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Introduction

Social interactions and social networks

Strategic vs Random network formation

Popular models: Erdős-Rényi, ERGM

Microeconomic foundations

Estimation is computationally burdensome
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Erdős-Rényi Graph Model

Given n nodes. Two nodes are linked with probability p.

Edges are independent of each other. That is, if A and B are
friends, B and C are friends, it does not provide any
information whether A and C are friends.

Note that there is no spatial dependence in the Erdős-Rényi
graph model.
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Exponential Random Graph Model (ERGM)

Probability of observing network g is

π(g , θ) =
exp

[∑K
k=1 θktk(g)

]
∑

ω∈G exp
[∑K

k=1 θktk(ω)
]

θk are parameters

tk(g) are statistics of the network g

Normalizing constant

c(θ) =
∑
ω∈G

exp

[
K∑

k=1

θktk(ω)

]
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Examples

1. Erdős-Rényi Model

π(g , θ) =
exp [θ1t1(g)]

c(θ)

t1(g) =
∑

i ,j gij = # links (total connectivity)

2. Strauss Model

π(g , θ) =
exp [θ1t1(g) + θ2t2(g)]

c(θ)

t1(g) = # links; t2(g) =
∑

i ,j ,k gijgjkgik = # triangles (friends in
common)
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Network Formation Model

Population of n players

Type (observable) of player i is τi ∈ ⊗m
i=1Xi (gender,

education, income, etc). 1

Adjacency matrix g , with entry

gij =

{
1 if i and j are linked

0 otherwise

Undirected network: gij = gji . (by convention gii = 0 for all i)

1E.g. {male, female} × {low income,medium income, high income}
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Preferences

Utility depends on direct connections but also link
externalities 2

ui (g , τ) =
n∑

j=1

α(τi , τj)gij+
β

n

n∑
j=1

n∑
k=1

gijgjk+
γ

n

n∑
j=1

n∑
k=1

gijgjkgki ,

where α : ⊗m
i=1Xi ×⊗m

i=1Xi → R and β ∈ R.

Other externalities, e.g. any finite subgraph

Heterogeneous externalities, e.g. β(τi , τj), γ(τi , τj) or
β(τi , τj , τk), γ(τi , τj , τk), more technically involved

2An externality is the cost or benefit that affects a party who did not choose
to incur that cost or benefit.
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Preferences: Interpretation

α(τi , τj) differentiates the likelihood of forming a link between
i and j depending on the types of players i and j , e.g. race,
gender, age etc.

Note that
∑n

j=1

∑n
k=1 gijgjk =

∑n
j=1 gij

∑n
k=1 gjk . For

individual i , when he forms a link to j , he also considers how
many friends j has:

∑
k gjk .

i may be interested in linking popular kids, so the effect of j
having many friends will be positive; or i could be afraid that
since j has many friends he will not have time to spend with i
so that in that case it will be a negative effect.

Also note that
∑n

j=1

∑n
k=1 gijgjkgki =

∑n
j=1 gij

∑
k gjkgki ,

where
∑

k gjkgki denotes the number of mutual friends
between i and j .
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Preferences: Example of Homophily

Two finite types (e.g. gender) and homophily 3

αij := α(τi , τj) = V − c(τi , τj)

Cost of direct links is:

c(τi , τj) =

{
c if τi = τj

C if τi 6= τj

3Homophily is the tendency of individuals to associate and bond with similar
others. The opposite of homophly is heterophily.
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Network Formation Model

Equilibrium: A network g is pairwise stable with transfers if:

1 gij = 1⇒ ui (g , τ) + uj(g , τ) ≥ ui (g − ij , τ) + uj(g − ij , τ);

2 gij = 0⇒ ui (g , τ) + uj(g , τ) ≥ ui (g + ij , τ) + uj(g + ij , τ);

g + ij : network g with the addition of link gij ;

g − ij : network g without link gij .
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Assumptions

Sequential network formation

In each period t a pair of individuals meet with probability
ρij > 0

Upon meeting, they decide whether to form a link by
maximizing the sum of their utility

Agents are myopic

Assumption 1. The meeting process does not depend on the
network, and ρij > 0 for all ij and i.i.d. over time

Assumption 2. Individuals receive a logistic matching shock
before they decide whether to form a link (i.i.d. over time and
players)
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Equilibrium Characterization

