Capital distribution of equity market and its statistical modeling

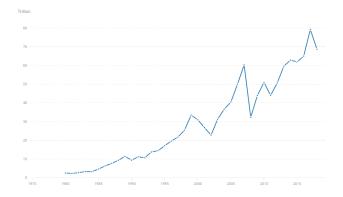
Ting-Kam Leonard Wong

University of Toronto

Ongoing project with Heng Kan and Colin Decker (U of T)

Equity market

As of 2018, the size of the world stock market (total market capitalization) was about US\$69 trillion.



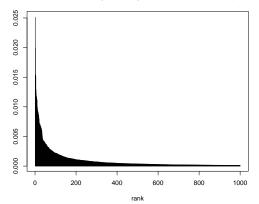
US market: about US\$30 trillion in 2018.

Source: https://data.worldbank.org/indicator/cm.mkt.lcap.cd

Investing in the equity market

- Passive: Track a pre-defined benchmark (lower fee)
- Active: Aim to outperform by adopting various strategies

Benchmark: Usually a cap-weighted market index such as S&P500



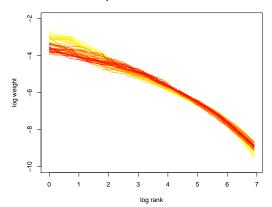
Relative cap-weights of largest 1000 stocks (Dec 2016)

Data: CRSP (Special thanks to Johannes Ruf and Desmond Xie)

Stability of capital distribution

Cap-weight of stock *i*: $\mu_i(t) = MC_i(t) / \sum_j MC_j(t)$. Ranked weights: $\mu_{(1)}(t) \ge \mu_{(2)}(t) \ge \cdots \ge \mu_{(n)}(t)$.

Capital distribution: 1962-2016

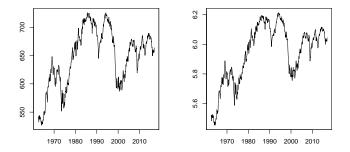


Market diversity (Fernholz 1997)

Diversity: a measure of the degree of concentration. Examples:

$$\Phi(\mu) = (\sum_{j} \mu_{j}^{\lambda})^{1/\lambda} \quad (0 < \lambda < 1)$$

$$\Phi(\mu) = -\sum_{j} \mu_j \log \mu_j$$
 (Shannon entropy)



Relevence of market diversity

Changes in market diversity explains a statistically and economically significant amount of variation in the relative returns of actively managed institutional large cap strategies. Data from Fernholz (2002) and Agapova, Greene and Ferguson (2011):

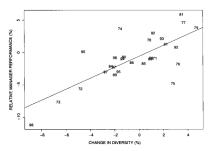


FIGURE 7.6. Manager performance relative to S&P 500 vs. change in D_p. Manager performance data from Callan Associates: 1971–1998.

Theoretical explanation using SPT (Fernholz 2002)

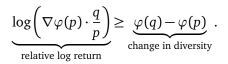
Consider the *diversity-weighted portfolio*

$$\pi_i(t) = \frac{\mu_i(t)^{\lambda}}{\sum_{j=1}^n \mu_j(t)^{\lambda}}$$

which corresponds to the gradient of $\Phi(\mu) = (\sum_{j} \mu_{j}^{\lambda})^{1/\lambda}$ which is *concave*:

$$\nabla \Phi(p) \cdot (q-p) \ge \Phi(q) - \Phi(p).$$

If $\varphi = \log \Phi$, then



This is an example of Fernholz's functionally generated portfolio.

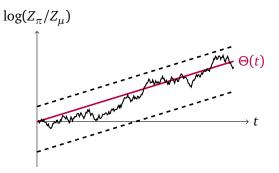
▶ Pal and W. (2015+): Optimal transport & information geometry.

Theoretical explanation using SPT

In a simplified Itô process model for the equity market, we have

$$\log \frac{Z_{\pi}(t)}{Z_{\mu}(t)} = \varphi(\mu(t)) - \varphi(\mu(0)) + \Theta(t),$$

where $\Theta(t)$ is an increasing process reflecting market volatility.



