Portfolios generated by optimal transport

Leonard Wong

University of Southern California

USC Math Finance Colloquium
Oct 2, 2017

Motivation: performance attribution

market prices and information

portfolio value

Motivation

- Portfolio value is an integral of the trading strategy η against the price process μ :

$$
V(t)=\int_{0}^{t} \sum_{i} \eta_{i} d \mu_{i}
$$

- Path-dependent, no convenient simplifications in general

Stochastic portfolio theory

- Started by E. R. Fernholz $(1999,2002)$
- Use market portfolio as the numeraire
- Functionally generated portfolios:

$$
\log V(t)-\log V(0)=\text { market diversity }+ \text { volatility }
$$

- Conditions to outperform the market: relative arbitrage

Simplex model in discrete time

- $X_{i}(t)>0$ market capitalization of stock i at time t
- Market weight $=$ price relative to market:

$$
\mu_{i}(t)=\frac{X_{i}(t)}{X_{1}(t)+\cdots+X_{n}(t)}
$$

- $\mu(t) \in \Delta_{n}$ unit simplex

Self-financing trading strategy

Two representations:

- $\eta(t)=$ number of shares

$$
V(t)-V(0)=\sum_{s=0}^{t-1} \eta(s) \cdot(\mu(s+1)-\mu(s)) \quad \text { (additive) }
$$

- $\pi(t)=$ portfolio weights

$$
\frac{V(t)}{V(0)}=\prod_{s=0}^{t-1} \pi(s) \cdot \frac{\mu(s+1)}{\mu(s)}
$$

Here $V(t)$ is portfolio value relative to market.

Multiplicatively generated portfolio

 Take a (smooth) function $\varphi: \Delta_{n} \rightarrow(0, \infty)$ such that $\Phi=e^{\varphi}$ is concave. We call φ exponentially concave.

- Define the portfolio map $\pi: \Delta_{n} \rightarrow \bar{\Delta}_{n}$ by

$$
\pi_{i}(p)=\frac{c_{i} p_{i}}{c_{1} p_{1}+\cdots+c_{n} p_{n}}=p_{i}\left(1+D_{e_{i}-p} \varphi(p)\right) .
$$

- The strategy: $\pi(t)=\pi(\mu(t))$.

Some literature

- Original papers:
- R. Fernholz (1999, 2001, 2002)
- Applications to relative arbitrage:
- Banner, D. Fernholz, R. Fernholz, Karatzas, Kadaras, Pal, Ruf, Vervuurt, ...
- Optimal transport and information geometry:
- Pal and Wong (2013, 2015, 2016), Vervuurt (2016), Pal (2016), Wong (2017)
- Optimization, machine learning and universal portfolio:
- Wong (2015, 2016), Kom Samo and Vervuurt (2016), Cuchiero, Schachermayer and Wong (2016)
- Extensions:
- Strong (2014), Schied, Speiser and Voloshchenko (2016), Karatzas and Ruf (2016), Ruf and Xie (2017)

Logarithmic divergence (Pal and Wong (2015))

The L-divergence of φ is
$D_{L}[q \mid p]=\log (1+\nabla \varphi(p) \cdot(q-p))-(\varphi(q)-\varphi(p)), \quad p, q \in \Delta_{n}$.

- $D_{L}[q \mid p] \geq 0$. If e^{φ} is strictly concave then $=0 \Rightarrow p=q$.
- $D_{L}[q \mid p] \not \equiv D[p \mid q]$. Distance-like but is not a metric.

Example: Take $\varphi(p)=\sum_{i=1}^{n} \pi_{i} \log p_{i}, \pi \in \bar{\Delta}_{n}$ fixed:

- $\pi(p) \equiv \pi$ (constant-weighted portfolio)
- $D_{L}[q \mid p]=\log \left(\sum_{i=1}^{n} \pi_{i} \frac{q_{i}}{p_{i}}\right)-\sum_{i=1}^{n} \pi_{i} \log \frac{q_{i}}{p_{i}}$, also known as: diversification return, excess growth rate, cumulant generating function (free energy)

Multiplicative pathwise decomposition

Theorem (Fernholz (1999), Pal and Wong (2015))

change in market diversity

accumulated market volatility

Additively generated portfolio (Karatzas and Ruf (2016))

Take a (smooth) concave function $\varphi: \Delta_{n} \rightarrow(0, \infty)$.