Proposition

There exists a potential function Qn(g ;α, β) that characterizes the
incentives of all the players in any state of the network

Qn(g ;α, β) =
∑
i ,j

αijgij +
β

2n

∑
i ,j ,k

gijgjk +
γ

6n

∑
i ,j ,k

gijgjkgki . (1)

Butts (2009), Mele (2017), Badev (2013), Chandrasekhar and Jackson (2014)

Intuition: For any gij

Qn(g ; τ)− Qn(g − ij ; τ)

= ui (g , τ) + uj(g , τ)− [ui (g − ij , τ) + uj(g − ij , τ)] ,

and thus Qn by definition is the potential function. Pairwise stable
(with transfers) networks ⇐⇒ local maxima of Qn
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Long-run Convergence

Theorem

In the long run, the model converges to the stationary dist. πn:

πn(g ;α, β) =
exp [Qn(g ;α, β)]∑
ω∈G exp [Qn(ω;α, β)]

= exp
{
n2 [Tn(g ;α, β)− ψn(α, β)]

}
,

where

Tn(g ;α, β) =
1

n2
Qn(g ;α, β)

ψn(α, β) =
1

n2
log
∑
ω∈G

exp
[
n2Tn(ω;α, β)

]
, (2)

Problem: G contains 2(n2) networks!

For n = 20, there are 2190 ≈ 1.569275× 1057 networks
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To show this, we only need to check the detailed balance condition
since the network formation process is a Markov chain. That is, we
need to show that

Pgg ′πg = Pg ′gπg ′ , (3)

where
Pgg ′ = P(Gt+1 = g ′|Gt = g), (4)

and
πg = π(Gt = g), (5)

where π is the stationary distribution that we will show is given by
the ERGM probability distribution.
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Let g = (1, g−ij) and g ′ = (0, g−ij). Note that

P(Gij = 0|G−ij = g−ij) =
1

1 + e∆Q
, (6)

since the shocks are logistic. We can compute that

Pgg ′πg = P(mt = ij)P(Gij = 0|G−ij = g−ij)
eQ(1,g−ij )∑

g e
Q(g)

= P(mt = ij)
1

1 + e∆Q

eQ(1,g−ij )∑
g e

Q(g)

= P(mt = ij)
e∆Q

1 + e∆Q

eQ(0,g−ij )∑
g e

Q(g)

= P(mt = ij)P(Gij = 1|G−ij = g−ij)
eQ(0,g−ij )∑

g e
Q(g)

= Pg ′gπg ′ .
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MC-MLE

Lemma

Fix vectors (α1, β1) and (α2, β2). Then

en
2ψn(α1,β1)

en2ψn(α2,β2)
= Eα2,β2e

n2[Tn(ω;α1,β1)−Tn(ω;α2,β2)] (7)

where Eα2,β2 is the expectation computed according to
πn (g , α2, β2)

⇒ Estimate the ratio of constants using Monte Carlo

Simulate R networks g (1), ..., g (R) from π(·, α2, β2)

Rα2,β2(α1, β1) =
1

R

R∑
r=1

exp
{
n2
[
Tn

(
g (r);α1, β1

)
− Tn

(
g (r);α2, β2

)]}
→ en

2ψn(α1,β1)−n2ψn(α2,β2)
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MC-MLE

Let θ ≡ (α, β).

Find θmle by maximization of log-likelihood

θmle = arg max
θ
`(θ)

= arg max
θ
{`(θ)− constant}

= arg max
θ
{`(θ)− `(θ0)}

If you subtract a constant, the maximizer does not change
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MC-MLE

`(θ)− `(θ0)

= n2Tn(g , θ)− n2ψn(θ)− n2Tn(g , θ0) + n2ψn(θ0)

= n2 {[Tn(θ)− Tn(θ0)]− [ψn(θ)− ψn(θ0)]}
= n2 [Tn(θ)− Tn(θ0)]− n2 [ψn(θ)− ψn(θ0)]

= n2 [Tn(θ)− Tn(θ0)]− logEθ0 exp
{
n2 [Tn(ω; θ)− Tn(ω; θ0)]

}
Using Lemma above

`(θ)− `(θ0) ≈ n2 [Tn(g ; θ)− Tn(g ; θ0)]

− log
1

R

R∑
r=1

exp
{
n2
[
Tn(g (r); θ)− Tn(g (r); θ0)