From this formula, the relative performance of the portfolio correlates with change in diversity.

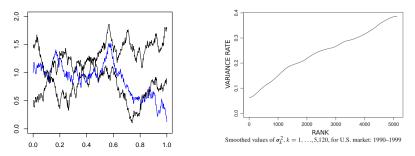
Modeling the capital distribution curve

Mathematical approach

Ranked-based models: an SDE system of *interacting* particles, each representing the market cap of a firm. A simple version:

 $d(\operatorname{Firm}_{i}(t)) = \gamma_{r_{i}(t)}dt + \sigma_{r_{i}(t)}dW_{i}(t),$

where $r_i(t)$ is the *rank* of firm *i* at time *t*.



Source (RHS): Fernholz, Ichiba and Karatzas (2013)

On the other hand Audrino Fernholz and Ferretti (2007) proposed and tested a model for forecasting market diversity.

Data

We are interested in dynamic modeling and forecasting, but as a first step we consider exploratory data analysis.

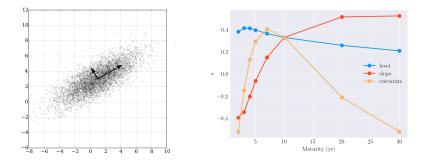
- Data source: CRSP (The Center for Research in Security Prices)
- Prepared and used by Johannes Ruf and Desmond Xie (2019)
- Daily data from 1962 to 2016.
- Market cap and daily returns for all US stocks.

We focus on the largest 1000 stocks.

- Ranked-based
- Evolving universe, missing data.
- For simplicity we use monthly data in this study (reasonable time scale for large cap portfolio managers).
- ► Renormalize to get (relative) (ranked) market weights $\{\mu_{\leq}(t)\} \subset \Delta_{1000}$. May be regarded as a functional time series.

Principal component analysis

Performs dimension reduction by projecting the data linearly to a low dimensional subspace. A classic application in finance is *yield curve modeling*; the eigenvectors have useful interpretations.



Left: Wikipedia. Right: https://quant.stackexchange.com

Reminder of PCA

Suppose we observe data $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D$. PCA aims to find a low-dimensional $\mathbf{y} = W\mathbf{x} \in \mathbb{R}^d$, d < D, that approximates \mathbf{x} :

$$\min_{U \in L(\mathbb{R}^d, \mathbb{R}^D), W \in L(\mathbb{R}^D, \mathbb{R}^d)} \sum_{i=1}^N \|\mathbf{x}_i - UW\mathbf{x}_i\|_2^2.$$

Here W and U are *linear* maps (i.e., matrices).

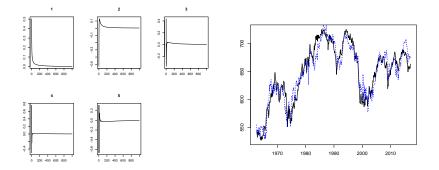
Theorem

Let $A = \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^{\top}$, and let $\mathbf{u}_1, \ldots, \mathbf{u}_d$ be the eigenvectors corresponding to the largest d eigenvectors of A. Then the PCA problem is solved with

$$U = [\mathbf{u}_1, \dots, \mathbf{u}_d], \quad W = U^\top.$$

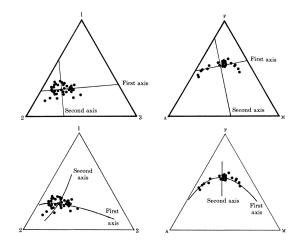
Plain vanilla PCA does not work well

Since our data lies in the unit simplex, Euclidean PCA may (and does) not work well.



The blue series approximates the diversity using 5 eigenvectors. It does not track the short term fluctuations of the diversity.

Compositional data analysis, simplicial PCA We will apply a version of PCA using the *Aitchison geometry*.



