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Basel 2, 2.5 and FRTB

Basel 2 and 2.5

I 10 days P&L of different risk positions are aggregrated

Liquidity is not taken into account

I Value-at-Risk (VaR)
Incentive to take skewed risk, not sub-additive

FRTB sets out revised standards for minimum capital requirements for
market risk

I Incorporate the risk of market illiquidity

I An Expected Shortfall (ES) measure

I Constrain the capital-reducing effects of hedging
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Structure and implementation
I Standardized approach (SA), Internal models approach (IMA)
I QIS shows that capital charge increases 128% in SA and 54% in

IMA (average over 44 banks)
I Model approval down to desk level

Implementation timeline (Picture from EY)
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Impact of FRTB

Consulting firm Oliver Wyman estimates that banks need to spend $5
billion to get ready for FRTB

“.. one certain thing about the process is that capital requirements will
rise. This is going to be life-threatening for some trading desks, as heads
of divisions assess whether it is economical to be in certain businesses. ”
— Bloomberg News

Capital charge in SA is very expensive.

IMA requires 90 or more times of calculations than the current rule.
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Outline

I FRTB ES and its properties

I Capital allocation

I Two allocation methods under FTRB

I Simulation analysis
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Risk factor and liquidity horizon bucketing
P&L of a risk position is attributed to

{RFi : 1 ≤ i ≤ 5} = {CM,CR,EQ,FX, IR}
{LHj : 1 ≤ j ≤ 5} = {10, 20, 40, 60, 120}

BCBS (2016) 181(k)
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Risk profile
Loss: Negative of P&L

Consider a portfolio of N risk positions. 1 ≤ n ≤ N

X̃n(i , j): loss (over 10 days) attributed to RFi and LHj∑
i,j X̃n(i , j): total loss (over 10 days) of the risk position n

Liquidity horizon adjusted loss:

Xn(i , j) =

√
LHj − LHj−1

10

5∑
k=j

X̃n(i , k), 1 ≤ i , j ≤ 5

We record the liquidity horizon bucketing by a 5× 5 matrix:

Xn = {Xn(i , j)}1≤i,j≤5
and call the matrix the risk profile of position n.

The risk profile of a portfolio is

X =
∑
n

Xn.
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X̃n(i, 1) X̃n(i, 2) X̃n(i, 3) X̃n(i, 4) X̃n(i, 5)

×
√

10−0
10

Xn(i, 1) · · · · · ·

×
√

120−60
10

Xn(i, 5)
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FRTB ES
The FRTB expected shortfall for portfolio loss attributed to RFi is

ES(X (i)) =

√√√√ 5∑
j=1

ES(X (i , j))2,

where ES(X (i , j)) is the expected shortfall of X (i , j) calculated at the
97.5% quantile.

Example: Consider a portfolio with only one risk position whose is loss is
concentrated on RFi with LH5 = 120.

X̃ (i , j) = 0, j = 1, . . . , 4, X̃ (i , 5) ∼ N(0, σ2)

Then the ES over 120 days is
√

120/10σES(N(0, 1)).

On the other hand, X (i , j) =
√

LHj−LHj−1

10 X̃ (i , 5), 1 ≤ j ≤ 5. Then

ES(X (i)) =

√√√√ 5∑
j=1

LHj − LHj−1

10
ES(X̃ (i , 5))2 =

√
120

10
σES(N(0, 1)).
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Stress period scaling

ESF,C(X (i)): current 12-month, full set of risk factors

ESR,C(X (i)): current 12-month, reduced set of risk factors

ESR,S(X (i)): stress period, reduced set of risk factors

Restriction: ESR,C(X (i)) ≥ 75% ESF,C(X (i)).

FRTB ES capital charge BSBC (2016) 181 (d) :

IMCC(X (i)) =
ESR,S(X (i))

ESR,C(X (i))
ESF,C(X (i)), 1 ≤ i ≤ 5.
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Capital charge for modellable risk factors

Unconstrained portfolio:

Xn(6, j) =
5∑

i=1

Xn(i , j), X (6, j) =
∑
n

Xn(6, j).

We add X (6, )̇ as the 6-th row of 5× 5 matrix, and call it extended risk
profile.

IMCC(X (6)) is calculated similarly as before.

IMCC: BCBS (2016) 189:

The aggregate capital charge for modellable risk factors is

IMCC(X ) = ρ IMCC(X (6)) + (1− ρ)
5∑

i=1

IMCC(X (i)),

where ρ = 0.5.
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Properties of IMCC

Proposition

(i) (Positive homogeneity) IMCC(aX ) = a IMCC(X ), a ≥ 0.

(ii) (Sub-additivity for ES) If ES((X + Y )(i , j)) ≥ 0, then

ES((X + Y )(i)) ≤ ES(X (i)) + ES(Y (i)).

(iii) (Sub-additivity for IMCC) If

ESR,S((X + Y )(i))

ESR,C((X + Y )(i))
≤ min

{ESR,S(X (i))

ESR,C(X (i))
,
ESR,S(Y (i))

ESR,C(Y (i))

}
,

and ESF,C((X + Y )(i , j)) ≥ 0, then

IMCC((X + Y )(i)) ≤ IMCC(X (i)) + IMCC(Y (i)).
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Profit and sub-additivity

Example:
Consider X and Y concentrating on RFi and LHj .

P(X (i , j) = −1) = P(X (i , j) = 0) = 0.5, (X + Y )(i , j) ≡ −1.

Then ES(X (i)) = ES(Y (i)) = 0, but ES((X + Y )(i , j)) ≥ 0 is violated,

ES((X+Y )(i)) =
∣∣ES((X+Y )(i , j))

∣∣ = |−1| = 1 > ES(X (i))+ES(Y (i)).