]}
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MC-MLE

Therefore MC-MLE estimate is

θmcmle = arg max
θ

{
n2 [Tn(g ; θ)− Tn(g ; θ0)]

− log
1

R

R∑
r=1

exp
{
n2
[
Tn(g (r); θ)− Tn(g (r); θ0)

]}}

Geyer and Thompson (1992) show that as R →∞

θmcmle → θmle
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Variational Inference

Find approximate likelihood qn(g) to minimize

KL(qn|πn) =
∑
ω∈G

qn(ω) log

[
qn(ω)

πn(ω;α, β)

]
= Eqn [log qn(ω)]− n2Eqn [Tn(ω;α, β)] + n2ψn(α, β) ≥ 0

With some algebra we obtain

ψn(α, β) ≥ Eqn [Tn(ω;α, β)] +
1

n2
H(qn) = L(qn),

where H(qn) = entropy of qn.
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Variational Inference

Therefore the best approximating distribution qn is the solution of

ψn(α, β) = sup
qn∈Qn

L(qn) = sup
qn∈Qn

{
Eqn [Tn(ω;α, β)] +

1

n2
H(qn)

}
.

(8)

In general no closed-form solution

In practice we restrict the family Qn to tractable distributions
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Mean-Field Approximation

Consider only completely factorized qn

qn(g) =
∏
i ,j

µ
gij
ij (1− µij)1−gij ,

µij = Eqn(gij) = Pqn(gij = 1)

Therefore we get

1

n2
H(qn) = − 1

2n2

n∑
i=1

n∑
j=1

[µij logµij + (1− µij) log(1− µij)] ,

Eqn [Tn (ω;α, β)] =

∑
i,j αijµij

n2
+ β

∑
i,j,k µijµjk

2n3
+ γ

∑
i,j,k µijµjkµki

6n3
.
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Mean-Field Approximation

The maximization problem is now to find a matrix µ(α, β, γ)

ψn(α, β, γ) ≥ ψMF
n (µ(α, β, γ))

:= sup
µ∈[0,1]n2

{∑
i ,j αijµij

n2
+ β

∑
i ,j ,k µijµjk

2n3
+ γ

∑
i ,j ,k µijµjkµki

6n3

− 1

2n2

n∑
i=1

n∑
j=1

[µij logµij + (1− µij) log(1− µij)]

}
.

Take the first order derivatives w.r.t. each µij and set it zero.

We initialize the matrix µ, and iterate, till it converges to a
local maximum.
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Approximation bounds

Theorem

For fixed n, the approximation error is

C3(β, γ)n−1 ≤ ψn(α, β, γ)− ψMF
n (µ(α, β, γ))

≤ C1(α, β, γ)n−1/5(log n)1/5 + C2(α, β, γ)n−1/2,

where C1(α, β, γ), C2(α, β, γ) are constants depending only on
α, β and γ and C3(β, γ) are constants depending only on β, γ.

The proof is based on the nonlinear large deviations (Chatterjee-Dembo 2014).
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Proposition

Assume (α, β, γ) lives on a compact set Θ. Let θ̂n := (α̂n, β̂n, γ̂n)
and θ̂MF

n := (α̂MF
n , β̂MF

n , γ̂MF
n ) be the maximizers of `n and `MF

n ,
respectively, in the interior of Θ. Also assume that ψn and ψMF

n

are differentiable and µn- and µMF
n -strongly convex in (α, β, γ),

respectively, on Θ, where µn > 0 and µMF
n > 0. Then

‖θ̂n − θ̂MF
n ‖ ≤

2

(µn + µMF
n )

1
2

[
sup

α,β,γ∈Θ
C

1
2

1 (α, β, γ)

(
log n

n

) 1
10

+ sup
α,β,γ∈Θ

C
1
2

2 (α, β, γ)n−
1
4

]
,

where C1 and C2 are defined as before, and ‖ · ‖ denotes the
Euclidean norm.
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Asymptotics

Previous theorem gives results for a fixed n

What happens when n→∞?

