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Outline of talk

I Mean field games (MFGs)

I Historical background of noncooperative games
I Simple examples of MFG; nonlinear diffusion dynamics:

“interacting particle” modeling
I Fundamental approaches
I Generalizations

I Three concrete MFG models

I Competitive binary Markov decision process (MDP)
I Stochastic growth model
I LQ mean field social optimization with a major player

I References

Minyi Huang Mean Field Games: Basic theory and generalizations



MFG: background and theory
Three concrete models

References

Historical background of noncooperative games
MFG: basic theory
Generalizations of modeling

A mean field game is a situation of stochastic (dynamic) decision
making where

I each agent interacts with the aggregate effect of all other
agents;

I agents are non-cooperative.

Example: Hybrid electric vehicle
recharging control

interaction through price
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Applications of MFG:

I Economic theory

I Finance

I Communication networks

I Social opinion formation

I Power systems

I Electric vehicle recharging control

I Public health (vaccination games)

I Cyber-security problems (botnets)

I ......
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Historical Background of Noncooperative Games

1. Cournot duopoly Cournot equilibrium, 1838

2. 2 person zero-sum von Neumann’s minimax theorem, 1928

3. N-person nonzero-sum Nash equilibrium, 1950

Antoine Cournot John von Neumann John Nash
(1801-1877) (1903-1957) (1928-2015)
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Two directions for generalizations:

I Include dynamics

I L. Shapley (1953), MDP model; Rufus Isaacs (1965),
Differential games, Wiley, 1965 (work of 1950s).

I Consider large populations of players

Technical challenges arise ...

I the curse of dimensionality when the number of players is large

I Example: 50 players, each having 2 states, 2 actions. Need a system
configuration: 450 = 1.27× 1030
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von Neumann and Morgenstern’s version on games with a large
number of players –

“... When the number of participants becomes really great, some hope
emerges that the influence of every particular participant will become
negligible, and that the above difficulties may recede and a more
conventional theory becomes possible.”

“... In all fairness to the traditional point of view this much ought to be
said: It is a well known phenomenon in many branches of the exact and
physical sciences that very great numbers are often easier to handle than
those of medium size. An almost exact theory of a gas, containing about
1025 freely moving particles, is incomparably easier than that of the solar
system, made up of 9 major bodies ... This is, of course, due to the
excellent possibility of applying the laws of statistics and probability in
the first case.”
J. von Neumann and O. Morgenstern (1944), Theory of games and economic

behavior, Princeton University Press, p. 12.
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Early efforts to deal with large populations

I J. W. Milnor and L.S. Shapley (1978); R. J. Aumann (1975). This
is for cooperative games

I E. J. Green (1984). Non-cooperative games

I M. Ali Khan and Y. Sun (2002). Survey on “Non-cooperative
games with many players”. Static models.

I B. Jovanovic and R. W. Rosenthal (1988). Anonymous sequential
games. It considers distributional strategies for an infinite
population. However, individual behaviour is not addressed.

I ...
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Modeling of mean field games

Mass influence

i
z u

m(t)

i i Play against mass

I Model: Each player interacts with the empirical state distribution

δ
(N)
z of N players via dynamics and/or costs (see examples)

I Individual state and control (zi , ui ), δ
(N)
z(t) =

1
N

∑N
i=1 δzi (t)

I Objective: Overcome dimensionality difficulty
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MFG – Example 1: Continuous time LQ

dX i
t = (AθiX

i
t + Buit + GX

(N)
t )dt + DdW i

t , 1 ≤ i ≤ N

Ji (u
i , u−i ) = E

∫ ∞

0

e−ρt
{
|X i

t − (ΓX
(N)
t + η)|2Q + (uit)

TRuit

}
dt

To relate to the empirical distribution, denote

δ
(N)
X (t) =

1

N

N∑
i=1

δX i (t)

X
(N)
t =

1

N

N∑
i=1

X i
t =

∫
R
yδ

(N)
X (t)(dy)

Minyi Huang Mean Field Games: Basic theory and generalizations



MFG: background and theory
Three concrete models

References

Historical background of noncooperative games
MFG: basic theory
Generalizations of modeling

MFG – Example 2: Discrete time Markov decision processes
(MDPs)

I N MDPs
(x it , a

i
t), 1 ≤ i ≤ N,

where state x it has transitions affected by action ait but not by
(a1t , . . . , a

i−1
t , ai+1

t , . . . , aNt ).

