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Introduction

Market Microstructure

Market microstructure

· micro vs. macro ← surface of the land vs. earth from the space

· HFD, UHFD, algorithmic trading
· transaction cost, fees, taxes, regulations
· financial engineering vs. economics ← Who determines the price?
· information, liquidity(or liquidation)
· CAPM, Nash equilibrium etc.
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Introduction

Information Asymmetry

Background

· In a market, different traders have different levels of information.
· Even when two traders have the exactly same information, they may interpret the
information in different ways, or make different decisions.
· Information is modeled by a filtration in mathematical finance theory.
· A trader with more information has a larger filtration than a trader with less
information.

Traders

· Insider(informed trader): a trader with more (exclusive) information or better
interpretation skill of the public information.
· Honest Trader(uninformed trader) : a trader with only public information

How to model?

· We introduce an information process.
· This exclusive information often causes bigger movements than those usual diffusion
can explain, and it is natural to involve this information to jump terms.
· jump in the price process itself? jump in the volatility term? jump size? jump
timing(intensity)?
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Introduction

Filtration

· Let F be the filtration generated by the market. It is an honest trader’s filtration.
· An insider has a larger filtration G available only to insiders.
· F ⊂ G.
· Kyle(1985), Amendinger(2000), Biagini and Oksendal(2005) assumed that the
Gt = Ft ∨ σ(L) for some fixed random variable L. (usually a future price)
· Hu and Oksendal(.) studied a model that more and more additional information is
available to the investor as time goes by. They used a sequence of random variables
available only to insiders as additional information at certain points of
times.(scheduled announcements)
· We generalize these studies to the case with Gt = Ft ∨ σ(Xs, 0 ≤ s ≤ t), where the
additional information X given to insiders is not a single random variable nor a
discrete sequence of random variables, but a diffusion process.
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Previous Studies

Research on Information Effects

Q: Obviously, an informed trader should do better in the market. But how can we
mathematically explain and support this? More specifically, how can we find an
optimal hedging strategy and pricing for an informed trader?

Through asset price

· Lee and Song(Quantitative Finance, vol 7 (5) 537-545, 2007): jump timing only
· Kang and Lee(Stochastics, vol 86, (6), 889-905, 2014) : jump size only
· Park and Lee(Journal of Statistical Planning and Inference, forthcoming): both
jump timing and size

Multiple level of informed traders

· Park and Lee(IMA Journal of Management Mathematics, forthcoming)

Earning announcement and earning jumps

· Lee and Leung
· deterministic time jump
· learning procedure → Brownian bridge
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Previous Studies

Research on Information Effects

Q: Other information issues

more finance* papers

· K.Lee, R.Christie-David, A. Chatrath and B.Adrangi(Journal of Futures Markets,
Volume 31, Issue 10, pages 915-946, October 2011)
→ Dominant markets, staggered openings, and price discovery
→ Spillover effect, leading-following interaction
· K.Lee, R.Chrisite-David and A. Chatrath(Journal of Futures Markets, vol 29, (1),
42-73, 2009):
→ How potent are news reversals?: Evident from futures markets
→ Surprise!
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Previous Studies

Lee and Song(2007)

dSt = f(St−)dBt + g(St−)dRt + h(St−)dt (1)

0 ≤ t ≤ T

where
• Rt =

∑Nt
n=1 Un

• Nt −
∫ t
0
λ(Xs)ds = a local martingale under P

• X, which is a firm specific information available only to insiders, satisfies the
stochastic differential equation dXt = α(Xt)dt+ β(Xt)dB

X
t for 0 ≤ t ≤ T .

• B′ is another standard Brownian motion under P such that [B,BX ]t = ρt.
• Correlation ρ between two Brownian motions B and BX explains the level of
exclusive information.
• Un is i.i.d and has a pdf ν on (−1, 1)
• Un denotes the jump sizes of St and has mean 0 and a finite second moment σ2.
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Previous Studies

Kang and Lee(2014)

dSt = St−(µdt+ σdBt + dRt), 0 ≤ t ≤ T (2)

where
• Bt is a standard Brownian motion.
•

Rt =
∑

0<s≤t

θ(Xs)1(∆Ns = 1)

where θ(·) is an increasing function and −1 < θ(x) < σ2

µ
.

• Nt is a Poisson counting process with rate λ under P. N̂t := Nt − λt is a
martingale under P.
•

dXt = α(Xt)dt+ β(Xt)dB
X
t , X0 = x0.

where BX is a standard Brownian motion with [B,BX ]t = ρt.
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Previous Studies

Distribution of Jump Sizes for α(x) = 0, β(x) = 1.

