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Basic set-up in this talk 2
P———

» (0, F,P) is a probability space with a n-dimensional
Brownian motion W.

» FX = (FX)i>0 is the augmented filtration generated by a
stochastic process X. In particular, we will denote F := FW
unless otherwise stated.

» The time horizon of interest is given by [0, 7).

» For a stochastic process X, we will denote X;(w) be the
time t-value of X for realization w. On the other hand,
X0,(w) is the realized path of X from time 0 to t. As
always in probability theory, we will omit the dependency
in w unless it is needed.

» A vector in R? is considered as a matrix in R%*1,

» The norm of matrix is given by Frobenius norm which is
denoted by | - |, that is,

|A| := /tr (AAT)
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Introduction to BSDE 3
-
Let (W,FV := (F")iej017. P) be a n-dim. Brownian motion.

The most classical form of backward stochastic differential
equation BSDE(E, F') is

T T
y;::+/ F(s,YS,Zs)ds—/ ZsdW.
t t

Input Output

=eFr Y : R%-valued adapted

F € P @ B(R4Tdxm) Z : R™"_valued adapted
Remark

We have Z as a part of solution because we want Y to be
adapted. For example, consider dY; =0; Yy = =. Then,
Y; = Z is not adapted.
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Introduction to BSDE 3
-
Let (W,FW .= (Ft)iejo,r), P) be a n-dim. Brownian motion.

The most classical form of backward stochastic differential
equation BSDE(E, F') is

T T
y;::+/ F(s,YS,Zs)ds—/ ZsdW.
t t

Input Output
2EeFr Y : R%valued adapted
F € P ® B(Rd+dxn) Z : R¥"_valued adapted

Comparison Principle . )
Let d=1. If 2 < E and F(s,y, z)~§ F(s,y,z), then Y; <Y, for

all ¢ almost surely, where Y and Y are the solutions of
BSDE(E, F') and BSDE(E, F)
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Related Literature 4
————

v

F is linear (Bismut, 1973)
= Dual approach to stochastic control problem

» F'is Lipschitz (Pardoux and Peng, 1990)
d=1 and F(s,y,z) is quadratic growth in z
Kobylanski (2000) and others.

= Risk-sensitive control problem

v

v

d > 1 and F(s,y,z) is quadratic growth in z
» forward process coupled to BSDE: FBSDE (see works of
Ma, Zhang and others)
» involving backward stochastic integral: BDSDE =
Feynman-Kac for SPDE

>
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Example of Non-zero-sum Stochastic Game: d =2 and n =1 5
————

» Agent 1 controls o' and agent 2 controls a?. The

a = (a!, a?) requires to be bounded predictable process.

» State process: for b(a) = p'al +p?a? and a constant o > 0,
dXt == O'th == b(at)dt + O'tha

where W< = fo b(as)ds is a Brownian motion
under P% Where

dpe o
di]P) =& (/O' b(Oés)dWS>T

» Cost Functionals: for agent i,
po [ [T i j
B | [ Jlalfds 4 4/ (Xom)
0

where v* > 0. MONASH University




BSDE method 6
7

Let H'(z,a) = 2'b(a) + %i|ai|2.
1. Find &(z) such that

H'(z,a',6%) < H'(z,a',6%), H*(z,6',4%) < H*(z,4%,0?)

2. Find a pair of adapted solution (Y, Z) that satsfies
Yr = g(X[O,T]) for Xy = Xog + oW, and

Y, =— H(Zso™ ', &(Zs0™Y))ds + ZsdWs.
Note the driver H(Z,o0~ ", &(Zso71)) is

) L1271 21272 . )
ZZO'_2(’p|1 t +|p|2 t)_'_2g)2 2’Zlﬂ2
gl gl Vol

3. & (Zyo™1) is an optimal control for agent i if bounded.
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Proof 7

.1 2 . T o T
e :gZ(X[OvT])Jr/ HZ(ZSa_l,a;,ag)ds—/ ZLdW,
t t
g Xom)+ | GlaiPas— [ ziawe
t t