I Player i has cost

Ji = E
T∑
t=0

ρt l(x it , x
(N)
t , ait), ρ ∈ (0, 1]
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MFG – Example 3: Diffusion model of a Nash game of N players:

dxi =
1

N

N∑
j=1

f (xi , ui , xj)dt + σdwi , 1 ≤ i ≤ N, t ≥ 0,

Ji (ui , u−i ) = E

∫ T

0

[ 1
N

N∑
j=1

L(xi , ui , xj)
]
dt, T < ∞.

I Mean field coupling in dynamics and costs

I Denote δ
(N)
x(t) =

1
N

∑N
i=1 δxi (t). Then

1

N

N∑
j=1

f (xi , ui , xj) =

∫
Rn

f (xi , ui , y)δ
(N)
x(t)(dy)
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The traditional approach: infeasibility

I Rewrite vector mean field dynamics (controlled diffusion):

dx(t) = fN(x(t), u1(t), . . . , uN(t))dt + σNdW (t).

I Cost of agent i ∈ {1, . . . ,N}: Ji (ui , u−i ) = E
∫ T

0
li (x(t), ui , u−i )dt

where u−i is the set of controls of all other agents

I Dynamic programming (N coupled HJB equations):{
0 = ∂vi

∂t +minui

[
f TN

∂vi
∂x + 1

2Tr(
∂2vi
∂x2 σNσ

T
N ) + li

]
,

vi (T , x) = 0, 1 ≤ i ≤ N

I Need too much information since the HJBs give an individual
strategy of the form ui (t, x1, . . . , xN).

I Computation is heavy, or impossible in nonlinear systems.
I Need a new methodology: mean field stochastic control theory!
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Problem     :     player Nash game

states:

strategies:

costs:  

A large-scale coupled 

equation system

Example:      coupled dynamic 

programming equations

Problem     :   Optimal control of a

single player

state:         control: 

mean field      is fixed and not

controlled by    

MFG equation system:

1 equation of optimal control;

1 equation of mean field

dynamics (for   )

Example: HJB PDE; FPK PDE (or

McKean-Vlasov SDE)
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Figure : The fundamental diagram of MFG theory

I The red route: top-down (impose consistency in the mean field
approximations). See Huang, Malhame, and Caines (2006; nonlinear case),
Huang, Caines, and Malhame (2003, 2007; LQ case)

I The blue route: bottom-up. See Lasry and Lions (2006, 2007; nonlinear case,
restricted to decentralized information)
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Solution of Example 1: Problem P0 –

dX i
t = (AθiX

i
t + Buit + GX

(N)
t )dt + DdW i

t , 1 ≤ i ≤ N

Ji (u
i , u−i ) = E

∫ ∞

0
e−ρt

{
|X i

t − (ΓX
(N)
t + η)|2Q + (uit)

TRuit

}
dt

Riccati equation: ρΠ = ΠA+ ATΠ− ΠBR−1BTΠ+ Q

The MFG solution equation system:{
dX̄t
dt = (A− BR−1BTΠ+ G )X̄t − BR−1BT st , I.C. X̄0

ρst =
dst
dt + (AT − ΠBR−1BT )st +ΠGX̄t − Q(ΓX̄t + η)

The set of decentralized strategies for the N players:

ûit = −R−1BT (ΠX i
t + st), 1 ≤ i ≤ N.