The expectation of jump size is given by E[θ(X0 +
√
TZ)] where T and Z follow

independent exponential with rate λ and standard normal distribution respectively.
θ(x) = 2

π
arctan(x)
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Figure: Jump distributions for different X0’s.

Kiseop Lee (Department of Statistics, Purdue University Mathematical Finance Seminar University of Southern California)Insiders’ Hedging in a Stochastic Volatility Model with Informed Traders of Multiple LevelsOct 10, 2016 10 / 37



Previous Studies

Comparison with Honest Trader’s Strategy

We assume that an honest trader believes the Black-Scholes model. The first number
in a cell denotes the expected total cost of the informed trader, and the second
number denotes that of the honest trader. E[(CT − C0)2] denotes the expected total
cost, which will be explained in 3 slides. (A smaller number is better!)

Table: E[(CT − C0)2], ρ = −0.5

Vol 10% 20% 30%
Vol Ratio 1.934157 1.299467 1.154251

80 0.104438, 0.751323 1.028191, 1.189337 1.851046, 1.792153
100 2.036793, 4.945836 1.537828, 1.686250 4.415904, 4.045074
120 0.721526, 0.922125 1.702788, 2.112400 2.645012, 1.369176

Table: E[(CT − C0)2], ρ = 0.0

Vol 10% 20% 30%
Vol Ratio 1.988265 1.317293 1.148387

80 0.080125, 1.069857 0.269744, 0.830191 0.962809, 1.119722
100 1.568441, 5.419202 1.047886, 1.557627 1.606752, 1.889270
120 0.693646, 2.347789 1.366413, 2.494248 1.683573, 1.805261
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Previous Studies

Comparison with Honest Trader’s Strategy

Table: E[(CT − C0)2], ρ = 0.5

Vol 10% 20% 30%
Vol Ratio 1.981465 1.318082 1.157330

80 0.611927, 1.590476 0.289834, 0.699058 0.814961, 1.101575
100 0.397466, 2.538860 1.052195, 1.639205 1.729693, 1.940148
120 1.072975, 1.680556 1.362013, 1.727360 1.875722, 1.793749
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Previous Studies

Park and Lee(2016?)

•
dSt = µ0St−dt+ σSt−dBt + St−dRt, S0 = s

•
dXt = α(Xt)dt+ β(Xt)dB

X
t , X0 = 1

where WX is a standard Brownian motion.
• Define

Rt =

∫ t

0

∫ ∞
−∞

ypR(Xs, dy, ds),

where pR(Xt, dy, dt) is a random measure on R× [0, T ].
• Also, we assume that there exists a compensated measure m1(Xt, dt) such that

E[

∫ T

0

CsdRt] = E[

∫ T

0

∫
R

Cs(y)m1(Xs, dy, ds)]

for all nonnegative Ft-adapted processes Ct.
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Model

Multi-Level Traders

Idea

· multiple information processes → vector process
· several levels within informed traders
· hard to model a price process with multiple jumps → volatility factors in stochastic
volatility model

Basics

· We consider a market with one risky asset (St) and one riskless asset which would
be assumed 1.
· Portfolio: a pair of processes (ξt, ηt), Vt = ξtSt + ηt
· Contingent claim: H = H(ST ) at time T .
· Cost process of a portfolio (ξt, ηt): Ct = Vt −

∫ t
0
ξudSu, 0 ≤ t ≤ T
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Model

Hedging(replicating)

A (prefect) hedging portfolio(strategy) for a contingent claim H(ST ) should satisfy
the following two conditions.

1 Self-financing:

Vt = ξtSt + ηt = ξ0S0 + η0 +

∫ t

0

ξudSu

2 Perfect match at maturity: H(ST ) = VT

• For a self financing portfolio, the cost process Ct = Vt −
∫ t
0
ξudSu = ξ0S0 + η0 = C0

is a constant for all t.
• A complete market is a market where every contingent claim has a hedging
portfolio. (ex. Black-Scholes model)
• On the other hand, in an incomplete market, there is no strategy which satisfies
both conditions.
Q: Then what is a ’good’ hedging strategy in an incomplete market?
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Model

Model

Model

dSt = µStdt+ f(Yt)StdW
(0)
t , (3)

dY
(i)
t = αi(t, Y

(i)
t )dt+ βi(t, Y

(i)
t )dW

(i)
t + γi(t, Y

(i)
t )dR

(i)
t , i = 1, · · · , n. (4)

on a (Ω,F , (Ft)0≤t≤T ,P) where P is the empirical probability measure, and
Y = (Y (1), · · · , Y (n)).