Graph limits literature and large deviations Lovasz (2012), Borgs et

al (2006), (2008), Chatterjee-Diaconis (2011), Chatterjee-Varadhan (2010),

Radin-Yin (2011), Aristoff-Zhu (2014)

When n→∞ consider a continuum of nodes on [0, 1]

Adj. matrix g is replaced by a function, known as graphon,
h : [0, 1]2 → [0, 1]
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Assumptions

Assumption (Spatial ERGM). Assume that

αij = α (i/n, j/n) , (9)

where α(x , y) : [0, 1]2 → R, and α(x , y) = α(y , x),
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Convergence of Mean-Field Approximation

Proposition

Mean-field converges to exact normalizing constant in large
networks, i.e., as n→∞

ψMF
n (µ(α, β, γ))→ ψ(α, β, γ).

As a corollary, we have ψn(α, β, γ)→ ψ(α, β, γ), where

ψ(α, β) := sup
h

{∫
[0,1]2

α(x , y)h(x , y)dxdy +
β

2

∫
[0,1]3

h(x , y)h(y , z)dxdydz,

+
γ

6

∫
[0,1]3

h(x , y)h(y , z)h(z, x)dxdydz −
1

2

∫
[0,1]2

I (h(x , y))dxdy

}
,

where I (x) := x log(x) + (1− x) log(1− x), and the supremum is
over symmetric functions h : [0, 1]2 → [0, 1].
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Variational problem: homogeneous model

Theorem (Chatterjee-Diaconis 2013)

If T :W → R is a bounded continuous function, then

ψ(α, β) ≡ lim
n→∞

ψn(α, β) = sup
h∈W
{T (h)− I(h)}

If α(x , y) = α for all x , y

T (h) ≡ α
∫

[0,1]2
h(x , y)dxdy +

β

2

∫
[0,1]3

h(x , y)h(y , z)dxdydz

+
γ

6

∫
[0,1]3

h(x , y)h(y , z)h(z, x)dxdydz,

I(h) ≡
1

2

∫ 1

0

∫ 1

0
I (h(x , y))dxdy ,

where I (x) := x log(x) + (1− x) log(1− x).
The proof is based on the large deviations for Erdős-Rényi graph (Chatterjee-Varadhan

2010).
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Variational Problem: Special Cases

Theorem (homogeneous case)Let T be defined as above and γ = 0.
Then h(x , y) = µ a.e

lim
n→∞

ψn(α, β, 0) = ψ(α, β, 0) = sup
µ∈[0,1]

{
αµ+

β

2
µ2 − 1

2
I (µ)

}
1 Outside V-shaped region:

unique maximizer µ∗

2 Inside V-shaped region:
two local maximizers µ∗1 <

1
2 < µ∗2

3 V-shaped region: there is β = q(α),
such that `(µ∗1) = `(µ∗2)

−20 −10 0 10 20

0
2

4
6

8
10

θ1

θ 2

s(ρ1(θ1))s(ρ2(θ1))

Lingjiong Zhu A Model of Network Formation



Variational problem: homogeneous model

We recall the variational problem:

ψ(α, β, γ)

:= sup
h

{∫
[0,1]2

α(x , y)h(x , y)dxdy +
β

2

∫
[0,1]3

h(x , y)h(y , z)dxdydz ,

+
γ

6

∫
[0,1]3

h(x , y)h(y , z)h(z , x)dxdydz − 1

2

∫
[0,1]2

I (h(x , y))dxdy

}
,

where I (x) := x log(x) + (1− x) log(1− x), and the supremum is
over symmetric functions h : [0, 1]2 → [0, 1].
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Edge-Star Model: Two Groups of Equal Size

Proposition

Assume that α(x , y) takes two values:

α(x , y) =

{
α1, if 0 < x , y < 1

2 or 1
2 < x , y < 1,

α2, if 0 < x < 1
2 < y < 1 or 0 < y < 1

2 < x < 1.

(10)
Then, we have

ψ(α, β, 0) = sup
0≤u,v≤1

F (u, v), (11)

where

F (u, v) :=
α1

2
u − 1

4
I (u) +

α2

2
v − 1

4
I (v) +

β

8
(u + v)2. (12)
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Figure: Examples of maxima with β = 4
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(A) (α1, α2) = (−3,−1); (B) (α1, α2) = (−2.5,−1.5)

The figures show the level curves of F (u, v) for different vectors of
parameters. In all the pictures β = 4. The global maxima are
represented as blue triangles.
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Figure: Examples of maxima with β = 4
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(C) (α1, α2) = (−2,−2); (D)(α1, α2) = (−1.7,−2.3)

The figures show the level curves of F (u, v) for different vectors of
parameters. In all the pictures β = 4. The global maxima are
represented as blue triangles.
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Proposition

The specification of the model in (11) has the following properties

1 The solution (u∗, v∗) satisfies:

u∗ =
e2α1+β(u∗+v∗)

1 + e2α1+β(u∗+v∗)
, v∗ =

e2α2+β(u∗+v∗)

1 + e2α2+β(u∗+v∗)
.