- The number of shares is

$$
\eta_{i}(t)=D_{e_{i}-\mu(t)} \varphi(\mu(t))+V(t) .
$$

- The Bregman divergence (Bregman (1967)) of φ is

$$
D_{B}[q \mid p]=\nabla \varphi(p) \cdot(q-p)-(\varphi(q)-\varphi(p)), \quad p, q \in \Delta_{n} .
$$

Theorem (Additive pathwise decomposition)

$$
V(t)-V(0)=\varphi(\mu(t))-\varphi(\mu(0))+\sum_{s=0}^{t-1} D_{B}[\mu(s+1) \mid \mu(s)]
$$

Our discrete time set up leads to the Bregman divergence.

Unified framework

Definition

We say that the trading strategy is generated by φ, with scale function g, if there exists a divergence $D[\cdot \mid \cdot]$ on Δ_{n} such that

$$
g(V(t))-g(V(0))=\varphi(\mu(t))-\varphi(\mu(0))+\sum_{s=0}^{t-1} D[\mu(s+1) \mid \mu(s)]
$$

for all market paths.

Examples:

- Multiplicative generation: $g(x)=\log x, D[\cdot \mid \cdot]$ is L-divergence
- Additive generation: $g(x)=x, D[\cdot \mid \cdot]$ is Bregman divergence We will characterize all possibilities.

General concept of divergence

Definition

A divergence on Δ_{n} is a functional $D[\cdot \mid \cdot]: \Delta_{n} \times \Delta_{n} \rightarrow[0, \infty)$:
(i) $D[q \mid p]=0 \Rightarrow p=q$.
(ii) When $q=p+\Delta p \approx p$, a quadratic approximation holds:

$$
D[p+\Delta p \mid p]=\frac{1}{2} \sum_{i, j=1}^{n} g_{i j}(p) \Delta p_{i} \Delta p_{j}+o\left(|\Delta p|^{3}\right)
$$

where g is strictly positive definite.
Examples:

- Bregman divergence: $g(p)=-D^{2} \varphi(p)$
- L-divergence: $g(p)=-D^{2} \varphi(p)-(\nabla \varphi(p))(\nabla \varphi(p))^{\top}$

Connection with optimal transport

Multiplicatively generated portfolio: Pal and Wong (2015, 2016)
Additively generated portfolio:

- $\eta(t)=$ portfolio $\leftrightarrow \nabla \varphi(\mu(t))=$ gradient of concave function

The map $p \mapsto \nabla \varphi(p)$ where $\varphi(p)=-\sum_{i=1}^{n} p_{i} \log p_{i}$

Connection with optimal transport

- Additive (Vervuurt 2016): Consider the cost function

$$
c(p, v)=p \cdot v, \quad p \in \Delta_{n}, v \in \mathbb{R}^{n} \text { tangent to } \Delta_{n}
$$

Then, for any $p^{(1)}, \ldots, p^{(m)} \in \Delta_{n}$, the transport map
$p^{(k)} \mapsto v^{(k)}=\nabla \varphi\left(p^{(k)}\right)$ solves the optimal transport problem

$$
\min _{\sigma \text { permutation }} \sum_{k=1}^{n} c\left(p^{(k)}, v^{(\sigma(k))}\right)
$$

This follows from Rockafellar's theorem in convex analysis. (Holds true for transport of general Borel probability measures.)

- Multiplicative (Pal and Wong (2015)): analogous results hold where
$-c\left(p, q^{*}\right)=\log \left(p \cdot q^{*}\right), \quad p \in \Delta_{n}, q^{*} \in \Delta_{n}^{*}$
- The transport map is $p \mapsto q^{*}, q_{i}^{*}=\frac{\pi_{i}(p) / p_{i}}{\sum_{j=1}^{i} \pi_{j}(p) / p_{j}}$

Connection with information geometry

Generalized Pythagorean relation: For $p, q, r \in \Delta_{n}$, when does

$$
D[q \mid p]+D[r \mid q] \geq D[r \mid p] ?
$$

- Optimal trading frequency
- Many applications in statistics and machine learning

The set $\{q:$ LHS \leq RHS $\}$ where $\varphi(p)=\frac{1}{3} \sum_{i=1}^{3} \log p_{i}$

Dual geometry

- Additive (Bregman): Amari and Nagaoka (1982)
- Multiplicative (L): Pal and Wong (2016)
- General framework: Eguchi (1983)

$$
M=\Delta_{n} \text { as an abstract manifold }
$$

- Primal geodesic: a straight line in primal coordinates
- Dual geodesic: a straight line in dual coordinates

