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Equity market
As of 2018, the size of the world stock market (total market
capitalization) was about US$69 trillion.

US market: about US$30 trillion in 2018.

Source: https://data.worldbank.org/indicator/cm.mkt.lcap.cd
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Investing in the equity market
É Passive: Track a pre-defined benchmark (lower fee)
É Active: Aim to outperform by adopting various strategies

Benchmark: Usually a cap-weighted market index such as S&P500
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Stability of capital distribution
Cap-weight of stock i: µi(t) =MCi(t)/

∑

j MCj(t).
Ranked weights: µ(1)(t)≥ µ(2)(t)≥ · · · ≥ µ(n)(t).
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Market diversity (Fernholz 1997)

Diversity: a measure of the degree of concentration. Examples:

Φ(µ) = (
∑

j

µλj )
1/λ (0< λ < 1)

Φ(µ) = −
∑

j

µj logµj (Shannon entropy)
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Relevence of market diversity

Changes in market diversity explains a statistically and
economically significant amount of variation in the relative returns
of actively managed institutional large cap strategies. Data from
Fernholz (2002) and Agapova, Greene and Ferguson (2011):
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Theoretical explanation using SPT (Fernholz 2002)

Consider the diversity-weighted portfolio

πi(t) =
µi(t)λ

∑n
j=1µj(t)λ

which corresponds to the gradient of Φ(µ) = (
∑

jµ
λ
j )

1/λ which is
concave:

∇Φ(p) · (q− p)≥ Φ(q)−Φ(p).

If ϕ = logΦ, then

log
�

∇ϕ(p) ·
q
p

�

︸ ︷︷ ︸

relative log return

≥ ϕ(q)−ϕ(p)
︸ ︷︷ ︸

change in diversity

.

This is an example of Fernholz’s functionally generated portfolio.
É Pal and W. (2015+): Optimal transport & information geometry.
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Theoretical explanation using SPT
In a simplified Itô process model for the equity market, we have

log
Zπ(t)
Zµ(t)

= ϕ(µ(t))−ϕ(µ(0)) +Θ(t),

where Θ(t) is an increasing process reflecting market volatility.

t

log(Zπ/Zµ)

Θ(t)

From this formula, the relative performance of the portfolio
correlates with change in diversity.
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Modeling the capital distribution curve
Mathematical approach
É Ranked-based models: an SDE system of interacting particles,

each representing the market cap of a firm. A simple version:

d (Firmi(t)) = γri(t)dt+σri(t)dWi(t),

where ri(t) is the rank of firm i at time t.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Source (RHS): Fernholz, Ichiba and Karatzas (2013)

On the other hand Audrino Fernholz and Ferretti (2007) proposed and
tested a model for forecasting market diversity.
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Data

We are interested in dynamic modeling and forecasting, but as a
first step we consider exploratory data analysis.
É Data source: CRSP (The Center for Research in Security

Prices)
É Prepared and used by Johannes Ruf and Desmond Xie (2019)
É Daily data from 1962 to 2016.
É Market cap and daily returns for all US stocks.

We focus on the largest 1000 stocks.
É Ranked-based
É Evolving universe, missing data.
É For simplicity we use monthly data in this study (reasonable

time scale for large cap portfolio managers).
É Renormalize to get (relative) (ranked) market weights
{µ≤(t)} ⊂∆1000. May be regarded as a functional time series.
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Principal component analysis

Performs dimension reduction by projecting the data linearly to a
low dimensional subspace. A classic application in finance is yield
curve modeling; the eigenvectors have useful interpretations.

Left: Wikipedia. Right: https://quant.stackexchange.com
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Reminder of PCA

Suppose we observe data x1, . . . ,xN ∈ RD. PCA aims to find a
low-dimensional y=Wx ∈ Rd, d< D, that approximates x:

min
U∈L(Rd,RD),W∈L(RD,Rd)

N
∑

i=1

‖xi −UWxi‖22.

Here W and U are linear maps (i.e., matrices).

Theorem
Let A=

∑N
i=1 xix

>
i , and let u1, . . . ,ud be the eigenvectors

corresponding to the largest d eigenvectors of A. Then the PCA
problem is solved with

U = [u1, . . . ,ud], W = U>.
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Plain vanilla PCA does not work well

Since our data lies in the unit simplex, Euclidean PCA may (and
does) not work well.
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The blue series approximates the diversity using 5 eigenvectors. It
does not track the short term fluctuations of the diversity.
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Compositional data analysis, simplicial PCA
We will apply a version of PCA using the Aitchison geometry.

Source: Aitchison (1982)
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Aitchison geometry

Consider the open unit simplex

∆n := {p= (p1, . . . , pn) : p1 + · · ·+ pn = 1}.

Define the closure operator

C[x] :=
�

x1

x1 + · · ·+ xn
, . . . ,

xn

x1 + · · ·+ xn

�

, x ∈ (0,∞)n.

Theorem
Define the operations

p⊕ q := C[p1q1, . . . , pnqn] (perturbation)

λ⊗ p := C[pλ1 , . . . , pλn] (powering)

Then (∆n,⊕,⊗) is an (n− 1)-dimensional real vector space.
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Aitchison geometry
Theorem (Simplex as a Hilbert space)
s Define

〈p, q〉A :=
n
∑

i=1

log
pi

g(p)
log

qi

g(q)
,

where g(x) = (x1 · · ·xn)1/n is the geometric mean. Then 〈·, ·〉A is an
inner product on (∆n,⊕,⊗).
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Isometric-log-ratio transform
Consider the orthonormal basis

ei = C

�

exp

�
√

√ 1
i(i+ 1)

, . . . ,

√

√ 1
i(i+ 1)

,−
√

√ i
i(i+ 1)

, 0, . . . , 0

��

,

where i= 1, . . . , n− 1.

Definition (Egozcue et al (2003))
We define ilr :∆n→ Rn−1 by

x= ilr(p) := (〈p,e1〉A, . . . , 〈p,en−1〉A), xi =

√

√ i
i+ 1

log
(p1 · · ·pi)1/i

pi+1
.
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Simplicial PCA
Aitchison (1982) uses instead the centered-log-ratio (clr)
transform. Here we use the ilr-transform. Procedure:

original data→ ilr→ Euclidean PCA→ inverse-ilr

Eigenvectors (in ilr-space) using the latest 20 years of data:
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Interpretations of the eigenvectors
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The shapes of the eigenvectors (except the first one and perhaps
the 2nd) fluctuate over time. This may indicate some structural
changes in the market despite stability of the capital distribution.
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Approximation of market diversity

Again we use only the first 5 eigenvectors. The simplex PCA
performs much better than the Euclidean PCA in capturing the
market diversity.
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Intuitively, the tracjectory of µ≥(·) is close to a 5-dimensional
submanifold of ∆n. Right: Result using the entire dataset.

20 /21



Future directions

É Further study of the geometry in relation to the properties of
the data
É Financial interpretations
É Dynamic statistical models
É Forecasting
É Portfolio optimization
É Modeling of volatility using (information) geometric idea
É Combine with mathematical approaches in SPT
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