Global Well-posedness of Non-Markovian Multidimensional Superquadratic BSDE

Kihun Nam

Monash University

University of Southern California Aug 31, 2020

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space with a *n*-dimensional Brownian motion W.
- ▶ $\mathbb{F}^X = (\mathcal{F}_t^X)_{t\geq 0}$ is the augmented filtration generated by a stochastic process X. In particular, we will denote $\mathbb{F} := \mathbb{F}^W$ unless otherwise stated.
- ▶ The time horizon of interest is given by [0, T].
- ▶ For a stochastic process X, we will denote $X_t(\omega)$ be the time t-value of X for realization ω . On the other hand, $X_{[0,t]}(\omega)$ is the realized path of X from time 0 to t. As always in probability theory, we will omit the dependency in ω unless it is needed.
- ▶ A vector in \mathbb{R}^d is considered as a matrix in $\mathbb{R}^{d\times 1}$.
- ▶ The norm of matrix is given by Frobenius norm which is denoted by $|\cdot|$, that is,

$$|A| := \sqrt{\operatorname{tr}(AA^{\intercal})}$$

Let $(W, \mathbb{F}^W) := (\mathcal{F}_t^W)_{t \in [0,T]}, \mathbb{P}$ be a n-dim. Brownian motion. The most classical form of <u>backward stochastic differential</u> equation $BSDE(\Xi, F)$ is

$$Y_t = \Xi + \int_t^T F(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.$$

Input Output

 $\Xi \in \mathcal{F}_T$ Y : \mathbb{R}^d -valued adapted $F \in \mathcal{P} \otimes \mathcal{B}(\mathbb{R}^{d+d \times n})$ Z : $\mathbb{R}^{d \times n}$ -valued adapted

Remark

We have Z as a part of solution because we want Y to be adapted. For example, consider $dY_t = 0$; $Y_T = \Xi$. Then, $Y_t = \Xi$ is not adapted.

Let $(W, \mathbb{F}^W := (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a *n*-dim. Brownian motion. The most classical form of <u>backward stochastic differential</u> equation BSDE (Ξ, F) is

$$Y_t = \Xi + \int_t^T F(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.$$

Input Output

 $\Xi \in \mathcal{F}_T$ Y : \mathbb{R}^d -valued adapted $F \in \mathcal{P} \otimes \mathcal{B}(\mathbb{R}^{d+d \times n})$ Z : $\mathbb{R}^{d \times n}$ -valued adapted

Comparison Principle

Let d = 1. If $\Xi \leq \tilde{\Xi}$ and $F(s, y, z) \leq \tilde{F}(s, y, z)$, then $Y_t \leq \tilde{Y}_t$ for all t almost surely, where Y and \tilde{Y} are the solutions of $BSDE(\Xi, F)$ and $BSDE(\tilde{\Xi}, \tilde{F})$

- F is linear (Bismut, 1973)
 - ⇒ Dual approach to stochastic control problem
- ightharpoonup F is Lipschitz (Pardoux and Peng, 1990)
- ▶ d = 1 and F(s, y, z) is quadratic growth in z Kobylanski (2000) and others.
 - \Rightarrow Risk-sensitive control problem
- ▶ d > 1 and F(s, y, z) is quadratic growth in z
 - ► forward process coupled to BSDE: FBSDE (see works of Ma, Zhang and others)
 - ▶ involving backward stochastic integral: BDSDE \Rightarrow Feynman-Kac for SPDE
 - **•** ...