Dual geometry

We also define a Riemannnian metric by

$$
\langle u, v\rangle_{p}=u^{\top} g(p) v, \quad u, v \text { tangent vectors at } p,
$$

where $g(p)$ is the Riemannian matrix for the divergence $D[\cdot \mid \cdot]$.
Theorem (Generalized Pythagorean theorem)
Let $D[\cdot \mid \cdot]$ be the Bregman or L-divergence of φ which determines the transport map under respectively the cost $c(p, v)=p \cdot v$ or $c\left(p, q^{*}\right)=\log \left(p \cdot q^{*}\right)$. Then the generalized Pythagorean relation

$$
D[q \mid p]+D[r \mid q]=D[r \mid p]
$$

holds if and only if the primal geodesic from q to r and the dual geodesic from q to p meet g-orthogonally at q.

Generalized Pythagorean theorem

Characterization of functional generation

Theorem (W. (2017))
The scale function g admits functional portfolio generation if and only if

$$
g(x)=c_{1} x+c_{2}
$$

where $c_{1}>0, c_{2} \in \mathbb{R}$, or

$$
g(x)=\log \left(c_{1} x+c_{2}\right)+c_{3},
$$

where $c_{1}>0, c_{2} \geq 0, c_{3} \in \mathbb{R}$.
Key idea: The pathwise decomposition implies that the scale function satisfies the nonlinear ODE

$$
g^{\prime}(x) g^{\prime \prime \prime}(x)=2\left(g^{\prime \prime}(x)\right)^{2}
$$

(α, C)-portfolio generation: $\alpha>0, C \geq 0$

Definition

Let φ be smooth and α-exponentially concave, i.e., $e^{\alpha \varphi}$ is concave. It generates the trading strategy with

$$
\eta_{i}^{\alpha, C}(t)=\alpha(C+V(t)) D_{e_{i}-\mu(t)} \varphi(\mu(t))+V(t), \quad i=1, \ldots, n .
$$

If $V(t)>0$, the portfolio weight is given by

$$
\pi^{\alpha, C}(t)=\frac{C+V(t)}{V(t)} \pi^{\alpha, 0}(t)-\frac{C}{V(t)} \mu(t)
$$

where $\pi^{\alpha, 0}$ is generated multiplicatively by $\alpha \varphi$.

This allows us to generate different portfolios with the same φ :

- Multiplicative generation: $(\alpha, C)=(1,0)$
- Additive generation: limit of $(\alpha, C)=\left(\alpha, \frac{1}{\alpha}\right)$ as $\alpha \downarrow 0$

General pathwise decomposition

Definition ($L^{(\alpha)}$-divergence)

$$
D_{L^{(\alpha)}}[q \mid p]=\frac{1}{\alpha} \log (1+\alpha \nabla \varphi(p) \cdot(q-p))-(\varphi(q)-\varphi(p))
$$

For φ fixed, it interpolates between the L-divergence ($\alpha=1$) and the Bregman divergence ($\alpha \downarrow 0$).

Theorem (W. (2017))
If the strategy is (α, C)-generated by φ and $V(\cdot)>-C$, we have

$$
\frac{1}{\alpha} \log \frac{C+V(t)}{C+V(0)}=\varphi(\mu(t))-\varphi(\mu(0))+\sum_{s=0}^{t-1} D_{L^{(\alpha)}}[\mu(s+1) \mid \mu(s)] .
$$

Empirical example

Consider the earlier example of Ford, IBM and Walmart. For $0 \leq \alpha \leq 1$, let $\eta^{(\alpha)}$ be the trading strategy $\left(\alpha, \frac{1}{\alpha}\right)$-generated by

$$
\varphi(p)=\frac{1}{3} \sum_{i=1}^{n} \log p_{i}
$$

We also set $V(0) \equiv 1$. Simulated (relative) portfolio values:

Concluding remarks

- Unified framework of functional portfolio construction
- Approach motivated by optimal transport and divergence in information geometry
- Covers both:
- Additive portfolio / Bregman divergence / quadratic cost
- Multiplicative portfolio / L-divergence / logarithmic cost and identifies natural interpolations
- Future directions:
- Further connections and results in optimal transport and information geometry
- Portfolio optimization, practical applications of transport and geometry in finance and statistics

