Approximate Variational Estimation for a Model of Network Formation

Lingjiong Zhu

Florida State University
Email: zhu@math.fsu.edu

Mathematical Finance Colloquium
 University of Southern California

April 15, 2019
Joint work with Angelo Mele (Carey Business School, Johns Hopkins University)

- (S. Chatterjee and P. Diaconis) Estimating and Understanding Exponential Random Graph Models. (2013). Annals of Statistics. 41, 2428-2461.
- (A. Mele) A structural model of dense network formation. (2017). Econometrica. 85, 825-850.
- (A. Mele and L. Zhu) Approximate variational estimation for a model of network formation. Revision Request at Review of Economics and Statistics.

Introduction

- Social interactions and social networks
- Strategic vs Random network formation
- Popular models: Erdős-Rényi, ERGM
- Microeconomic foundations
- Estimation is computationally burdensome

Erdős-Rényi Graph Model

- Given n nodes. Two nodes are linked with probability p.
- Edges are independent of each other. That is, if A and B are friends, B and C are friends, it does not provide any information whether A and C are friends.
- Note that there is no spatial dependence in the Erdős-Rényi graph model.

Exponential Random Graph Model (ERGM)

Probability of observing network g is

$$
\pi(g, \theta)=\frac{\exp \left[\sum_{k=1}^{K} \theta_{k} t_{k}(g)\right]}{\sum_{\omega \in \mathcal{G}} \exp \left[\sum_{k=1}^{K} \theta_{k} t_{k}(\omega)\right]}
$$

- θ_{k} are parameters
- $t_{k}(g)$ are statistics of the network g

Normalizing constant

$$
c(\theta)=\sum_{\omega \in \mathcal{G}} \exp \left[\sum_{k=1}^{K} \theta_{k} t_{k}(\omega)\right]
$$

Examples

1. Erdős-Rényi Model

$$
\pi(g, \theta)=\frac{\exp \left[\theta_{1} t_{1}(g)\right]}{c(\theta)}
$$

$t_{1}(g)=\sum_{i, j} g_{i j}=\#$ links (total connectivity)
2. Strauss Model

$$
\pi(g, \theta)=\frac{\exp \left[\theta_{1} t_{1}(g)+\theta_{2} t_{2}(g)\right]}{c(\theta)}
$$

$t_{1}(g)=\#$ links; $t_{2}(g)=\sum_{i, j, k} g_{i j} g_{j k} g_{i k}=\#$ triangles (friends in common)

Network Formation Model

- Population of n players
- Type (observable) of player i is $\tau_{i} \in \otimes_{i=1}^{m} \mathcal{X}_{i}$ (gender, education, income, etc). ${ }^{1}$
- Adjacency matrix g, with entry

$$
g_{i j}= \begin{cases}1 & \text { if } i \text { and } j \text { are linked } \\ 0 & \text { otherwise }\end{cases}
$$

- Undirected network: $g_{i j}=g_{j i}$. (by convention $g_{i i}=0$ for all i)
${ }^{1}$ E.g. $\{$ male, female $\} \times\{$ low income, medium income, high income $\}$
- Utility depends on direct connections but also link externalities ${ }^{2}$
$u_{i}(g, \tau)=\sum_{j=1}^{n} \alpha\left(\tau_{i}, \tau_{j}\right) g_{i j}+\frac{\beta}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} g_{i j} g_{j k}+\frac{\gamma}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} g_{i j} g_{j k} g_{k i}$, where $\alpha: \otimes_{i=1}^{m} \mathcal{X}_{i} \times \otimes_{i=1}^{m} \mathcal{X}_{i} \rightarrow \mathbb{R}$ and $\beta \in \mathbb{R}$.
- Other externalities, e.g. any finite subgraph
- Heterogeneous externalities, e.g. $\beta\left(\tau_{i}, \tau_{j}\right), \gamma\left(\tau_{i}, \tau_{j}\right)$ or $\beta\left(\tau_{i}, \tau_{j}, \tau_{k}\right), \gamma\left(\tau_{i}, \tau_{j}, \tau_{k}\right)$, more technically involved