5

▶ State process: for $b(\alpha) = p^1 \alpha^1 + p^2 \alpha^2$ and a constant $\sigma > 0$,

$$dX_t = \sigma dW_t = b(\alpha_t)dt + \sigma dW_t^{\alpha}$$

Example of Non-zero-sum Stochastic Game: d=2 and n=1

where $W^{\alpha} = W_t - \int_0^t \sigma^{-1}b(\alpha_s)ds$ is a Brownian motion under \mathbb{P}^{α} where

$$\frac{d\mathbb{P}^{\alpha}}{d\mathbb{P}} = \mathcal{E}\left(\int \sigma^{-1}b(\alpha_s)dW_s\right)_T$$

ightharpoonup Cost Functionals: for agent i,

$$\mathbb{E}^{\mathbb{P}^{\alpha}}\left[\int_{0}^{T}\frac{\gamma^{i}}{2}|\alpha^{i}|^{2}ds+g^{i}(X_{[0,T]})\right]$$

Let $H^i(z,\alpha) = \frac{z^i b(\alpha)}{2} + \frac{\gamma^i}{2} |\alpha^i|^2$.

1. Find $\hat{\alpha}(z)$ such that

$$H^{1}(z, \hat{\alpha}^{1}, \hat{\alpha}^{2}) \le H^{1}(z, \alpha^{1}, \hat{\alpha}^{2}), \quad H^{2}(z, \hat{\alpha}^{1}, \hat{\alpha}^{2}) \le H^{2}(z, \hat{\alpha}^{1}, \alpha^{2})$$

2. Find a pair of adapted solution (Y, Z) that satisfies $Y_T = g(X_{[0,T]})$ for $X_t = X_0 + \sigma W_t$ and

$$Y_s = -H(Z_s \sigma^{-1}, \hat{\alpha}(Z_s \sigma^{-1})) ds + Z_s dW_s.$$

Note the driver $H^i(Z_s\sigma^{-1}, \hat{\alpha}(Z_s\sigma^{-1}))$ is

$$Z_t^i \sigma^{-2} \left(\frac{|p^1|^2 Z_t^1}{\gamma^1} + \frac{|p^2|^2 Z_t^2}{\gamma^2} \right) + \frac{p_i}{2\gamma^i |\sigma|^2} |Z_t^i|^2$$

3. $\hat{\alpha}^i(Z_t\sigma^{-1})$ is an optimal control for agent *i* if bounded.

$$Y_t^{i,\alpha^1,\alpha^2} = g^i(X_{[0,T]}) + \int_t^T H^i(Z_s\sigma^{-1}, \alpha_s^1, \alpha_s^2) ds - \int_t^T Z_s^i dW_s$$
$$= g^i(X_{[0,T]}) + \int_t^T \frac{\gamma^i}{2} |\alpha_s^i|^2 ds - \int_t^T Z_s^i dW_s^\alpha$$

Therefore, $Y_0^{i,\alpha^1,\alpha^2}=\mathbb{E}^{\mathbb{P}^{\alpha}}\left[g^i(X_{[0,T]})+\int_t^T\frac{\gamma^i}{2}|\alpha_s^i|^2ds\right]$. Moreover, by comparison theorem, we have

$$\begin{split} Y_0^{1,\hat{\alpha}^1,\hat{\alpha}^2} &\leq Y_0^{1,\alpha^1,\hat{\alpha}^2} \\ Y_0^{2,\hat{\alpha}^1,\hat{\alpha}^2} &\leq Y_0^{2,\hat{\alpha}^1,\alpha^2} \end{split}$$

8

$$Y_s = -\left(f(Z_s) + Z_s g(Z_s)\right) ds + Z_s dW_s$$

Here, ξ and f are \mathbb{R}^d -valued and g is \mathbb{R}^n -valued with $d \geq 1$. The coefficients ξ depend on the path of W, making the BSDE non-Markovian and it is Lipschitz wrt sup norm on $C([0,T];\mathbb{R}^n)$.

- ▶ Bounding Z using Malliavin calculus can prove the local existence and uniqueness of solution, but not the global existence due to the explosion of the bound in backward iteration.
- ▶ Result: If ξ , f, g is stable under the perturbation of W, then there exists a unique bounded solution.