; 2 o [ - i
Therefore, YU”O‘I’O‘ =FEP [gZ(X[O,T]) + ftT %|ag|2ds] Moreover,
by comparison theorem, we have

Al a2 142
Yol,a & < Ybl,oa Q&

Al A2 Al 2
YvOQ,a & < YbQ,a Ke'
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Problem 8
7

By exponential change of variable, we can remove 27%’(0'2 VAR
term. For “Lipschitz” f and locally Lipschitz g, we consider the
existence and uniqueness of bounded solution for the following

BSDE: YT = f(W[()’T}) and
YS = - (f(ZS) + ZSg(ZS)) dS + stWs

Here, ¢ and f are R%valued and ¢ is R"valued with d > 1. The
coefficients £ depend on the path of W, making the BSDE
non-Markovian and it is Lipschitz wrt sup norm on
([0, T]; R™).

» Bounding Z using Malliavin calculus can prove the local
existence and uniqueness of solution, but not the global
existence due to the explosion of the bound in backward
iteration.

» Result: If &, f, g is stable under the perturbation of W,
then there exists a unique bounded solution. & MONASH University




Previous literature

Non- zg(z) term  General Large W-
Markovian DQterm  Coefficients irregularity
Tevzadze (2008) Yes Yes Yes No Yes
Cheridito and N. (2015) No Yes No Yes No
Hu and Tang (2016) Yes No Yes Yes Yes
Xing and Zitkovic (2018) | No Yes Yes Yes No
Harter and Richou (2019) | Connecting Tevzadze — Hu and Tang
Presentation (2020) Yes Yes No Yes No

» Examples: Kramkov and Pulido (2016)- -

» Counterex. with W-Lipschitzness: Chang et al. (1992).

» Markovian+ Special Structure: Cheridito and N.
(2015) C Xing and Zitkovié¢ (2018)
= Based on PDE technique: unable to generalize to
non-Markovian case unless DQ.
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Assumption 10

7
Assume the following conditions: There exist positive constants C, K
and an increasing function [ : Ry — R,

(H1) ¢:C([0,T); R") — R? satisfies |¢(w)]> < C and
E(w) = €W)° < K Jlw = '3, for all w,w’ € C([0,T;R™).

(12) £ 00.1] x C(O.T] &) x RY x ROX" 5 RY and
g:[0,7) x C([0, T]);R™) x R? x R¥*" — R"satisfies
<

> |f(57x[0,s]7070)| C and |g(37x[0,s]a0a0)|2 < C.

>
2
If(S,OJ,y,Z) - f(Sawlaylaz/”

<C ( sup |w, —wr |+ ly —y'[* + |z - Z’I2>
r€l0,s]

2
|g(s,w, Y, Z) - g(svwvylv ZI)‘

<I(|z] +12']) ( sup |wr — P4y -y P+ ]z — z’|2)
rel0,s]
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Main Result 11
————

Theorem
Then, the BSDE

T
Y, = g(W[O,T]) + / (f(sa W[O,s]vysv Zs) + ng(s» W[O,s]7 Ys, Zs)) ds
t

T
- / Z.w,
t

has a unique solution (X,Y,Z) € S* x S* x H? such that (Y, Z) is
bounded. In particular, there is a continuous and bounded function
k:[0,T) x C([0,T);R") — R? such that Y; = k(t, Wio,q) and
2

< p(T—1) sup |, — a2

‘k(t, 0,)) — k(t, 2o )
sE[O,t]

where p(x) = (K + ﬁ) e2(C+l)z _ z(cicﬂ) In addition,

|Z:| < \/p(T —t) in dt @ dP-almost everywhere sense.
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Extensions 12
————

» The conditions can be weakened so that Malliavin
derivatives are bounded almost surely almost everywhere.

» Bounded assumption may be weakened as well.

» We can add diagonally quadratic term af|2¢|? to f'.
However, general diagonally quadratic f case is still under
investigation.