Results:

i) Existence for ODE via fixed point argument.

ii) The set of strategies is an ϵ-Nash equilibrium
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The fundamental diagram with diffusion dynamics:


P0—Game with N players;Example

dxi = f (xi , ui , δ
(N)
x )dt + σ(· · · )dwi

Ji (ui , u−i ) = E
∫ T
0 l(xi , ui , δ

(N)
x )dt

δ
(N)
x : empirical distribution of (xj )

N
j=1

solution
−− →

HJBs coupled via densities pNi,t , 1 ≤ i ≤ N

+N Fokker -Planck-Kolmogorov equations
ui adapted to σ(wi (s), s ≤ t)
(i .e., restrict to decentralized info
for N players); so giving uNi (t, xi )

↓construct ↖performance? (subseq. convergence)↓N → ∞


P∞—Limiting problem, 1 player
dxi = f (xi , ui , µt)dt + σ(· · · )dwi

J̄i (ui ) = E
∫ T
0 l(xi , ui , µt)dt

Freeze µt , as approx . of δ
(N)
x

solution
−− →



ûi (t, xi ) : optimal response
HJB (with v(T , ·) given) :
−vt = infui (f

T vxi + l + 1
2
Tr [σσT vxi xi ])

Fokker -Planck-Kolmogorov :

pt = −div(fp) +
∑

((σσT

2
)jkp)x ji x

k
i

Coupled via µt (w . density pt ; p0 given)

I The consistency based approach (red) is more popular; related to ideas in
statistical physics (McKean-Vlasov eqn); FPK can be replaced by an MV-SDE
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A brief note:

Due to time constraint, this talk did not cover the so-called mean
field type control (with a single decision maker)

One such example is mean-variance portfolio optimization, where
the objective contains Var(X (t)) which depends on the mean in a
nonlinear manner.
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Comparison of the two approaches in an LQ setting (Huang and
Zhou’18):
blue route (direct approach); red route (fixed point approach)

Problem     :     player Nash game

states:

strategies:

costs:  

A large-scale coupled 

equation system

Example:      coupled dynamic 

programming equations

Problem     :   Optimal control of a

single player

state:         control: 

mean field      is fixed and not

controlled by    

MFG equation system:

1 equation of optimal control;

1 equation of mean field

dynamics (for   )

Example: HJB PDE; FPK PDE (or

McKean-Vlasov SDE)
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P
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route 1

route 2 route 1

route 2

( )���� ��� �� L

( )���� ��� �� L

( )���� ��� �� L

�µ

� �

�� ���� �µ

point approachFixed

Asymptotic solvability

(direct approach)
Non-uniqueness

dX i
t = (AθiX

i
t + Buit + GX

(N)
t )dt + DdW i

t , 1 ≤ i ≤ N

Ji (u
i , u−i ) = E

∫ T

0

{
|X i

t − (ΓX
(N)
t + η)|2Q + (uit)

TRuit

}
dt

Definition: Asymptotic solvability – The N coupled dynamic programming equations

have solutions in addition to mild regularity requirement on the solution behavior. Its

necessary and sufficient condition: A non-symmetric Riccati ODE in Rn has a solution

on [0,T ] where X i
t ∈ Rn.
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I Major players with strong influence (example: institutional
trader and many smaller traders)

I Robustness

I Cooperative decision(team)

I Partial information

I · · ·
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(I) Competitive MDP modeling of MFGs

I Except for LQ cases, general nonlinear MFGs rarely have
closed-form solutions

I We introduce this class of MDP models which have relatively
simple solutions (threshold policy)
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The MF MDP model: (Huang and Ma, 2016)

I N players (or agents Ai , 1 ≤ i ≤ N) with states x it , t ∈ Z+,
as controlled Markov processes (no coupling)

I State space: S = [0, 1]
I Action space: A = {a0, a1}. a0: inaction

I Interpret state as unfitness or risk

I Agents are coupled via the costs

Examples of binary action space (action or inaction)

I maintenance of equipment;

I network security games;

I vaccination games, etc.
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Dynamics:

The controlled transition kernel for x it . For t ≥ 0 and x ∈ S,

P(x it+1 ∈ B|x it = x , ait = a0) = Q0(B|x),
P(x it+1 = 0|x it = x , ait = a1) = 1,

I Q0(·|x): stochastic kernel defined for B ∈ B(S) (Borel sets).
I Q0([x , 1]|x) = 1. Recall a0 = inaction.