 SMONASH University

Previous literature

	Non- Markovian	zg(z) term	General DQ term	Large Coefficients	W- irregularity
Tevzadze (2008)	Yes	Yes	Yes	No	Yes
Cheridito and N. (2015)	No	Yes	No	Yes	No
Hu and Tang (2016)	Yes	No	Yes	Yes	Yes
Xing and Zitkovic (2018)	No	Yes	Yes	Yes	No
Harter and Richou (2019)	Connecting Tevzadze — Hu and Tang				
Presentation (2020)	Yes	Yes	No	Yes	No

- ► Examples: Kramkov and Pulido (2016)···
- ▶ Counterex. with W-Lipschitzness: Chang et al. (1992).
- ► Markovian+ Special Structure: Cheridito and N. (2015) ⊂ Xing and Žitković (2018)
 - ⇒ Based on PDE technique: unable to generalize to non-Markovian case unless DQ.

Assume the following conditions: There exist positive constants C, K and an increasing function $l : \mathbb{R}_+ \to \mathbb{R}_+$,

(H1)
$$\xi: C([0,T];\mathbb{R}^n) \to \mathbb{R}^d$$
 satisfies $|\xi(\omega)|^2 \le C$ and $|\xi(\omega) - \xi(\omega')|^2 \le K \|\omega - \omega'\|_{sun}^2$, for all $\omega, \omega' \in C([0,T];\mathbb{R}^n)$.

(H2)
$$f: [0,T] \times C([0,T]; \mathbb{R}^n) \times \mathbb{R}^d \times \mathbb{R}^{d \times n} \to \mathbb{R}^d$$
 and $g: [0,T] \times C([0,T]; \mathbb{R}^n) \times \mathbb{R}^d \times \mathbb{R}^{d \times n} \to \mathbb{R}^n$ satisfies

$$|f(s, x_{[0,s]}, 0, 0)|^2 \le C \text{ and } |g(s, x_{[0,s]}, 0, 0)|^2 \le C.$$

$$|f(s,\omega,y,z) - f(s,\omega',y',z')|^2$$

 $\leq C \left(\sup_{r \in [0,s]} |\omega_r - \omega_r'|^2 + |y - y'|^2 + |z - z'|^2 \right)$

$$\left|g(s,\omega,y,z) - g(s,\omega,y',z')\right|^2$$

$$|z| - g(s, \omega, y, z)|$$

$$\leq l(|z| + |z'|) \left(\sup_{x \in [0, z]} |\omega_r - \omega_r'|^2 + |y - y'|^2 + |z - z'|^2 \right)$$

Theorem
Then, the BSDE

$$Y_t = \xi(W_{[0,T]}) + \int_t^T \left(f(s, W_{[0,s]}, Y_s, Z_s) + Z_s g(s, W_{[0,s]}, Y_s, Z_s) \right) ds$$
$$- \int_t^T Z_s dW_s$$

has a unique solution $(X,Y,Z) \in \mathbb{S}^2 \times \mathbb{S}^2 \times \mathbb{H}^2$ such that (Y,Z) is bounded. In particular, there is a continuous and bounded function $k:[0,T]\times C([0,T];\mathbb{R}^n)\to\mathbb{R}^d$ such that $Y_t=k(t,W_{[0,t]})$ and

$$\left| k(t, x_{[0,t]}) - k(t, x'_{[0,t]}) \right|^2 \le \rho(T-t) \sup_{s \in [0,t]} |x_s - x'_s|^2$$

where
$$\rho(x) = \left(K + \frac{C}{2(C+1)}\right) e^{2(C+1)x} - \frac{C}{2(C+1)}$$
. In addition, $|Z_t| \leq \sqrt{\rho(T-t)}$ in $dt \otimes d\mathbb{P}$ -almost everywhere sense.

- ► The conditions can be weakened so that Malliavin derivatives are bounded almost surely almost everywhere.
- ▶ Bounded assumption may be weakened as well.
- ▶ We can add diagonally quadratic term $a^i|z^i|^2$ to f^i . However, general diagonally quadratic f case is still under investigation.
- ▶ If the terminal conditions and the driver approximate general quadratic BSDE with error being small enough, the existence still holds: using Tevzadze (2008).