[^0]- $\alpha\left(\tau_{i}, \tau_{j}\right)$ differentiates the likelihood of forming a link between i and j depending on the types of players i and j, e.g. race, gender, age etc.
- Note that $\sum_{j=1}^{n} \sum_{k=1}^{n} g_{i j} g_{j k}=\sum_{j=1}^{n} g_{i j} \sum_{k=1}^{n} g_{j k}$. For individual i, when he forms a link to j, he also considers how many friends j has: $\sum_{k} g_{j k}$.
- i may be interested in linking popular kids, so the effect of j having many friends will be positive; or i could be afraid that since j has many friends he will not have time to spend with i so that in that case it will be a negative effect.
- Also note that $\sum_{j=1}^{n} \sum_{k=1}^{n} g_{i j} g_{j k} g_{k i}=\sum_{j=1}^{n} g_{i j} \sum_{k} g_{j k} g_{k i}$, where $\sum_{k} g_{j k} g_{k i}$ denotes the number of mutual friends between i and j.

Two finite types (e.g. gender) and homophily ${ }^{3}$

$$
\alpha_{i j}:=\alpha\left(\tau_{i}, \tau_{j}\right)=V-c\left(\tau_{i}, \tau_{j}\right)
$$

Cost of direct links is:

$$
c\left(\tau_{i}, \tau_{j}\right)= \begin{cases}c & \text { if } \tau_{i}=\tau_{j} \\ C & \text { if } \tau_{i} \neq \tau_{j}\end{cases}
$$

[^1] others. The opposite of homophly is heterophily.

Network Formation Model

Equilibrium: A network g is pairwise stable with transfers if:
(1) $g_{i j}=1 \Rightarrow u_{i}(g, \tau)+u_{j}(g, \tau) \geq u_{i}(g-i j, \tau)+u_{j}(g-i j, \tau)$;
(2) $g_{i j}=0 \Rightarrow u_{i}(g, \tau)+u_{j}(g, \tau) \geq u_{i}(g+i j, \tau)+u_{j}(g+i j, \tau)$;

- $g+i j$: network g with the addition of link $g_{i j}$;
- $g-i j$: network g without link $g_{i j}$.

Assumptions

Sequential network formation

- In each period t a pair of individuals meet with probability $\rho_{i j}>0$
- Upon meeting, they decide whether to form a link by maximizing the sum of their utility
- Agents are myopic

Assumption 1. The meeting process does not depend on the network, and $\rho_{i j}>0$ for all ij and i.i.d. over time

Assumption 2. Individuals receive a logistic matching shock before they decide whether to form a link (i.i.d. over time and players)

Equilibrium Characterization

Proposition

There exists a potential function $Q_{n}(g ; \alpha, \beta)$ that characterizes the incentives of all the players in any state of the network

$$
\begin{equation*}
Q_{n}(g ; \alpha, \beta)=\sum_{i, j} \alpha_{i j} g_{i j}+\frac{\beta}{2 n} \sum_{i, j, k} g_{i j} g_{j k}+\frac{\gamma}{6 n} \sum_{i, j, k} g_{i j} g_{j k} g_{k i} \tag{1}
\end{equation*}
$$

Butts (2009), Mele (2017), Badev (2013), Chandrasekhar and Jackson (2014)
Intuition: For any $g_{i j}$

$$
\begin{aligned}
& Q_{n}(g ; \tau)-Q_{n}(g-i j ; \tau) \\
& =u_{i}(g, \tau)+u_{j}(g, \tau)-\left[u_{i}(g-i j, \tau)+u_{j}(g-i j, \tau)\right]
\end{aligned}
$$

and thus Q_{n} by definition is the potential function. Pairwise stable (with transfers) networks \Longleftrightarrow local maxima of Q_{n}

Long-run Convergence

Theorem

In the long run, the model converges to the stationary dist. π_{n} :

$$
\begin{aligned}
\pi_{n}(g ; \alpha, \beta) & =\frac{\exp \left[Q_{n}(g ; \alpha, \beta)\right]}{\sum_{\omega \in \mathcal{G}} \exp \left[Q_{n}(\omega ; \alpha, \beta)\right]} \\
& =\exp \left\{n^{2}\left[T_{n}(g ; \alpha, \beta)-\psi_{n}(\alpha, \beta)\right]\right\},
\end{aligned}
$$

where

$$
\begin{gather*}
T_{n}(g ; \alpha, \beta)=\frac{1}{n^{2}} Q_{n}(g ; \alpha, \beta) \\
\psi_{n}(\alpha, \beta)=\frac{1}{n^{2}} \log \sum_{\omega \in \mathcal{G}} \exp \left[n^{2} T_{n}(\omega ; \alpha, \beta)\right], \tag{2}
\end{gather*}
$$