· R(i)
t =

∑N
(i)
t

j=1 U
(i)
j .

· U (i)
j : i.i.d. random variables with densities νi,

· E[U
(i)
j ] = 0 and E[|U (i)

j |
2] = η2i .

· N (i) : a Poisson process with bounded intensity λi.
· ρij : correlation between W (i) and W (j)

• different types of information: scheduled, randomly arriving, continuous etc.
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Model

Basic Assumptions

Notations

· St is the solution vector (St, Y
(1)
t , · · · , Y (n)

t ).
· Mt denotes the martingale part of St i.e.

Mt = (

∫ t

0

fSsdW
(0)
s ,

∫ t

0

(β1dW
(1)
s + γ1dR

(1)
s ), · · · ,

∫ t

0

(βndW
(n)
s + γndR

(n)
s ))

Basic assumptions

· spot rate of interest r = 0 and no dividend.
· The volatility function f is always positive.
· St is a H2 special semimartingale with the canonical decomposition St = Mt + At

and Mt is a square-integrable martingale under P. In other words,

‖[M,M]
1/2
T ‖

2
L2 <∞ (5)

‖
∫ T

0

|αi(t, Y (i)
t )|dt‖2L2 <∞, i = 1, · · · , n. (6)
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Minimal Martingale Measure

Minimal Martingale Measure

· pricing point of view, the second fundamental theorem
· useful to find the Föllmer-Schweizer decomposition

Definition

A martingale measure Q which is equivalent to P is called minimal if Q = P on F0,
and if any square-integrable P-martingale L that satisfies 〈L,M〉 = 0 remains a
martingale under Q, where M is the martingale part of S in the canonical
decomposition under P.

Theorem

Let

Xt =

∫ t

0

µ

f(Ys)
dW (0)

s , (7)

and assume that E[e2Xt ] <∞ for evert t ≤ T . Then,

Zt = 1−
∫ t

0

Zs−dXs (8)

is a P-martingale and the probability measure Q defined by dQ = ZT dP is the
minimal martingale measure of S.
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· useful to find the Föllmer-Schweizer decomposition

Definition

A martingale measure Q which is equivalent to P is called minimal if Q = P on F0,
and if any square-integrable P-martingale L that satisfies 〈L,M〉 = 0 remains a
martingale under Q, where M is the martingale part of S in the canonical
decomposition under P.

Theorem

Let

Xt =

∫ t

0

µ

f(Ys)
dW (0)

s , (7)

and assume that E[e2Xt ] <∞ for evert t ≤ T . Then,

Zt = 1−
∫ t

0

Zs−dXs (8)

is a P-martingale and the probability measure Q defined by dQ = ZT dP is the
minimal martingale measure of S.

Kiseop Lee (Department of Statistics, Purdue University Mathematical Finance Seminar University of Southern California)Insiders’ Hedging in a Stochastic Volatility Model with Informed Traders of Multiple LevelsOct 10, 2016 18 / 37



Minimal Martingale Measure

Minimal Martingale Measure

Idea of the Proof:

Doob Meyer Decomposition of Mt

Girsanov-Meyer theorem

Kunita-Watanabe inequality

Uniqueness of SDE

Stochastic Exponential

condition on a local martingale to be a true martingale
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Minimal Martingale Measure

Q Dynamics of BMs

Lemma

Under the minimal martingale measure Q,

W̃
(0)
t := W

(0)
t +

∫ t

0

µ

f(Ys)
ds,

W̃
(i)
t := W

(i)
t + ρoi

∫ t

0

µ

f(Ys)
ds i = 1, 2, · · · , n

are Brownian motions under Q. Thus S satisfies SDEs

dSt = f(Yt)StdW̃
(0)
t

dY
(i)
t = (αi(t, Y

(i)
t )− µρoi

βi(t, Y
(i)
t )

f(Ys)
)dt+ βi(t, Y

(i)
t )dW̃

(i)
t + γi(t, Y

(i)
t− )dR

(i)
t

(9)

under measure Q.
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Minimal Martingale Measure

Q Dynamics of R(i)

Q dynamics of R(i)

: Let pR(i)(dt, dyi) be the random measure associated to the jump process R(i) under
P. Then, the compensated measure of R(i) under Q is given by

pR̃(i) = pR(i)(dt, dyi)− λiνi(dyi)dt (10)

