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Introduction

Social interactions and social networks

Strategic vs Random network formation

(]

Popular models: Erd6s-Rényi, ERGM

Microeconomic foundations

e Estimation is computationally burdensome
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Erd6s-Rényi Graph Model

@ Given n nodes. Two nodes are linked with probability p.

@ Edges are independent of each other. That is, if A and B are
friends, B and C are friends, it does not provide any
information whether A and C are friends.

@ Note that there is no spatial dependence in the Erdos-Rényi
graph model.
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Exponential Random Graph Model (ERGM)

Probability of observing network g is

exp |1, futile)|
Sueg P | L Oitilw)]

m(g,0) =

@ 0 are parameters

o t,(g) are statistics of the network g

Normalizing constant

K
c(6) = exp [Z O tk(w)]
k=1

weg
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1. Erdés-Rényi Model

exp [f1t1(g)]
c(9)

t1(g) = >_; ; &ij = # links (total connectivity)

m(g,0) =

2. Strauss Model

exp [01t1(g) + Oat2(g)]

m(g,0) = (0)

t1(g) = # links; t2(g) = >_; ; « 8iigjk&ik = # triangles (friends in
common)
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Network Formation Model

@ Population of n players

@ Type (observable) of player i is 7; € @, X; (gender,
education, income, etc). 1

@ Adjacency matrix g, with entry

)1 ifiandj are linked
& = 0 otherwise

@ Undirected network: gj = gji. (by convention gj = 0 for all /)

'E.g. {male, female} x {low income, medium income, high income}
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Preferences

@ Utility depends on direct connections but also link
externalities 2

n n n n n
ui(g,7)=>_a(m, Tj)é’ij“"% SN gijgijr% > sigikauis

j=1 j=1 k=1 j=1 k=1

where o : @7, X x @7, X — R and g € R.
@ Other externalities, e.g. any finite subgraph

o Heterogeneous externalities, e.g. 3(7;,7;), v(7i,7;) or
B(7i, 7, 7k), ¥(7i, 7}, Tk ), more technically involved

2An externality is the cost or benefit that affects a party who did not choose
to incur that cost or benefit.
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Preferences: Interpretation

o o7, 7j) differentiates the likelihood of forming a link between
i and j depending on the types of players / and j, e.g. race,
gender, age etc.

o Note that D7 1 > ) 1 8ijgjk = 2./ 1 8ij >_k—1 Gjk- For
individual i, when he forms a link to j, he also considers how
many friends j has: >, gi«.

@ / may be interested in linking popular kids, so the effect of j
having many friends will be positive; or i could be afraid that
since j has many friends he will not have time to spend with /
so that in that case it will be a negative effect.

@ Also note that 2}7:1 ZZ:I 8ii8ik&ki = 2}7:1 8ij Zk 8ik8Bkis
where >, gikgki denotes the number of mutual friends
between i and j.
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Preferences: Example of Homophily

Two finite types (e.g. gender) and homophily 3
ajj = a7, 75) = V — (71, 7))

Cost of direct links is:

o ) c ifri=1
Ti,Tj) =
J C ifr#m7

3Homophily is the tendency of individuals to associate and bond with similar
others. The opposite of homophly is heterophily.
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Network Formation Model

Equilibrium: A network g is pairwise stable with transfers if:

Q gj=1=uig,7)+uig,71)>ulg—ij,7)+ ui(g — ij,7);

2] &ij =0= U,'(g,T)—l-Uj(g,T) > Ui(g+ij,7)+Uj(g+U,T);

@ g+ ij: network g with the addition of link gj;;

@ g — ij: network g without link gj;.
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Sequential network formation

@ In each period t a pair of individuals meet with probability
pij > 0

@ Upon meeting, they decide whether to form a link by
maximizing the sum of their utility

@ Agents are myopic

Assumption 1. The meeting process does not depend on the
network, and p;; > 0 for all ij and i.i.d. over time

Assumption 2. Individuals receive a logistic matching shock
before they decide whether to form a link (i.i.d. over time and
players)
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Equilibrium Characterization

There exists a potential function Q,(g; a, ) that characterizes the
incentives of all the players in any state of the network

Zaugu > Zgugjk+6 > gk (1)

ij,k ij,k

Butts (2009), Mele (2017), Badev (2013), Chandrasekhar and Jackson (2014)

Intuition: For any gj;
Qn(g:7) — Qnlg — if;7)
= ui(g, 7) + uj(g,7) — [ui(g — ij, ) + uj(g — ij,7)],

and thus Q, by definition is the potential function. Pairwise stable
(with transfers) networks <= local maxima of Q,
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Long-run Convergence

In the long run, the model converges to the stationary dist. m,:
exp [@Qn(g: @, B)]

weg &P [Qn(w; a, B)]

= exp {n2 [Tn(gy a, 5) - 77/)17(047 6)]} )

Wn(g;aaﬁ) = Z

where

R@m@z%@@mm

(e, B) = % log > _ exp [n° Th(w; o, B)] (2)

weg

Problem: G contains 2(3) networks!