Problem: \mathcal{G} contains $2\binom{n}{2}$ networks!
For $n=20$, there are $2^{190} \approx 1.569275 \times 10^{57}$ networks

To show this, we only need to check the detailed balance condition since the network formation process is a Markov chain. That is, we need to show that

$$
\begin{equation*}
P_{g g^{\prime}} \pi_{g}=P_{g^{\prime} g} \pi_{g^{\prime}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{g g^{\prime}}=\mathbb{P}\left(G_{t+1}=g^{\prime} \mid G_{t}=g\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{g}=\pi\left(G_{t}=g\right) \tag{5}
\end{equation*}
$$

where π is the stationary distribution that we will show is given by the ERGM probability distribution.

Let $g=\left(1, g_{-i j}\right)$ and $g^{\prime}=\left(0, g_{-i j}\right)$. Note that

$$
\begin{equation*}
\mathbb{P}\left(G_{i j}=0 \mid G_{-i j}=g_{-i j}\right)=\frac{1}{1+e^{\Delta Q}}, \tag{6}
\end{equation*}
$$

since the shocks are logistic. We can compute that

$$
\begin{aligned}
P_{g g^{\prime}} \pi_{g} & =\mathbb{P}\left(m_{t}=i j\right) \mathbb{P}\left(G_{i j}=0 \mid G_{-i j}=g_{-i j}\right) \frac{e^{Q\left(1, g_{-i j}\right)}}{\sum_{g} e^{Q(g)}} \\
& =\mathbb{P}\left(m_{t}=i j\right) \frac{1}{1+e^{\Delta Q}} \frac{e^{Q\left(1, g_{-i j}\right)}}{\sum_{g} e^{Q(g)}} \\
& =\mathbb{P}\left(m_{t}=i j\right) \frac{e^{\Delta Q}}{1+e^{\Delta Q}} \frac{e^{Q\left(0, g_{-i j}\right)}}{\sum_{g} e^{Q(g)}} \\
& =\mathbb{P}\left(m_{t}=i j\right) \mathbb{P}\left(G_{i j}=1 \mid G_{-i j}=g_{-i j}\right) \frac{e^{Q\left(0, g_{-i j}\right)}}{\sum_{g} e^{Q(g)}}=P_{g^{\prime} g} \pi_{g^{\prime}}
\end{aligned}
$$

MC-MLE

Lemma

Fix vectors $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$. Then

$$
\begin{equation*}
\frac{e^{n^{2} \psi_{n}\left(\alpha_{1}, \beta_{1}\right)}}{e^{n^{2} \psi_{n}\left(\alpha_{2}, \beta_{2}\right)}}=\mathbb{E}_{\alpha_{2}, \beta_{2}} e^{n^{2}\left[T_{n}\left(\omega ; \alpha_{1}, \beta_{1}\right)-T_{n}\left(\omega ; \alpha_{2}, \beta_{2}\right)\right]} \tag{7}
\end{equation*}
$$

where $\mathbb{E}_{\alpha_{2}, \beta_{2}}$ is the expectation computed according to $\pi_{n}\left(g, \alpha_{2}, \beta_{2}\right)$
\Rightarrow Estimate the ratio of constants using Monte Carlo
Simulate R networks $g^{(1)}, \ldots, g^{(R)}$ from $\pi\left(\cdot, \alpha_{2}, \beta_{2}\right)$

$$
\begin{aligned}
R_{\alpha_{2}, \beta_{2}}\left(\alpha_{1}, \beta_{1}\right) & =\frac{1}{R} \sum_{r=1}^{R} \exp \left\{n^{2}\left[T_{n}\left(g^{(r)} ; \alpha_{1}, \beta_{1}\right)-T_{n}\left(g^{(r)} ; \alpha_{2}, \beta_{2}\right)\right]\right\} \\
& \rightarrow e^{n^{2} \psi_{n}\left(\alpha_{1}, \beta_{1}\right)-n^{2} \psi_{n}\left(\alpha_{2}, \beta_{2}\right)}
\end{aligned}
$$