So the state gets worse under inaction.

I Transition of x it is not affected by other ajt , j ̸= i .

The stochastic deterioration is similar to hazard rate modelling in the maintenance

literature (Bensoussan and Sehti, 2007; Grall et al. 2002)
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x it under inaction. It is getting worse and worse.
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The cost of Ai :

Ji = E
T∑
t=0

ρtc(x it , x
(N)
t , ait), 1 ≤ i ≤ N.

I 0 < T ≤ ∞; ρ ∈ (0, 1): discount factor.

I Population average state: x
(N)
t = 1

N

∑N
i=1 x

i
t .

I The one stage cost:

c(x it , x
(N)
t , ait) = R(x it , x

(N)
t ) + γ1{ait=a1}

Motivation: network maintenance game

I R ≥ 0: unfitness-related cost; γ > 0: the effort cost
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Stationary equation system for MFG

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx)

where π is a probability measure on [0, 1]

Remark: The second equation means z = Ex it in steady state

Existence and Uniqueness can be developed under technical
assumptions.

Solution property: threshold policy

Minyi Huang Mean Field Games: Basic theory and generalizations
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Assumptions:

(A1) {x i0, i ≥ 1} are independent random variables taking values in
S.

(A2) R(x , z) is a continuous function on S× S. For each fixed z ,
R(·, z) is strictly increasing.

(A3) i) Q0(·|x) satisfies Q0([x , 1]|x) = 1 for any x , and is strictly
stochastically increasing; ii) Q0(·|x) has a positive density for
all x < 1.

(A4) R(x , ·) is increasing for each fixed x .

(A5) γ > βmaxz
∫ 1
0 [R(y , z)− R(0, z)]Q0(dy |0).

Remarks:

I Montonicity in (A2): cost increases when state is poorer.

I (A3)-i) means dominance of distributions

I (A5) Effort cost should not be too low; this prevents zero action threshold
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Theorem (existence) Assume (A1)-(A5). Then

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx)

has a solution (V , z , π, ai ) for which the best response ai is a
threshold policy. Uniqueness holds if we further assume
R(x , z) = R1(x)R2(z) and R2 > 0 is strictly increasing on S.

I ai : x ∈ [0, 1] 7→ {a0, a1}, is implicitly specified by the first
equation as a threshold policy

I Show each θ-threshold policy leads to a limiting distribution
πθ (verify Doebline’s condition for each θ ∈ (0, 1)); in fact
infx∈S P(x4 = 0|x0 = x) ≥ η > 0.
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Figure : V (x) defined on [0, 1]
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Figure : Left: V (x) (threshold 0.49) Right: search of the threshold 0.49
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(II) – Stochastic growth
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The idea of relative performance in economic literature:
I Abel (1990), Amer. Econ. Rev.

I Hori and Shibata (2010), J. Optim. Theory Appl.

I Turnovsky and Monterio (2007), Euro. Econ. Rev.

I · · ·

MFG with relative performance (Espinosa and Touzi, 2013)

I GBM dynamics for risky assets

I The performance of agent (manager) i (i = 1, 2, . . . ,N):

EU
[
(1− λ)X i

T + λ(X i
T − X

(−i)
T )

]
, X

(−i)
T =

1

N − 1

∑
j ̸=i

X j
T , 0 < λ < 1

Feature: This is difference-like comparison

Our growth model (Huang and Nguyen, AMO’16):

I Cobb-Douglas production function

I Relative utility based performance
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Dynamics of the N agents:

dX i
t =

[
A(X i

t )
α − δX i

t − C i
t

]
dt − σX i

t dW
i
t , 1 ≤ i ≤ N,

I X i
t : capital stock, X i

0 > 0, EX i
0 < ∞, C i

t : consumption rate

I Axα, α ∈ (0, 1): Cobb-Douglas production function, 0 < α < 1, A > 0

I δdt + σdW i
t : stochastic depreciation (see e.g. Wälde’11, Feicht and

Stummer’10 for stochastic depreciation modeling)

I {W i
t , 1 ≤ i ≤ N} are i.i.d. standard Brownian motions. The i.i.d. initial states

{X i
0, 1 ≤ i ≤ N} are also independent of the N Brownian motions.
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The utility functional of agent i :

Ji (C
1, . . . ,CN) = E

[∫ T

0

e−ρtU(C i
t ,C

(N,γ)
t )dt + e−ρTS(XT )

]
,

where C
(N,γ)
t = 1

N

∑N
i=1(C

i
t )

γ , γ ∈ (0, 1). Take S(x) = ηxγ

γ , η > 0.