For n = 20, there are 2199 ~ 1.569275 x 10° networks



To show this, we only need to check the detailed balance condition
since the network formation process is a Markov chain. That is, we
need to show that

Peg'mg = Pergmyr, (3)
where
Pegr = P(Gry1 =g'|G: = g), (4)
and
mg = (Gt = g), (5)

where 7 is the stationary distribution that we will show is given by
the ERGM probability distribution.
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Let g = (1,g-j) and g’ = (0,g_j). Note that

1

P(Gij =0/G_; = gfij) = 11 ebQ’ (6)

since the shocks are logistic. We can compute that

) eQl.e—j)
Pesme = Pm: = )P(Gy = 0/G-; = £-5) 5= o
g
1 eQ(]':g*fj)
=P(m: = ij) AQ
1+eAQY eQ(g)
eAQ  oQ(0g—y)
= P(mt = ’J) AQ
1+e Zg eQ(g)
eQ(0.g-j)

= ]P(mt = IJ)P(GU = 1‘G_U = g_U)m = Pg/gﬂ'g/.
g
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MC-MLE

Lemma

Fix vectors (a1, f1) and (az, B2). Then

2
en wn(alugl) 5 . _ .
prameewy Rl Talioionfa)=Tnlioz 2)] (7)

where K, 5, is the expectation computed according to
Tn (g7 ag, /82)

= Estimate the ratio of constants using Monte Carlo

Simulate R networks g, ..., g(®) from (-, az, 2)

Raz,8, (01, B1) = R ZeXp{ [Tn <g(r); 041>Bl> —Th (g(r); 062,52)} }

— en ¢n(0¢1751)*’7 ¢n(042,/52)
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MC-MLE

Let 6 = («a, B).
Find 0, by maximization of log-likelihood
Omie = arg maaxé(é?)
= argmax {£(6) — constant}
= argmax {£(0) — ((0o)}

If you subtract a constant, the maximizer does not change
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MC-MLE

£(0) — £(6o)

= n*Ta(g,0) — n*(0) — n®To(g, 0) + n*hn(bo)

= n* {[Ta(6) — Ta(60)] — [¥n(8) — ¥n(60)]}

= n?[Ta(6) — Ta(6o)] — n* [¥n(6) — ¥n(b0)]

= n?[Th(0) — Tn(60)] — log Eg, exp {n2 [Tn(w; 8) — Th(w; 60)]}

Using Lemma above

((0) — £(bo) ~ [T(g 0) — Tn(g:6o)]

— log 5 Zexp{ { Ta(g";0) - ((’);90)}}
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MC-MLE

Therefore MC-MLE estimate is

Hmcmle = arg méax {n2 [Tn(g; 0) - Tn(g; 00)]

— log Rzexp{ [Tagi0) - T (g(’):eo)}}}

Geyer and Thompson (1992) show that as R — oo

emcmle — emle
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Variational Inference

Find approximate likelihood g,(g) to minimize

KL(gnlmn) = ) an(w)log [W]

weg
= Eg,[log gn(w)] — ”2Eqn [Th(w; a, B)] + ”2¢n(a75) >0

With some algebra we obtain

Unl(,8) 2 Ea, [Talwi s Bl + ~5H(an) = £(an),

where H(g,) = entropy of g.
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Variational Inference

Therefore the best approximating distribution g, is the solution of

Yn(a, B) = sup L(qn) = sup {Eqn[Tn(w;a,B)]+l2H(qn)}-
qn€Qn qn€Qn n ®

@ In general no closed-form solution

@ In practice we restrict the family Q,, to tractable distributions
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Mean-Field Approximation

Consider only completely factorized g,

an(g) = Hug" 1 — py)t 8,

pij = ]Eqn(gij) =Pg,(gj =1)

Therefore we get

1
2 H(qn) = “on 222[,“11'0&“11 (1 — pig) log(1 — py)]

i=1 j=1

2 ik 2k Highik n i gk Mij ekt

Eq, [Th(wia, B)] = ,an + 8 TE v 6n3
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Mean-Field Approximation

The maximization problem is now to find a matrix u(a, 3, 7)

Unla, 8,7) = 4" (e, B,7))
—  sup {Zi,jaij#ij_i_ﬂzu,k”ijlﬁk n Z,’J*Nijﬂjkﬂki

nel0,1]7 n? 2n3 v 613
1 &
53 20 luilog g + (1 — ) log(1 — i) }
i—1 j—1

o Take the first order derivatives w.r.t. each p;; and set it zero.

o We initialize the matrix u, and iterate, till it converges to a
local maximum.
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Approximation bounds

Theorem
For fixed n, the approximation error is

C3(/3,’y)n_1 < wn(avﬁ”}/) — II)/IF(/'L(()"/B”Y))
< Gi(, B,7)n 3(log n)'/® + Ca(a, B, 7)™/,

where Ci(a, 3,7), G, B,7) are constants depending only on
a, 3 and v and C3(8,~y) are constants depending only on [3,~.