→ characteristics of semimartingale
→ Girsanov’s theorem for random measures
→ conditional expectation with respect to predictable σ-field
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Local Risk Minimization Strategy

Local Risk Minimization Strategy

Value process

· ξt : the amount of the underlying asset
· ηt : the amount of the money market account
· Vt : the value process of a portfolio (ξ, η) defined by Vt = ξtSt + ηt

Cost process

· Ct : the cost process defined by Ct = Vt −
∫ t
0
ξtdSt

Local risk minimization strategy in an incomplete market (Föllmer and Schweizer)

· local risk minimization strategies ξt : The cost process C is a square integrable
martingale orthogonal to M , i.e. 〈C,M〉t = 0 where M is the martingale part of S
under P.
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Local Risk Minimization Strategy

Local Risk Minimization Strategy

A sufficient condition for the existence

The existence of an optimal strategy is equivalent to a decomposition

H = V0 +

∫ T

0

ξHu dSu + LHT

where LHt is a square integrable martingale orthogonal to Mt. For such a
decomposition, the associated optimal strategy (ξt, ηt) is given by ξt = ξHt ,
ηt = Vt − ξtSt, where Vt = V0 +

∫ t
0
ξHu dSu + LHt .
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Local Risk Minimization Strategy

Local Risk Minimization Strategy

Computation of the optimal strategy

Suppose that Vt = EQ[H(ST )|Gt] has a decomposition

Vt = V0 +

∫ t

0

ξHu dSu + Lt

where Lt is a square integrable P martingale such that 〈L,M〉t = 0 under P. Then
ξHt is given by

ξH =
d〈V, S〉
d〈S, S〉 . (11)

where the conditional quadratic variations are calculated under P.

· role of the minimal martingale measure(Lt)
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Local Risk Minimization Strategy

Different traders

Different Traders

· A level k trader : a trader with information Y (1), Y (2), ..., Y (k), k = 1, 2, · · · , n
· A level n trader : a fully informed trader
· A level 0 trader : honest trader, uninformed trader, noise trader, liquidity trader

Filtration

· G(k)t = σ{(Ss, Y (1)
s , · · · , Y (k)

s ), 0 ≤ s ≤ t}
· G(0)t ⊂ G(1)t ⊂ · · · ⊂ G(n)t ⊂ Ft
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Fully

Informed Trader

Local Risk Minimization Strategy for a Fully Informed Trader

Consider a European syle contingent claim H(ST ) ∈ L2(P)

The fully informed trader

Let V
(n)
t = EQ[H(ST )|G(n)t ] be a price process of a fully informed trader .

Theorem

The local risk minimization strategy is given by

ξn,Ht =
∂V (n)

∂St
+

∑n
i=1 ρ0iβi(t, Y

(i)) ∂V
(n)

∂yi

f(Yt)St
. (12)
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Fully

Informed Trader

Local Risk Minimization Strategy for a Fully Informed Trader

Idea of the proof

· Expand V
(n)
t = EQ[H(ST )|G(n)t ] using the Markov property and Ito’s formula.

· How to change the jumps in terms of integrals? → no common jumps!
· V (n)

t is a Q martingale, so the drift term of the expansion should be 0. This gives

us the pricing differential equation as well as the representation of V
(n)
t .

· Calculate the Radon-Nikodym derivative to get ξn,Ht , using properties of the
predictable version of quadratic variation.
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Fully

Informed Trader

Underlying Dynamic of a Level k Trader

Let σ0 := EQ[f(Yt)] ≥ 0. Then price process becomes

1

St
dSt = σ0dW̃

0
t + f̃(Yt)dW̃

0
t (13)

where f̃ := f − σ0.

Underlying of a level k trader

They can’t observe all the information. So, f̃(Yt) is not their volatility function.
Define

f̃k(Y
(1)
t , · · · , Y (k)

t ) := f̃(Y
(1)
t , · · · , Y (k)

t , ỹk+1, · · · , ỹn) k = 1, · · · , n

and f̃k := 0 if k = 0. Here, (ỹk+1, · · · , ỹn) is a constant vector. So a level k trader’s
price process (??) becomes

1

St
dSt = σ0dW̃

0
t + f̃k(Yt)dW̃

0
t (14)
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Fully

Informed Trader

Cost Process of a Level k Trader

Cost process of a level k trader

· V (k)(t, St) : the value process of a level k trader.
· (ξ(k), η(k)) : the portfolio of a level k trader