 \blacktriangleright Let Φ be the unique solution of

$$d\Phi_t = b_f(t, \Phi_{[0,t]}, M_{[0,t]})dt + \sigma_f(t)dM_t, \qquad \Phi_0 \in \mathbb{R}^m, t \in [0, T].$$

where $b_f(y, \phi, m)$ is Lipschitz in (ϕ, m) wrt sup norm and $\sigma_f \in \mathcal{C}^1$. Then, the map $\mathcal{S}: M \mapsto \Phi$ satisfies Lipschitz property wrt sup norm.

▶ Reflection also preserves Lipschitzness wrt W if the boundary is good enough and the reflection direction is well-defined.¹. Therefore, reflected SDE and SDE driven by reflected Brownian motion is Lipschitz wrt W if the drift and the volatility satisfies the condition in the first bullet point.

$$Y_{t} = \xi(W_{[0,T]}) + \int_{t}^{T} f(Z_{s}) + Z_{s}g(Z_{s})ds - \int_{t}^{T} Z_{s}dW_{s}$$

$$Y_{t} = \xi\left(\left(W - \int_{0}^{T} g(Z_{s})ds\right)_{[0,T]} + \left(\int_{0}^{T} g(Z_{s})ds\right)_{[0,T]}\right)$$

$$+ \int_{t}^{T} f(Z_{s})ds - \int_{t}^{T} Z_{s}(dW_{s} - g(Z_{s})ds)$$

Under changed measure that make $W - \int_0^{\cdot} g(Z_s) ds$ a Brownian motion, the Zg(Z) term can be removed from the driver and absorbed to terminal condition.

Strategy: Solve the second equation and transform to the first equation.

- ▶ In general, the filtration generated by Girsanov transformed process is smaller than the filtration generated by the original process. Therefore, the solution is a weak solution.
- ► The filtration problem can be resolved if the corresponding FBSDE has a solution adapted to the filtration generated by the forward process:

$$X_t = W_t - \int_0^t g(Z_s)ds$$

$$Y_t = \xi(X_{[0,T]}) + \int_t^T f(Z_s)ds - \int_t^T Z_s dW_s.$$

Unfortunately, the result on such FBSDE is limited. Hu (2019) studied the case under different conditions (only local solution in time).

- ightharpoonup Localise g in Z so that g is Lipschitz.
- Show the existence and uniqueness of solution for FBSDE on $u \in [T \varepsilon, T]$: typically easy. Analyse to conclude the solution is adapted to the forward process (decoupling field) and Y is Lipschitz in the perturbation of X.

$$\begin{split} dX_t^{u,x_{[0,u]}} &= g(t,x_{[0,u]} \otimes X_{[u,t]}^{u,x_{[0,u]}},Y_t^{u,x_{[0,u]}},Z_t^{u,x_{[0,u]}})dt + dW_t \\ dY_t^{u,x_{[0,u]}} &= -f(t,x_{[0,u]} \otimes X_{[u,t]}^{u,x_{[0,u]}},Y_t^{u,x_{[0,u]}},Z_t^{u,x_{[0,u]}})dt + Z_t^{u,x_{[0,u]}}dW_t \\ X_s^{u,x_{[0,u]}} &= x_s \text{ for } s \leq u \\ Y_T^{u,x_{[0,u]}} &= \xi(x_{[0,u]} \otimes X_{[u,T]}^{u,x_{[0,u]}}) \\ k(t,x_{[0,t]}) &:= Y_t^{t,x_{[0,t]}} \\ Y_t^{u,x_{[0,u]}} &= k(t,X_{[0,t]}^{u,x_{[0,u]}}). \end{split}$$

- ▶ Perform Girsanov transform to conclude the local existence of a unique solution for BSDE. Use the estimation from FBSDE to conclude $Y_{T-\varepsilon}$ again satisfies the assumption (H1). Estimate Z using vertical derivative of Y with respect to W (functional Ito calculus).
- ▶ Repeat the argument until reach 0.
- ▶ Un-localise g since the bound of Z does not depend on the Lipschitz coefficient of g.