MC-MLE

Let $\theta \equiv(\alpha, \beta)$.
Find $\theta_{\text {mle }}$ by maximization of log-likelihood

$$
\begin{aligned}
\theta_{m l e} & =\arg \max _{\theta} \ell(\theta) \\
& =\arg \max _{\theta}\{\ell(\theta)-\text { constant }\} \\
& =\arg \max _{\theta}\left\{\ell(\theta)-\ell\left(\theta_{0}\right)\right\}
\end{aligned}
$$

If you subtract a constant, the maximizer does not change

$$
\begin{aligned}
& \ell(\theta)-\ell\left(\theta_{0}\right) \\
& =n^{2} T_{n}(g, \theta)-n^{2} \psi_{n}(\theta)-n^{2} T_{n}\left(g, \theta_{0}\right)+n^{2} \psi_{n}\left(\theta_{0}\right) \\
& =n^{2}\left\{\left[T_{n}(\theta)-T_{n}\left(\theta_{0}\right)\right]-\left[\psi_{n}(\theta)-\psi_{n}\left(\theta_{0}\right)\right]\right\} \\
& =n^{2}\left[T_{n}(\theta)-T_{n}\left(\theta_{0}\right)\right]-n^{2}\left[\psi_{n}(\theta)-\psi_{n}\left(\theta_{0}\right)\right] \\
& =n^{2}\left[T_{n}(\theta)-T_{n}\left(\theta_{0}\right)\right]-\log \mathbb{E}_{\theta_{0}} \exp \left\{n^{2}\left[T_{n}(\omega ; \theta)-T_{n}\left(\omega ; \theta_{0}\right)\right]\right\}
\end{aligned}
$$

Using Lemma above

$$
\begin{aligned}
\ell(\theta)-\ell\left(\theta_{0}\right) & \approx n^{2}\left[T_{n}(g ; \theta)-T_{n}\left(g ; \theta_{0}\right)\right] \\
& -\log \frac{1}{R} \sum_{r=1}^{R} \exp \left\{n^{2}\left[T_{n}\left(g^{(r)} ; \theta\right)-T_{n}\left(g^{(r)} ; \theta_{0}\right)\right]\right\}
\end{aligned}
$$

MC-MLE

Therefore MC-MLE estimate is

$$
\begin{aligned}
\theta_{\text {mcmle }}= & \arg \max _{\theta}\left\{n^{2}\left[T_{n}(g ; \theta)-T_{n}\left(g ; \theta_{0}\right)\right]\right. \\
& \left.-\log \frac{1}{R} \sum_{r=1}^{R} \exp \left\{n^{2}\left[T_{n}\left(g^{(r)} ; \theta\right)-T_{n}\left(g^{(r)} ; \theta_{0}\right)\right]\right\}\right\}
\end{aligned}
$$

Geyer and Thompson (1992) show that as $R \rightarrow \infty$

$$
\theta_{\text {mcmle }} \rightarrow \theta_{\text {mle }}
$$

Variational Inference

Find approximate likelihood $q_{n}(g)$ to minimize

$$
\begin{aligned}
K L\left(q_{n} \mid \pi_{n}\right) & =\sum_{\omega \in \mathcal{G}} q_{n}(\omega) \log \left[\frac{q_{n}(\omega)}{\pi_{n}(\omega ; \alpha, \beta)}\right] \\
& =\mathbb{E}_{q_{n}}\left[\log q_{n}(\omega)\right]-n^{2} \mathbb{E}_{q_{n}}\left[T_{n}(\omega ; \alpha, \beta)\right]+n^{2} \psi_{n}(\alpha, \beta) \geq 0
\end{aligned}
$$

With some algebra we obtain

$$
\psi_{n}(\alpha, \beta) \geq \mathbb{E}_{q_{n}}\left[T_{n}(\omega ; \alpha, \beta)\right]+\frac{1}{n^{2}} \mathcal{H}\left(q_{n}\right)=\mathcal{L}\left(q_{n}\right)
$$

where $\mathcal{H}\left(q_{n}\right)=$ entropy of q_{n}.