Take the utility function

U(C i
t ,C

(N,γ)
t ) =

1

γ
(C i

t )
γ(1−λ)

[
(C i

t )
γ

C
(N,γ)
t

]λ

(
=

[
1
γ (C

i
t )

γ
]1−λ [

1
γ

(C i
t )

γ

C
(N,γ)
t

]λ
=: U1−λ

0 Uλ
1

)
,

as weighted geometric mean of U0 (own utility), U1 (relative utility).

Further take γ = 1− α, i.e., equalizing the coefficient of the relative risk
aversion to capital share; useful for closed-form solution
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Results:

I The individual strategy is a linear feedback

Ĉ i
t = bt

[
ea(t−T )η

1
1−γ + eat

∫ T

t

e−asbsds
]−1

X i
t , 1 ≤ i ≤ N.

a: constant; b: determined from fixed point equation (FPE)

bt = Γ(b)t , t ∈ [0,T ].

I Existence of a solution to the FPE by a contraction argument

I The set of strategies is an ε-Nash equilibrium.
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We solve the fixed equation b = Γ(b) with the following parameters

T = 2, A = 1, δ = 0.05, γ = 0.6, η = 0.2, ρ = 0.04, σ = 0.08,

I λ will take three different values 0.1, 0.3, 0.5 for comparisons.

I See Feicht and Stummer (2010) for typical parameter values in
capital growth models with stochastic depreciation.

I Time is discretized with step size 0.01.
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Numerical example
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Figure : Left: bt solved from b = Γ(b); right: btΓ0(b)t (as control gain)

When the agent is more concerned with the relative utility (i.e.,
larger λ), it consumes with more caution during the late stage.
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Numerical example

0
0.5

1
1.5

2

0

5

10

15

20
0.05

0.1

0.15

0.2

0.25

0.3

titerates

Figure : The computation of bt in the first 20 iterates by operator Γ,
λ = 0.5.
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(III) – Mean field teams with a major player

Related work on social optimization

I Huang, Caines and Malhamé (TAC, 2012) – LQ mean field team with peers

I Sen, Huang and Malhamé (CDC’16) – Nonlinear diffusions with peers

I Huang and Nguyen (IFAC’2011, CDC’16) – LQ model with a major player, no
dynamic coupling
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Motivation for cooperative decision (mean field team)

I Manage space heaters in large buildings (hotel, apartment building,
etc); they can run cooperatively to maintain comfort and good
average load (as a mean field)

I Kizilkale and Malhame (2016) considered related collective target
tracking reflecting partial cooperation; linear SDE temperature
dynamics

Minyi Huang Mean Field Games: Basic theory and generalizations



MFG: background and theory
Three concrete models

References

I. Competitive MDP model
II. Stochastic growth
III. Mean field team

Dynamics of the major player A0, and N minor players Ai :

dxN0,t = (A0x
N
0,t + B0u

N
0,t + F0x

(N)
t )dt + D0dW0,t ,

dxNi ,t = (AxNi ,t + BuNi ,t + Fx
(N)
t + GxN0,t)dt + DdWi ,t , 1 ≤ i ≤ N.

(A1) The initial states xNj ,0 = xj(0) for j ≥ 0. {xj(0), 0 ≤ j ≤ N}
are independent, and for all 1 ≤ i ≤ N, Exi (0) = µ0.
supi E |xi (0)|2 ≤ c for a constant c independent of N.