· C(k) : the cost process of a level k trader defined by C
(k)
t = V

(k)
t −

∫ t
0
ξ
(k)
t dSs
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Level k

Trader

Local Risk Minimization Strategy for a Level k Trader

Theorem

The local risk minimization strategy for a level k trader is given by

ξk,Ht =
∂V (k)

∂S̃t
+

∑k
i=1 ρ0iβi(t, Y

(i)) ∂V
(k)

∂yi

fk(Yt)S̃t
. (15)

Note that the level 0 trader case corresponds to the B.S. hedging strategy ∂V (k)

∂S̃t
.
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Level k

Trader

The Optimal Choice for a Level k Trader

Assumption

· A level k trader wants to reduce the error in hedging.
· A level k trader has to choose a proper fk → choose proper values for (ỹk+1, · · · , ỹn)

Error function

· Θ := V (k) − V (n) : an error function of a level k trader.

Theorem

Assume that V (n)(t, s) are in C1,2. Then there exists a constant C which depends on
a contingent claim H(ST ) such that we have

EQ[|V (k)
t − V (n)

t |] ≤ CEQ[

∫ T

t

|fk(Ys)− f(Ys)|2ds]1/2 (16)
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Local Risk Minimization Strategy
Local Risk Minimization Strategy for a Level k

Trader

The Optimal Choice for a Level k Trader

Optimal condition

EQ[fk(Ys)− f(Ys)] = 0, for t ≤ s ≤ T (17)

Example (A special case)

We assume that Yt is a Q-martingale and f is a linear function f =
∑n
i=1 ciyi, where

ci > 0.

Under these conditions, EQ[f(Ys)] = f(EQ[Ys]) = f(Y0). Therefore, the choice

(ỹk+1, · · · , ỹn) := (EQ[Y
(k+1)
t ], · · · , EQ[Y

(n)
t ])

is the minimizer.

For example, f(y) =
∑n
i=1 yi and dY

(i)
t =

√
Y

(i)
t dW̃

(1)
t satisfy all the conditions.

Therefore, σ0 :=
∑n
i=1E

Q[Y
(i)
t ] =

∑n
i=1 Y

(i)
0 and the optimal of fk is

fk :=
∑k
i=1 yi +

∑n
i=k+1 Y

(i)
0 .

Kiseop Lee (Department of Statistics, Purdue University Mathematical Finance Seminar University of Southern California)Insiders’ Hedging in a Stochastic Volatility Model with Informed Traders of Multiple LevelsOct 10, 2016 32 / 37



An Example

An Example

We consider two information processes

dY
(1)
t = m1dW̃

(1)
t +m2dR

(1)
t (18)

dY
(2)
t = m3dW̃

(2)
t +m4dR

(2)
t , (19)

where each mi is a given constant.

· R(i)
t : uniformly distributed jumps with bounded intensities λ1 = 4 and λ2 = 2.

· σ0 = 0.2, m1 = 0.1, m2 = 0.05, m3 = 0.05, m4 = 0.1, ρ01 = 1
4
, ρ02 = 1

5
and

ρ12 = 1
20

.

· Y (1)
0 = Y

(2)
0 = 0 and volatility functions are f(y1, y2) = σ0 + y1 + y2,

f1(y1, y2) = σ0 + y1.
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An Example

Numerical Result for a Call Option
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Figure: Call Price, σ0 = 0.2, K = 100, T = 1
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An Example

Numerical Result for a Call Option
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An Example

Numerical Result for a Call Option

E[(CT − C0)2]

Level 0 trader Level 1 trader Level 2 trader

7.728860384 3.533073956 2.714644221

Table: Expected total cost : S0 = 100, σ0 = 0.2, K = 100, T = 1, dt = 1/100

E[(CT − C0)2]

Level 0 trader Level 1 trader Level 2 trader

2.2653 2.2360 1.8912

Table: Expected total cost : S0 = 90, σ0 = 0.2, K = 90, T = 1, dt = 1
50

E[(CT − C0)2]

Level 0 trader Level 1 trader Level 2 trader

0.6429 0.6136 0.5127

Table: Expected total cost : S0 = 90, σ0 = 0.2, K = 90, T = 1, dt = 1
100
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Summary

Summary

How the Information Works in a Trading?

· A trader with more information should do better in trading. We introduced those
models in several cases. (jump size, timing, etc)
· We focused on a market with multiple levels of information processes.
· A numerical study shows mixed results. It is not clear how much advantage a
trader gets by observing one more information process.

What to do next?

· more microstructure → algorithmic trading/ HFT
· other problems on information asymmetry
· uninformed or less informed trader’s learning dynamic
· real data fitting??
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