The proof is based on the nonlinear large deviations (Chatterjee-Dembo 2014).
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Proposition

Assume (o, 8,7) lives on a compact set ©. Let [ (oAz,,,Bn,'“y,,)
and OMF .= (aMF  BMF AMF) pe the maximizers of £, and (MF,
respectively, in the interior of ©. Also assume that 1, and {MF
are differentiable and p,- and pMF -strongly convex in («, 3,7),

respectively, on ©, where ji, > 0 and uMF > 0. Then

1
A A 2 i log n\ ©

10, — 03| < —————=| sup Ci(a,B,7) ( >

(kn + ppF)2 [ @B 4
1 1
+ sup GG (e, Byy)n 4 |,
@,8,7€0
where C; and C, are defined as before, and || - || denotes the

Euclidean norm.
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Previous theorem gives results for a fixed n

What happens when n — oo?

Graph limits literature and large deviations Lovasz (2012), Borgs et
al (2006), (2008), Chatterjee-Diaconis (2011), Chatterjee-Varadhan (2010),
Radin-Yin (2011), Aristoff-Zhu (2014)

@ When n — oo consider a continuum of nodes on [0, 1]

Adj. matrix g is replaced by a function, known as graphon,
h:[0,1]> — [0,1]
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Assumption (Spatial ERGM). Assume that

aj =a(i/n,j/n), (9)

where a(x,y) : [0,1]> = R, and a(x,y) = a(y, x),
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Convergence of Mean-Field Approximation

Mean-field converges to exact normalizing constant in large
networks, i.e., as n — 00

A (ula, B,7)) = (e, B,7).
As a corollary, we have V(v 8,7v) — ¥(«, 5,7), where

$(, B) = sup { [ alxhe yyddy + 2 [ bty )y,
h [0,1]2 2 Jo,1p3
6 2

+2 / h(x, y)h(y, 2)h(z, x)dxdydz — = / /(h(x,y))dxdy},
[0,1]3 [0,1]2

where 1(x) := xlog(x) + (1 — x) log(1 — x), and the supremum is
over symmetric functions h : [0,1]?> — [0, 1].
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Variational problem: homogeneous model

Theorem (Chatterjee-Diaconis 2013)
If 7:W — R is a bounded continuous function, then

¥(0,B) = lim n(a,B) = sup {T(h) — Z(h)}

hew
If a(x,y) =« for all x,y
T(h) = a/ h(x,y)dxdy + s / h(x,y)h(y, z)dxdydz
[o.112 2 Jpap

.. / h(x, y)h(y, 2)h(z, x)dxdydz,

”/ / ))dxdy,

where /(x) := xlog(x) + (1 — x) log(1 — x).
The proof is based on the large deviations for Erdés-Rényi graph (Chatterjee-Varadhan
2010).
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Variational Problem: Special Cases

Theorem (homogeneous case)Let 7 be defined as above and v = 0.
Then h(x,y) =p ae

1
fim n(as 5,0) = (@, 5,0) = sup {au NS 2/(u)}
n—oo ne0,1]

@ Outside V-shaped region:
unique maximizer pu*

@ Inside V-shaped region:
two local maximizers pj < 3 < 113

© V-shaped region: there is § = g(«),
such that £(uy) = £(p3)
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Variational problem: homogeneous model

We recall the variational problem:

(e, B,7)

—supd [ aleyhx )y + 5 [ hxy)hly, 2)adye
h (0,12 2 Jjo1p

+ 2 | Hx )by, 2z x)idydz 5 [ /(h(x,y))dxdy},
[0,1]3

[0,1]?

where /(x) := xlog(x) + (1 — x) log(1 — x), and the supremum is
over symmetric functions h : [0,1]? — [0, 1].
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Edge-Star Model: Two Groups of Equal Size

Assume that a(x,y) takes two values:

a(x,y) = a1, if0<x,y<%or%<x,y<1,
Y o, if0<x<%<y<1or0<y<%<x<1.