Note: The condition of equal initial means can be generalized.
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The cost for A0 and Ai , 1 ≤ i ≤ N:

J0(u
N
0 , u

N
−0) = E

∫ T

0
{|xN0 − Φ(x (N))|2Q0

+ (uN0 )
TR0u

N
0 }dt,

Ji (u
N
i , u

N
−i ) = E

∫ T

0
{|xNi −Ψ(xN0 , x (N))|2Q + (uNi )

TRuNi }dt,

where Q0 ≥ 0, Q ≥ 0 and R0 > 0, R > 0,

I uN−j = (uN0 , . . . , u
N
j−1, u

N
j+1, . . . , u

N
N ), x (N) = 1

N

∑N
i=1 x

N
i ,

I Φ(x (N)) = H0x
(N) + η0, Ψ(xN0 , x (N)) = HxN0 + Ĥx (N) + η.

The social cost:

J(N)
soc (u

N) = J0 +
λ

N

N∑
k=1

Jk ,

where uN = (uN0 , u
N
1 , . . . , u

N
N ) and λ > 0.
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Notation:

I uN = (uN0 , u
N
1 , · · · , uNN )

I uN−j = (uN0 , . . . , u
N
j−1, u

N
j+1, . . . , u

N
N ), j ≥ 0

I x (N) = 1
N

∑N
i=1 x

N
i , x̂ (N) = 1

N

∑N
i=1 x̂

N
i , etc

I û(N) = 1
N

∑N
i=1 û

N
i

I x̂
(N)
−i = 1

N

∑N
j ̸=i x̂

N
j .

I x̃
(N)
−i = 1

N

∑N
j ̸=i x̃

N
j .

I x∞0 , x∞i , u∞i , etc. for the limiting model

I m, m̂, m̃ for the mean field
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Main result 1. The solution of the MFT leads to the FBSDE

dx̂∞0 = (A0x̂
∞
0 + B0R

−1
0 BT

0 p0 + F0m̂)dt + D0dW0,

dm̂ = [(A+ F )m̂ + Gx̂∞0 + B(λR)−1BTp]dt,

dp0 = {−AT
0 p0 − GTp + Q0[x̂

∞
0 − (H0m̂ + η0)]

− HTλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξ0dW0,

dp = {−FT
0 p0 − (A+ F )Tp − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ (I − Ĥ)TλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ξdW0,

dx̂∞i = [Ax̂∞i + B(λR)−1BTqi + Fm̂ + Gx̂0]dt + DdWi ,

dqi = {−FT
0 p0 − FTp − ATqi − HT

0 Q0[x̂
∞
0 − (H0m̂ + η0)]

+ λQ[x̂∞i − (Hx̂∞0 + Ĥm̂ + η)]

− ĤλQ[(I − Ĥ)m̂ − Hx̂∞0 − η]}dt + ζai dW0 + ζbi dWi .

where x̂∞0,0 = xN0,0, m̂0 = µ0, x̂∞i,0 = xNi,0, p0(T ) = p(T ) = pi (T ) = 0.

Theorem. This FBSDE has a unique solution.

Remark 1: General FBSDEs do not always have a solution.
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Main result 2. Performance gap

Social Optimality Theorem We have

|J(N)
soc (û)− inf

u
J(N)
soc (u)| = O(1/

√
N),

where each uNj , 0 ≤ j ≤ N within u is in L2F (0,T ;Rn1), and

ûN0 = û∞0 = R−1
0 BT

0 p0, ûNi = û∞i = (λR)−1BTqi .

�

I We can further show that p0 is a linear function of (x̂∞0 , m̂).

I We may choose Ft as the σ-algebra

Fx�(0),W�
t , σ(xj(0),Wj(τ), 0 ≤ j ≤ N, τ ≤ t).
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How is the FBSDE introduced?

I If (û0, û1, · · · , ûN) (as progressively measurable processes) is a
social optimum, a perturbation δuk in any single component

ûk will make the social cost J
(N)
soc worse off (this property is

called person-by-person optimality in team decision theory).

I This provides variational conditions, one for the major player
and the other for a representative minor player.

I Derive the mean field limit and impose consistency.
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Thank you!
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