» If the terminal conditions and the driver approximate
general quadratic BSDE with error being small enough, the
existence still holds: using Tevzadze (2008).
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Lipschitz with respect to W 13
————

» Let ® be the unique solution of
dd; = bf(t, (I)[O,t]’ M[07t])dt + O'f(t)th, dy e R™, ¢t €[0,T].

where bf(y, ¢, m) is Lipschitz in (¢, m) wrt sup norm and
o € C'. Then, the map S : M — ® satisfies Lipschitz
property wrt sup norm.

» Reflection also preserves Lipschitzness wrt W if the
boundary is good enough and the reflection direction is
well-defined.!. Therefore, reflected SDE and SDE driven by
reflected Brownian motion is Lipschitz wrt W if the drift
and the volatility satisfies the condition in the first bullet
point.

MONASH University
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Key Idea 1: Girsnov Transform 14
————

T T
Yo = EWioa) + | F(Z2) + Zug(Z2)ds — / Z,dW,
t t

Y, = ¢ ((W— / 'g<Zs>ds> ot ( /0 'g<Zs>ds> M)
/ F(Z0)ds — / Z,(AW,—g(Zs)ds)

Under changed measure that make W — fo s)ds a Brownian
motion, the Zg(Z) term can be removed from the driver and
absorbed to terminal condition.

Strategy: Solve the second equation and transform to the first

equation.
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Challenges 15
7

» In general, the filtration generated by Girsanov transformed
process is smaller than the filtration generated by the
original process. Therefore, the solution is a weak solution.

» The filtration problem can be resolved if the corresponding
FBSDE has a solution adapted to the filtration generated
by the forward process:

t
Xt = Wt — / g(ZS)dS
0

T T
n:g(X[QT])JF/t f(ZS)ds—/t ZydWs.

Unfortunately, the result on such FBSDE is limited. Hu
(2019) studied the case under different conditions (only
local solution in time).
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Key Idea 2: Use the interplay between FBSDE and BSDE 16
7 -

» Localise g in Z so that ¢ is Lipschitz.

» Show the existence and uniqueness of solution for FBSDE
onu € [T —e,T)]: typically easy. Analyse to conclude the
solution is adapted to the forward process (decoupling
field) and Y is Lipschitz in the perturbation of X.

dX;" "0 = g(t, @0, © XE; ‘j}[‘) Wy et Z B0 dt 4 AW,
A, = — f(t o) @ Xy YT, 20 de - 2 AWy
Xﬁ’”"‘“l =z, for s <u
Y;,:L‘[O.u] — 5(33[0 ] ® X[ZIT(]J u] )
k(t, ) ==Y, "
Y, o = k(t, ngff ).
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» Perform Girsanov transform to conclude the local existence
of a unique solution for BSDE. Use the estimation from
FBSDE to conclude Y7_. again satisfies the assumption
(H1). Estimate Z using vertical derivative of Y with
respect to W (functional Ito calculus).

» Repeat the argument until reach 0.

» Un-localise g since the bound of Z does not depend on the
Lipschitz coefficient of g.
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Solving FBSDE using BSDE result 18
7

Theorem
Let Yy = y(t, Wjo ) and Zy = 2(t, Wjg ) be a solution of the
BSDE

Ys = _f(sa W[O,s]vyv& Zs) - ZSQ(S, W[O,s]v Ys, Zs)ds + ZsdWs.
with Yr = §(Wo 7). Assume that the SDE
AP, = Q(S»P[o,s], y(Sa P[O,S])v Z(Sa I)[O,s]))ds + dWs; Py=0

has a unique (strong) solution P and that
9(» P, y(- Po). 2(-, Po,))) € HBMO. Then, FBSDE

dp; :9(37P[0,51,Qs,Rs)d8+dWs, Py=0
dQs = —f(s, P[O,s]» Qs, Rs)ds + RsdW Qr = f(P[O,T])

has a solution Qs = y(s, Pog)), Rs = (s, Po,q)-
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Remark 19
————

» FBSDE: strong formulation of stochastic differential game.

» The continuity with respect to P can be relaxed to
measurable condition in some cases: in particular, when
the system is Markovian. (SDE strong well-posedness
result with measruable coefficients such as Zvonkin’s)

» Combination with Xing and Zitkovi¢ (2018) on Markovian
BSDE provides interesting results on FBSDEs.
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