Theorem

Let $Y_t = y(t, W_{[0,t]})$ and $Z_t = z(t, W_{[0,t]})$ be a solution of the BSDE

$$Y_s = -f(s, W_{[0,s]}, Y_s, Z_s) - Z_s g(s, W_{[0,s]}, Y_s, Z_s) ds + Z_s dW_s.$$

with
$$Y_T = \xi(W_{[0,T]})$$
. Assume that the SDE

$$dP_t = g(s, P_{[0,s]}, y(s, P_{[0,s]}), z(s, P_{[0,s]}))ds + dW_s;$$

has a unique (strong) solution
$$P$$
 and that $g(\cdot, P_{[0,\cdot]}, y(\cdot, P_{[0,\cdot]}), z(\cdot, P_{[0,\cdot]})) \in \mathbb{H}^{BMO}$. Then, $FBSDE$

has a solution $Q_s = y(s, P_{[0,s]}), R_s = z(s, P_{[0,s]}).$

$$dP_t = g(s, P_{[0,s]}, Q_s, R_s)ds + dW_s,$$
 $P_0 = 0$

$$dQ_s = -f(s, P_{[0,s]}, Q_s, R_s)ds + R_s dW_s \qquad Q_T = \xi(P_{[0,T]})$$

 $P_0 = 0$

Remark 19

► FBSDE: strong formulation of stochastic differential game.

- ► The continuity with respect to *P* can be relaxed to measurable condition in some cases: in particular, when the system is Markovian. (SDE strong well-posedness result with measurable coefficients such as Zvonkin's)
- ▶ Combination with Xing and Žitković (2018) on Markovian BSDE provides interesting results on FBSDEs.

References I 20

J.-M. Bismut. Conjugate convex functions in optimal stochastic control. <u>Journal of Mathematical Analysis and Applications</u>, 44(2):384–404, 1973.

- K.-C. Chang, W. Y. Ding, R. Ye, et al. Finite-time blow-up of the heat flow of harmonic maps from surfaces. Journal of Differential Geometry, 36(2):507-515, 1992.
- P. Cheridito and K. Nam. Multidimensional quadratic and subquadratic bsdes with special structure. Stochastics An International Journal of Probability and Stochastic Processes, 87 (5):871–884, 2015.
- P. Dupuis and H. Ishii. On lipschitz continuity of the solution mapping to the skorokhod problem, with applications. <u>Stochastics and Stochastic Reports</u>, 35(1):31–62, 1991. doi: 10.1080/17442509108833688.
- N. El-Karoui and S. Hamadène. Bsdes and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations. <u>Stochastic Processes and</u> their Applications, 107(1):145–169, 2003.
- C. Frei and G. Dos Reis. A financial market with interacting investors: does an equilibrium exist? Mathematics and financial economics, 4(3):161–182, 2011.
- K. Hu. The wellposedness of path-dependent multidimensional forward-backward sde. arXiv preprint arXiv:1908.09208, 2019.
- M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, 28(2):558–602, 2000.
- D. Kramkov and S. Pulido. A system of quadratic bsdes arising in a price impact model. <u>The Annals of Applied Probability</u>, 26(2):794–817, 2016.
- E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems & Control Letters, 14(1):55-61, 1990.
- R. Tevzadze. Solvability of backward stochastic differential equations with quadratic growth. Stochastic processes and their Applications, 118(3):503-515, 2008.
- H. Xing and G. Žitković. A class of globally solvable markovian quadratic bsde sy
- Xing and G. Zitković. A class of globally solvable markovian quadratic bsde systems applications. The Annals of Probability, 46(1):491–550, 2018.

 MONASH University