Variational Inference

Therefore the best approximating distribution q_{n} is the solution of

$$
\begin{equation*}
\psi_{n}(\alpha, \beta)=\sup _{q_{n} \in \mathcal{Q}_{n}} \mathcal{L}\left(q_{n}\right)=\sup _{q_{n} \in \mathcal{Q}_{n}}\left\{\mathbb{E}_{q_{n}}\left[T_{n}(\omega ; \alpha, \beta)\right]+\frac{1}{n^{2}} \mathcal{H}\left(q_{n}\right)\right\} \tag{8}
\end{equation*}
$$

- In general no closed-form solution
- In practice we restrict the family \mathcal{Q}_{n} to tractable distributions

Mean-Field Approximation

Consider only completely factorized q_{n}

$$
\begin{aligned}
q_{n}(g) & =\prod_{i, j} \mu_{i j}^{g_{i j}}\left(1-\mu_{i j}\right)^{1-g_{i j}} \\
\mu_{i j} & =\mathbb{E}_{q_{n}}\left(g_{i j}\right)=\mathbb{P}_{q_{n}}\left(g_{i j}=1\right)
\end{aligned}
$$

Therefore we get

$$
\begin{gathered}
\frac{1}{n^{2}} \mathcal{H}\left(q_{n}\right)=-\frac{1}{2 n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mu_{i j} \log \mu_{i j}+\left(1-\mu_{i j}\right) \log \left(1-\mu_{i j}\right)\right], \\
\mathbb{E}_{q_{n}}\left[T_{n}(\omega ; \alpha, \beta)\right]=\frac{\sum_{i, j} \alpha_{i j} \mu_{i j}}{n^{2}}+\beta \frac{\sum_{i, j, k} \mu_{i j} \mu_{j k}}{2 n^{3}}+\gamma \frac{\sum_{i, j, k} \mu_{i j} \mu_{j k} \mu_{k i}}{6 n^{3}} .
\end{gathered}
$$

Mean-Field Approximation

The maximization problem is now to find a matrix $\mu(\alpha, \beta, \gamma)$

$$
\begin{aligned}
\psi_{n}(\alpha, \beta, \gamma) & \geq \psi_{n}^{M F}(\mu(\alpha, \beta, \gamma)) \\
& :=\sup _{\mu \in[0,1]^{n^{2}}}\left\{\frac{\sum_{i, j} \alpha_{i j} \mu_{i j}}{n^{2}}+\beta \frac{\sum_{i, j, k} \mu_{i j} \mu_{j k}}{2 n^{3}}+\gamma \frac{\sum_{i, j, k} \mu_{i j} \mu_{j k} \mu_{k i}}{6 n^{3}}\right. \\
& \left.-\frac{1}{2 n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\mu_{i j} \log \mu_{i j}+\left(1-\mu_{i j}\right) \log \left(1-\mu_{i j}\right)\right]\right\} .
\end{aligned}
$$

- Take the first order derivatives w.r.t. each $\mu_{i j}$ and set it zero.
- We initialize the matrix μ, and iterate, till it converges to a local maximum.

Approximation bounds

Theorem

For fixed n, the approximation error is

$$
\begin{aligned}
C_{3}(\beta, \gamma) n^{-1} & \leq \psi_{n}(\alpha, \beta, \gamma)-\psi_{n}^{M F}(\mu(\alpha, \beta, \gamma)) \\
& \leq C_{1}(\alpha, \beta, \gamma) n^{-1 / 5}(\log n)^{1 / 5}+C_{2}(\alpha, \beta, \gamma) n^{-1 / 2}
\end{aligned}
$$

where $C_{1}(\alpha, \beta, \gamma), C_{2}(\alpha, \beta, \gamma)$ are constants depending only on α, β and γ and $C_{3}(\beta, \gamma)$ are constants depending only on β, γ.

The proof is based on the nonlinear large deviations (Chatterjee-Dembo 2014).

