Model

|

ZC-SUR LHS

|

Figure: Adaptive vs LHS designs. Bermudan Put e="(100 — X;); with a Heston SV model.
Both designs used N = 10000 simulations. Color-coded according to T (¢, x); contour indicates
the stopping boundary.
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Summary Conclusion
Comparison in 1-D GBM Put

Batch Size LHS Spline LHS Kriging Emp Kriging Seq Kriging
M=3 2.306 2.304 2.306 2.303
M=8 2306 2.306 2.308 2.305

M=20 2292 2.305 2.286 2.295
M=50 2.302 2.303 2.302 2.309
M =100 2.302 2.303 2.304 2.311
M =250 2.304 2.304 2.303 2.309

Table: Performance of different DoE approaches to RMC in the 1-D
Bermudan Put setting, h(t, x) = e~"(40 — x)... All methods utilize

|Z;| = 3000. The LHS input space was X = [25,40]. Results are based on
averaging 100 runs of each method, and evaluating V(0, Xp) on a fixed
out-of-sample database of N,,; = 50,000 scenarios.
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Examples Summary Conclusion

2D Examples
Method V/(0,X;) (StDev.) #Sims Time
Brockwell Rhambarat SV5
LSM N=5.10* 1598  (0.04) 25.10° 24
LSM N =1.25-10° 16.38 (0.03) 6.25-10% 52
LHSkm N =2500 16.07 (0.16) 1.07-10% 25
LHSkm N =10000 16.48 (0.06) 48-10° 168
SURkm N=4000 16.42  (0.11) 1.67-10° 65
Agrawal, Juneja and Sircar
LSM N=5.10* 18.63 (0.03) 1.0-108 25
LSM N=1.25.10°> 18.81 (0.02) 25.10% 60
LHSkm N =2500 18.79 (0.04) 0.20-108 11
LHSkm N =10000 18.88 (0.02) 0.81-10% 53
SURkm N =4000 18.86 (0.02) 0.35-10% 64
SURkm N =10000 18.90 (0.01) 0.80-108 103
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Summary Conclusion
Kriging Performance

@ Kriging appears very promising as a flexible, off-the-shelf
regression framework

@ Gives smooth, non-parametric fits for C(t, -)

@ Emphasizes the aspect of
metamodeling

@ Easy implementation via public R packages

@ Order of magnitude slower than a Least-Squares model (not
important if simulations are the bottleneck)
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Summary Conclusion
Experimental Design Performance

@ Batching has minimal effect on performance (but major effect on
speed)

@ (Random) space-filling designs allow to reduce size of design by a
factor of 3-5

@ Compared to standard LSM this reduces simulation budget by
25-50%
@ Adaptive sequential designs
» Yield further substantial savings (up to an order of magnitude)
» Significant regression overhead as must fit multiple (kriging)
metamodels

» Worth it if in high dimensions d > 3 and simulation budget is very
constrained
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Srumey Coei=n
Bermudan Max Call (max(Xi, Xz) — K)+

@ ltis often nontrivial to specify a good domain X’
@ This is the advantage of the empirical design
@ Sequential designs really begin to shine

90 100 110 120 130
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Summary - Conclusion
The Future

@ Finding conditional expectations is a metamodeling problem

@ Can squeeze (a lot) of extra efficiency by jointly targeting
experimental design + regression

@ Lots more opportunities in this direction
@ e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

@ Also more general control problems ( , sequential
games, et cetera)

RMC = +
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Summary - Conclusion
The Future

@ Finding conditional expectations is a metamodeling problem

@ Can squeeze (a lot) of extra efficiency by jointly targeting
experimental design + regression

@ Lots more opportunities in this direction
@ e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

@ Also more general control problems ( , sequential
games, et cetera)

RMC = Regression + Stochastic Grid
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Summary - Conclusion
The Future

@ Finding conditional expectations is a metamodeling problem

@ Can squeeze (a lot) of extra efficiency by jointly targeting
experimental design + regression

@ Lots more opportunities in this direction
@ e.g. adapt to the BSDE numerical algorithms (Bender, Gobet)

@ Also more general control problems ( , sequential
games, et cetera)

RMC = Regression + Stochastic Grid

THANK YOU!
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Examples Summary Conclusion

Require: N — number of initial grid points

1: 61« X
2: fort=T-1,T—-2,...,0do
3: k<0
4 Generate an initial grid {x;V}, and corresponding classifier G(O)
5 while the current grid needs refining do
6: K<+ k+1
7: Generate new grid point(s) {x"} n’ ., NK)
8 Simulate forward trajectorles xt(+)1 TN( ) Usmg Siir.7 find y* N
9: Update the classifier to &) using new samples (x{* (k))”\’ Y
10: (Update the classifiers &,.1.7—1 using x,(f:1 1TN(1))
11: Save the overall grid {x:} + {x:} U {xt )t Nm}

12:  end while

13: Generate final estimate of the classifier at time step t, &;
14: end for

15: Simulate forward trajectories X{+ from X" = xo using &o.7
16: return V(0,x0) =~ & SN | hoa(XD)

17: return Estimated policy {So.7}.
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Summary Conclusion
Sequential Design for Regression Monte Carlo

Generate the grids adaptively online. [Vanilla RMC re-uses the grids during forward

simulations. We regenerate fresh paths at each step]

Start with initial grid Z(™) = {x"*}

Build initial approximation &™)
LOOP for k = ng,ng + 1, ...
» Identify promising regions
» Generate new data {x/+'} and costs-to-go
VI = h(xe0) = (),
> Update the fit to &)
END LOOP

Repeat above at each time-stept =T —1,...,1
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