2 If β ≤ 2, the maximization problem (11) has a unique solution
(u∗, v∗).

3 If α1 + α2 + β = 0 and β >
(1+eα1−α2)

2

2eα1−α2
then the

maximization problem (11) has two solutions (u∗, v∗) and
(1− v∗, 1− u∗) with u∗ < 1

2 and v∗ < 1
2 , and

F (u∗, v∗) = F (1− v∗, 1− u∗). (Phase transition!)
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Numerical Studies

We consider two groups of equal size with α̃1 := α2 and
α̃2 := α1 − α2.

We have performed simple Monte Carlo experiments to study
the performance of our asymptotic approximation in finite
networks. We compare the mean-field approximation with the
standard simulation-based MCMC-MLE (Geyer and
Thompson, 1992).

We test our approximation technique using artificial network
data. Each network is generated using a 10 million run of the
Metropolis-Hastings sampler implemented in the ergm

command in R.

We report results for networks with 50, 100 and 200 nodes.
The results are summarized by the median and several
percentiles of the estimated parameters.
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Table: Monte Carlo estimates, comparison of three methods. True
parameter vector is (α̃1, α̃2, β, γ) = (−2, 1,−1,−1)

n = 50 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -1.975 1.054 -1.805 -9.302 -2.016 0.995 -1.000 -1.001
0.05 -2.611 0.598 -9.666 -75.431 -3.879 0.914 -1.269 -1.146
0.95 -1.489 1.397 7.348 58.765 -1.926 4.276 -0.840 -0.901

n = 100 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.035 1.012 -0.765 -2.199 -2.021 0.988 -0.998 -1.001
0.05 -2.312 0.730 -4.937 -52.429 -2.080 0.945 -1.031 -1.031
0.95 -1.662 1.218 3.555 32.974 -1.978 1.139 -0.950 -0.939

n = 200 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -1.980 1.004 -1.734 -4.100 -2.029 0.988 -0.996 -0.999
0.05 -2.212 0.876 -4.710 -27.070 -2.060 0.968 -1.002 -1.010
0.95 -1.779 1.112 2.792 31.735 -2.005 1.028 -0.969 -0.987
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Table: Monte Carlo estimates and comparisons. True parameter vector is
(α̃1, α̃2, β, γ) = (−2, 1,−2, 3)

n = 50 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.033 0.972 -2.239 -6.134 -2.037 0.990 -2.000 3.000
0.05 -2.643 0.614 -10.317 -73.906 -2.212 0.856 -2.652 2.865
0.95 -1.424 1.399 6.763 68.994 -1.887 1.351 -1.875 3.314

n = 100 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -1.975 0.983 -2.364 3.014 -2.040 0.970 -2.000 3.000
0.05 -2.307 0.779 -7.526 -41.294 -2.108 0.908 -2.044 2.950
0.95 -1.689 1.232 2.959 48.968 -1.995 1.048 -1.939 3.049

n = 200 MCMC-MLE MEAN-FIELD
α̃1 α̃2 β γ α̃1 α̃2 β γ

median -2.019 1.004 -1.869 7.701 -2.049 0.976 -1.997 2.999
0.05 -2.267 0.890 -6.331 -34.052 -2.113 0.948 -2.020 2.970
0.95 -1.738 1.116 2.277 37.341 -2.017 1.071 -1.953 3.029
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Numerical Studies: Conclusions

While both methods seem to work well, the mean-field
approximation gives more robust estimates.

At the same time, as it is well known, the mean-field can be
biased.

The computational complexity of the mean-field
approximation is of order n2, while it is well known that the
simulation methods used in the MCMC-MLE may have
complexity of order en

2
for some parameter vector (Bhamidi

et al. 2011, Chatterjee and Diaconis 2013, Mele 2017).
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The End

Thank You!
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