Proposition

Assume (α, β, γ) lives on a compact set Θ. Let $\hat{\theta}_{n}:=\left(\hat{\alpha}_{n}, \hat{\beta}_{n}, \hat{\gamma}_{n}\right)$ and $\hat{\theta}_{n}^{M F}:=\left(\hat{\alpha}_{n}^{M F}, \hat{\beta}_{n}^{M F}, \hat{\gamma}_{n}^{M F}\right)$ be the maximizers of ℓ_{n} and $\ell_{n}^{M F}$, respectively, in the interior of Θ. Also assume that ψ_{n} and $\psi_{n}^{M F}$ are differentiable and μ_{n} - and $\mu_{n}^{M F}$-strongly convex in (α, β, γ), respectively, on Θ, where $\mu_{n}>0$ and $\mu_{n}^{M F}>0$. Then

$$
\begin{gathered}
\left\|\hat{\theta}_{n}-\hat{\theta}_{n}^{M F}\right\| \leq \frac{2}{\left(\mu_{n}+\mu_{n}^{M F}\right)^{\frac{1}{2}}}\left[\sup _{\alpha, \beta, \gamma \in \Theta} C_{1}^{\frac{1}{2}}(\alpha, \beta, \gamma)\left(\frac{\log n}{n}\right)^{\frac{1}{10}}\right. \\
\left.+\sup _{\alpha, \beta, \gamma \in \Theta} C_{2}^{\frac{1}{2}}(\alpha, \beta, \gamma) n^{-\frac{1}{4}}\right]
\end{gathered}
$$

where C_{1} and C_{2} are defined as before, and $\|\cdot\|$ denotes the Euclidean norm.

Asymptotics

- Previous theorem gives results for a fixed n
- What happens when $n \rightarrow \infty$?
- Graph limits literature and large deviations Lovasz (2012), Borgs et al (2006), (2008), Chatterjee-Diaconis (2011), Chatterjee-Varadhan (2010), Radin-Yin (2011), Aristoff-Zhu (2014)
- When $n \rightarrow \infty$ consider a continuum of nodes on $[0,1]$
- Adj. matrix g is replaced by a function, known as graphon, $h:[0,1]^{2} \rightarrow[0,1]$

Assumptions

Assumption (Spatial ERGM). Assume that

$$
\begin{equation*}
\alpha_{i j}=\alpha(i / n, j / n), \tag{9}
\end{equation*}
$$

where $\alpha(x, y):[0,1]^{2} \rightarrow \mathbb{R}$, and $\alpha(x, y)=\alpha(y, x)$,

	α_{13}	α_{14}	α_{15}	α_{16}
	α_{9}	α_{10}	α_{11}	α_{12}
	α_{5}	α_{6}	α_{7}	α_{8}
	α_{1}	α_{2}	α_{3}	α_{4}
	0.	0.4	0.	8

Convergence of Mean-Field Approximation

Proposition

Mean-field converges to exact normalizing constant in large networks, i.e., as $n \rightarrow \infty$

$$
\psi_{n}^{M F}(\mu(\alpha, \beta, \gamma)) \rightarrow \psi(\alpha, \beta, \gamma) .
$$

As a corollary, we have $\psi_{n}(\alpha, \beta, \gamma) \rightarrow \psi(\alpha, \beta, \gamma)$, where

$$
\begin{aligned}
\psi(\alpha, \beta):= & \sup _{h}\left\{\int_{[0,1]^{2}} \alpha(x, y) h(x, y) d x d y+\frac{\beta}{2} \int_{[0,1]^{3}} h(x, y) h(y, z) d x d y d z\right. \\
& \left.+\frac{\gamma}{6} \int_{[0,1]^{3}} h(x, y) h(y, z) h(z, x) d x d y d z-\frac{1}{2} \int_{[0,1]^{2}} I(h(x, y)) d x d y\right\}
\end{aligned}
$$

where $I(x):=x \log (x)+(1-x) \log (1-x)$, and the supremum is over symmetric functions $h:[0,1]^{2} \rightarrow[0,1]$.

Variational problem: homogeneous model

Theorem (Chatterjee-Diaconis 2013)
If $\mathcal{T}: \mathcal{W} \rightarrow \mathbb{R}$ is a bounded continuous function, then

$$
\psi(\alpha, \beta) \equiv \lim _{n \rightarrow \infty} \psi_{n}(\alpha, \beta)=\sup _{h \in \mathcal{W}}\{\mathcal{T}(h)-\mathcal{I}(h)\}
$$

If $\alpha(x, y)=\alpha$ for all x, y

$$
\begin{aligned}
& \mathcal{T}(h) \equiv \alpha \int_{[0,1]^{2}} h(x, y) d x d y+\frac{\beta}{2} \int_{[0,1]^{3}} h(x, y) h(y, z) d x d y d z \\
& \quad+\frac{\gamma}{6} \int_{[0,1]^{3}} h(x, y) h(y, z) h(z, x) d x d y d z \\
& \mathcal{I}(h) \equiv \frac{1}{2} \int_{0}^{1} \int_{0}^{1} I(h(x, y)) d x d y
\end{aligned}
$$

where $I(x):=x \log (x)+(1-x) \log (1-x)$.
The proof is based on the large deviations for Erdős-Rényi graph (Chatterjee-Varadhan 2010).