(10)
Then, we have
0<u,v<1
where
1 1
Fu,v) = %u - 21w+ %v -1+ g(u +v)2 (12)
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Figure: Examples of maxima with § =4

(A) (a1,02) = (—3,-1); (B) (a1, a2) = (—2.5,—1.5)

The figures show the level curves of F(u, v) for different vectors of
parameters. In all the pictures 8 = 4. The global maxima are
represented as blue triangles.
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Figure: Examples of maxima with § =4

(Q) (a1, 2) = (—=2,-2); (D)(v1,2) = (—1.7,-2.3)

The figures show the level curves of F(u, v) for different vectors of
parameters. In all the pictures 8 = 4. The global maxima are
represented as blue triangles.




The specification of the model in (11) has the following properties
@ The solution (u*, v*) satisfies:

eZaH—ﬂ(u*—i—v*) e2a2+,8(u*+v*)
*

YT I @uiBe vy T T et B i)

@ If § <2, the maximization problem (11) has a unique solution
(u*, v¥).
(14em1—02)?
© Ifax+ax+ B =0and B> 55— then the
maximization problem (11) has two solutions (u*, v*) and
(1—v*,1—u*) with u* < 3 and v* < %, and
F(u*,v*) = F(1 —v*,1— u*). (Phase transition!)
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Numerical Studies

@ We consider two groups of equal size with @&; := ap and
G = o1 — Q.

@ We have performed simple Monte Carlo experiments to study
the performance of our asymptotic approximation in finite
networks. We compare the mean-field approximation with the
standard simulation-based MCMC-MLE (Geyer and
Thompson, 1992).

@ We test our approximation technique using artificial network
data. Each network is generated using a 10 million run of the
Metropolis-Hastings sampler implemented in the ergm
command in R.

@ We report results for networks with 50, 100 and 200 nodes.
The results are summarized by the median and several
percentiles of the estimated parameters.
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Table: Monte Carlo estimates, comparison of three methods. True

parameter vector is (&1, &z, 3,7v) = (-2,1,-1,-1)

n =50 MCMC-MLE MEAN-FIELD

a1 & B v &1 &2 B v
median -1.975 1.054 -1.805 -9.302 -2.016 0995 -1.000 -1.001
0.05 -2.611 0.598 -9.666 -75.431 -3.879 0.914 -1.269 -1.146
0.95 -1.489 1.397 7.348 58.765 -1.926 4276 -0.840 -0.901
n =100 MCMC-MLE MEAN-FIELD

&y ao 8 Y &1 an B v
median -2.035 1.012 -0.765 -2.199 -2.021 0.988 -0.998 -1.001
0.05 -2.312 0.730 -4.937 -52.429 -2.080 0.945 -1.031 -1.031
0.95 -1.662 1.218 3.555 32974 -1978 1.139 -0.950 -0.939
n =200 MCMC-MLE MEAN-FIELD

a1 & B v &1 &2 B v
median -1.980 1.004 -1.734 -4.100 -2.029 0.988 -0.996 -0.999
0.05 -2.212 0.876 -4.710 -27.070 -2.060 0.968 -1.002 -1.010
0.95 -1.779 1.112 2.792 31.735 -2.005 1.028 -0.969 -0.987
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Table: Monte Carlo estimates and comparisons. True parameter vector is
(dla 5‘27 5; 'V) = (_23 17 _27 3)

n =50 MCMC-MLE MEAN-FIELD

a1 G B Y a1 Go 8 Y
median -2.033 0.972 -2.239 -6.134 -2.037 0.990 -2.000 3.000
0.05 -2.643 0.614 -10.317 -73.906 -2.212 0.856 -2.652 2.865
0.95 -1.424 1.399 6.763 68.994 -1.887 1.351 -1.875 3.314
n =100 MCMC-MLE MEAN-FIELD

a1 %! B Y 31 %3 B Y
median -1.975 0.983 -2.364 3.014 -2.040 0.970 -2.000 3.000
0.05 -2.307 0.779 -7.526 -41.294 -2.108 0.908 -2.044 2.950
0.95 -1.689 1.232 2.959 48.968 -1.995 1.048 -1.939 3.049
n =200 MCMC-MLE MEAN-FIELD

a1 ao B Y a1 Go 8 Y
median -2.019 1.004 -1.869 7.701 -2.049 0976 -1.997 2.999
0.05 -2.267 0.890 -6.331 -34.052 -2.113 0.948 -2.020 2.970
0.95 -1.738 1.116 2.277 37.341 -2.017 1.071 -1.953 3.029
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Numerical Studies: Conclusions

@ While both methods seem to work well, the mean-field
approximation gives more robust estimates.

@ At the same time, as it is well known, the mean-field can be
biased.

@ The computational complexity of the mean-field
approximation is of order n?, while it is well known that the
simulation methods used in the MCMC-MLE may have
complexity of order e™ for some parameter vector (Bhamidi
et al. 2011, Chatterjee and Diaconis 2013, Mele 2017).
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The End

Thank You!
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