Source: Aitchison (1982)

Aitchison geometry

Consider the open unit simplex

$$\Delta_n := \{ p = (p_1, \dots, p_n) : p_1 + \dots + p_n = 1 \}.$$

Define the *closure* operator

$$C[\mathbf{x}] := \left(\frac{x_1}{x_1 + \dots + x_n}, \dots, \frac{x_n}{x_1 + \dots + x_n}\right), \quad \mathbf{x} \in (0, \infty)^n.$$

Theorem *Define the operations*

$$p \oplus q := C[p_1q_1, \dots, p_nq_n] \quad (perturbation)$$
$$\lambda \otimes p := C[p_1^{\lambda}, \dots, p_n^{\lambda}] \quad (powering)$$

Then $(\Delta_n, \oplus, \otimes)$ is an (n-1)-dimensional real vector space.

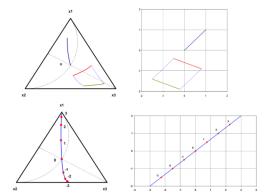
Aitchison geometry

Theorem (Simplex as a Hilbert space)

s Define

$$\langle p,q \rangle_A := \sum_{i=1}^n \log \frac{p_i}{g(p)} \log \frac{q_i}{g(q)},$$

where $g(x) = (x_1 \cdots x_n)^{1/n}$ is the geometric mean. Then $\langle \cdot, \cdot \rangle_A$ is an inner product on $(\Delta_n, \oplus, \otimes)$.



Isometric-log-ratio transform

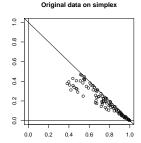
Consider the orthonormal basis

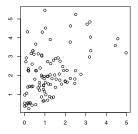
$$\mathbf{e}_i = C\left[\exp\left(\sqrt{\frac{1}{i(i+1)}}, \dots, \sqrt{\frac{1}{i(i+1)}}, -\sqrt{\frac{i}{i(i+1)}}, 0, \dots, 0\right)\right],$$

where i = 1, ..., n - 1.

Definition (Egozcue et al (2003)) We define ilr : $\Delta_n \to \mathbb{R}^{n-1}$ by

$$\mathbf{x} = \operatorname{ilr}(p) := (\langle p, \mathbf{e}_1 \rangle_A, \dots, \langle p, \mathbf{e}_{n-1} \rangle_A), \quad x_i = \sqrt{\frac{i}{i+1} \log \frac{(p_1 \cdots p_i)^{1/i}}{p_{i+1}}}.$$



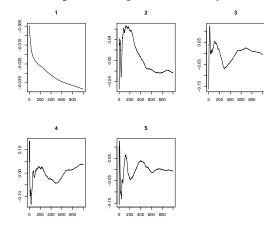


>1/;

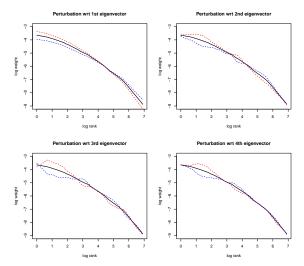
Simplicial PCA

Aitchison (1982) uses instead the centered-log-ratio (clr) transform. Here we use the ilr-transform. Procedure:

original data \rightarrow ilr \rightarrow Euclidean PCA \rightarrow inverse-ilr Eigenvectors (in ilr-space) using the latest 20 years of data:



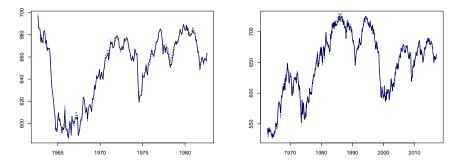
Interpretations of the eigenvectors



The shapes of the eigenvectors (except the first one and perhaps the 2nd) fluctuate over time. This may indicate some *structural changes* in the market despite stability of the capital distribution.

Approximation of market diversity

Again we use only the first 5 eigenvectors. The simplex PCA performs much better than the Euclidean PCA in capturing the market diversity.



Intuitively, the tracjectory of $\mu_{\geq}(\cdot)$ is close to a 5-dimensional submanifold of Δ_n . Right: Result using the entire dataset.

Future directions

- Further study of the geometry in relation to the properties of the data
- Financial interpretations
- Dynamic statistical models
- Forecasting
- Portfolio optimization
- Modeling of volatility using (information) geometric idea
- Combine with mathematical approaches in SPT