Variational Problem: Special Cases

Theorem (homogeneous case)Let \mathcal{T} be defined as above and $\gamma=0$.
Then $h(x, y)=\mu$ a.e

$$
\lim _{n \rightarrow \infty} \psi_{n}(\alpha, \beta, 0)=\psi(\alpha, \beta, 0)=\sup _{\mu \in[0,1]}\left\{\alpha \mu+\frac{\beta}{2} \mu^{2}-\frac{1}{2} I(\mu)\right\}
$$

(1) Outside V-shaped region: unique maximizer μ^{*}
(2) Inside V-shaped region:
two local maximizers $\mu_{1}^{*}<\frac{1}{2}<\mu_{2}^{*}$
(3) V-shaped region: there is $\beta=q(\alpha)$, such that $\ell\left(\mu_{1}^{*}\right)=\ell\left(\mu_{2}^{*}\right)$

Variational problem: homogeneous model

We recall the variational problem:
$\psi(\alpha, \beta, \gamma)$
$:=\sup _{h}\left\{\int_{[0,1]^{2}} \alpha(x, y) h(x, y) d x d y+\frac{\beta}{2} \int_{[0,1]^{3}} h(x, y) h(y, z) d x d y d z\right.$, $\left.+\frac{\gamma}{6} \int_{[0,1]^{3}} h(x, y) h(y, z) h(z, x) d x d y d z-\frac{1}{2} \int_{[0,1]^{2}} I(h(x, y)) d x d y\right\}$,
where $I(x):=x \log (x)+(1-x) \log (1-x)$, and the supremum is over symmetric functions $h:[0,1]^{2} \rightarrow[0,1]$.

Edge-Star Model: Two Groups of Equal Size

Proposition

Assume that $\alpha(x, y)$ takes two values:

$$
\alpha(x, y)= \begin{cases}\alpha_{1}, & \text { if } 0<x, y<\frac{1}{2} \text { or } \frac{1}{2}<x, y<1, \tag{10}\\ \alpha_{2}, & \text { if } 0<x<\frac{1}{2}<y<1 \text { or } 0<y<\frac{1}{2}<x<1 .\end{cases}
$$

Then, we have

$$
\begin{equation*}
\psi(\alpha, \beta, 0)=\sup _{0 \leq u, v \leq 1} F(u, v), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
F(u, v):=\frac{\alpha_{1}}{2} u-\frac{1}{4} I(u)+\frac{\alpha_{2}}{2} v-\frac{1}{4} I(v)+\frac{\beta}{8}(u+v)^{2} . \tag{12}
\end{equation*}
$$

Figure: Examples of maxima with $\beta=4$

The figures show the level curves of $F(u, v)$ for different vectors of parameters. In all the pictures $\beta=4$. The global maxima are represented as blue triangles.

Figure: Examples of maxima with $\beta=4$

The figures show the level curves of $F(u, v)$ for different vectors of parameters. In all the pictures $\beta=4$. The global maxima are represented as blue triangles.

Proposition

The specification of the model in (11) has the following properties
(1) The solution $\left(u^{*}, v^{*}\right)$ satisfies:

$$
u^{*}=\frac{e^{2 \alpha_{1}+\beta\left(u^{*}+v^{*}\right)}}{1+e^{2 \alpha_{1}+\beta\left(u^{*}+v^{*}\right)}}, \quad v^{*}=\frac{e^{2 \alpha_{2}+\beta\left(u^{*}+v^{*}\right)}}{1+e^{2 \alpha_{2}+\beta\left(u^{*}+v^{*}\right)}} .
$$

(2) If $\beta \leq 2$, the maximization problem (11) has a unique solution $\left(u^{*}, v^{*}\right)$.
(3) If $\alpha_{1}+\alpha_{2}+\beta=0$ and $\beta>\frac{\left(1+e^{\alpha_{1}-\alpha_{2}}\right)^{2}}{2 e^{\alpha_{1}-\alpha_{2}}}$ then the maximization problem (11) has two solutions (u^{*}, v^{*}) and $\left(1-v^{*}, 1-u^{*}\right)$ with $u^{*}<\frac{1}{2}$ and $v^{*}<\frac{1}{2}$, and $F\left(u^{*}, v^{*}\right)=F\left(1-v^{*}, 1-u^{*}\right)$. (Phase transition!)

Numerical Studies

- We consider two groups of equal size with $\tilde{\alpha}_{1}:=\alpha_{2}$ and $\tilde{\alpha}_{2}:=\alpha_{1}-\alpha_{2}$.
- We have performed simple Monte Carlo experiments to study the performance of our asymptotic approximation in finite networks. We compare the mean-field approximation with the standard simulation-based MCMC-MLE (Geyer and Thompson, 1992).
- We test our approximation technique using artificial network data. Each network is generated using a 10 million run of the Metropolis-Hastings sampler implemented in the ergm command in R.
- We report results for networks with 50,100 and 200 nodes. The results are summarized by the median and several percentiles of the estimated parameters.

Table: Monte Carlo estimates, comparison of three methods. True parameter vector is $\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \beta, \gamma\right)=(-2,1,-1,-1)$

$n=50$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-1.975	1.054	-1.805	-9.302	-2.016	0.995	-1.000	-1.001
0.05	-2.611	0.598	-9.666	-75.431	-3.879	0.914	-1.269	-1.146
0.95	-1.489	1.397	7.348	58.765	-1.926	4.276	-0.840	-0.901
$n=100$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-2.035	1.012	-0.765	-2.199	-2.021	0.988	-0.998	-1.001
0.05	-2.312	0.730	-4.937	-52.429	-2.080	0.945	-1.031	-1.031
0.95	-1.662	1.218	3.555	32.974	-1.978	1.139	-0.950	-0.939
$n=200$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-1.980	1.004	-1.734	-4.100	-2.029	0.988	-0.996	-0.999
0.05	-2.212	0.876	-4.710	-27.070	-2.060	0.968	-1.002	-1.010
0.95	-1.779	1.112	2.792	31.735	-2.005	1.028	-0.969	-0.987

Table: Monte Carlo estimates and comparisons. True parameter vector is $\left(\tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \beta, \gamma\right)=(-2,1,-2,3)$

$n=50$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-2.033	0.972	-2.239	-6.134	-2.037	0.990	-2.000	3.000
0.05	-2.643	0.614	-10.317	-73.906	-2.212	0.856	-2.652	2.865
0.95	-1.424	1.399	6.763	68.994	-1.887	1.351	-1.875	3.314
$n=100$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-1.975	0.983	-2.364	3.014	-2.040	0.970	-2.000	3.000
0.05	-2.307	0.779	-7.526	-41.294	-2.108	0.908	-2.044	2.950
0.95	-1.689	1.232	2.959	48.968	-1.995	1.048	-1.939	3.049
$n=200$	MCMC-MLE				MEAN-FIELD			
	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ	$\tilde{\alpha}_{1}$	$\tilde{\alpha}_{2}$	β	γ
median	-2.019	1.004	-1.869	7.701	-2.049	0.976	-1.997	2.999
0.05	-2.267	0.890	-6.331	-34.052	-2.113	0.948	-2.020	2.970
0.95	-1.738	1.116	2.277	37.341	-2.017	1.071	-1.953	3.029

Numerical Studies: Conclusions

- While both methods seem to work well, the mean-field approximation gives more robust estimates.
- At the same time, as it is well known, the mean-field can be biased.
- The computational complexity of the mean-field approximation is of order n^{2}, while it is well known that the simulation methods used in the MCMC-MLE may have complexity of order $e^{n^{2}}$ for some parameter vector (Bhamidi et al. 2011, Chatterjee and Diaconis 2013, Mele 2017).

The End

Thank You!

[^0]: ${ }^{2}$ An externality is the cost or benefit that affects a party who did not choose to incur that cost or benefit.

[^1]: ${ }^{3}$ Homophily is the tendency of individuals to associate and bond with similar