We propose to floor each ES(X (i , j)) at zero (not required by FRTB)

ES+(X (i)) =

√√√√ 5∑
j=1

ES+(X (i , j))2,

where ES+(X (i , j)) = max{ES(X (i , j)), 0}.

The resulting FRTB ES is sub-additivity and positive homogeneous.
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Capital allocation

Consider a portfolio of N risk positions with losses L1, . . . , LN .

The total loss is L =
∑N

n=1 Ln.

ρ is a risk measure.

An allocation is a map Law(L1, . . . , LN)→ RN :

Law(L1, . . . , LN) 7→ ρ(Ln | L), for each n,

such that
N∑

n=1

ρ(Ln | L) = ρ(L).

Banks need allocations to calculate return on risk-adjusted capital
(RORAC):

−E[Ln]

ρ(Ln | L)
.

RORAC evaluates the capital efficiency of each position.
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Euler allocation principle

Let v1, . . . , vN be a sequence of numbers and Lv =
∑N

i=1 vnLn.

Per-unit Euler allocation is

ρ(Ln | L)(v) :=
∂

∂vn
ρ(Lv ).

Setting all vn = 1, we denote the allocation to Ln as ρ(Ln | L).

if ρ is homogeneous of degree 1, Euler’s theorem for homogeneous
functions implies

ρ(Lv ) =
∑
n

vn
∂

∂vn
ρ(Lv ).

Setting v = 1, we have the full allocation property.
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Pros and Cons of Euler allocation

Tasche (1999) shows that

∂

∂vn

(−E[Lv ]

ρ(Lv )

){ > 0, if −E[Li ]
ρ(Li | L)(v) >

−E[Lv ]
ρ(Lv )

< 0, if −E[Li ]
ρ(Li | L)(v) <

−E[Lv ]
ρ(Lv )

Denault (2001) uses corporative game (Shapley (1953) and
Aumann-Shapley (74)) to show that the Euler allocation is the “fair”
allocation.

There is no sub-portfolio whose total capital charge is less than the sum
of the capital allocations of its components.

However,

I Euler allocation is unstable.

I Euler allocation induces large negative allocations.
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Two steps allocation for FRTB

Given liquidity horizon adjusted risk profiles {Xn}1≤n≤N ,

Step 1: allocate to each Xn(i , j)

ρ(Xn(i , j) |X ).

Step 2: allocate to each X̃n(i , k)

ρ
(
X̃n(i , k) |Xn(i , j)

)
, k ≥ j .

Then aggregate

ρ(X̃n(i , k) |X ) =
k∑

j=1

ρ(Xn(i , k)|Xn(i , j)).
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ρ(Xn(i, 1)|X) ρ(Xn(i, 5)|X)

ρ(X̃n(i, 1)|X) ρ(X̃n(i, 5)|X)ρ(X̃n(i, 2)|X)

· · ·

Step 1

Step 2
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Euler allocation under FRTB

Let v = {v1, . . . , vn} be real numbers

Let X v ,j(i) =
∑

n X
vn,j
n (i), where

X vn,j
n (i) =

(
Xn(i , 1), · · · ,Xn(i , j−1), vnXn(i , j),Xn(i , j + 1), · · · ,Xn(i , 5)

)
.

For each RFi , we define the Euler allocation for FRTB ES as

ES(Xn(i , j) |X (i)) :=
∂

∂vn
ES(X v ,j(i))

∣∣∣
v=1

,

where v = 1 means all vn = 1.

Lemma

ES(Xn(i , j) |X (i)) =
ES(X (i , j))

ES(X (i))

∂

∂vn
ES
(
X v (i , j)

)∣∣∣
v=1

,

where X v (i , j) =
∑

n vnXn(i , j).
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I Euler allocation of FRTB ES is a scaled version of the Euler
allocation of regular ES

I Euler allocation of regular ES can be calculated by
scenario-extraction (Trashe (1999)):

∂

∂vn
ES
(
X v (i , j)

)∣∣∣
v=1

= E
[
Xn(i , j) |X (i , j) ≥ VaR(X (i , j))

]
.

I If each X (i , j) is floored at zero, then

ES+(Xn(i , j) |X (i))

=

{
ES+(X (i,j))
ES+(X (i)) E

[
Xn(i , j) |X (i , j) ≥ VaR(X (i , j))

]
if ES(X (i , j)) > 0

0 otherwise
.

I Euler allocation of IMCC

IMCCE (Xn(i , j) |X ) := 0.5
ESR,S(X (i))

ESR,C(X (i))
ESF,C

(
Xn(i , j) |X (i)

)
.

It is a full allocation.
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Negative allocations

Hedging among different RFs or LHs does not lead to negative
allocations.

Example:

Consider two loss Y with RFi and Z with RFk , i 6= k ,
Y ,Z ∼ N(0, σ), and Y + Z = 0.

Euler of regular ES:

ESR(Y |Y + Z ) + ESR(Z |Y + Z ) = ESR(Y + Z ) = 0.

Then one of two allocations must be negative, say ESR(Y |Y + Z ).

Euler of FRTB ES:
Let X be the risk profile containing X and Y . X (i) = Y , X (k) = Z , then

ES(Y |X (i)) = ES(Y ) > 0, ES(Z |X (k)) = ES(Z ) > 0.

Even though Y + Z = 0, IMCC (X ) > 0.
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Constrained Aumann-Shapley allocation
Motivated by Li, Naldi, Nisen, and Shi (2016), who combine Shapley and
Aumann-Shapley allocations.

LH permutation matrix

L :=


10 20 40 60 120
10 20 40 120 60
...

...
. . .

...
...

120 60 40 20 10


5!×5

.

Let L−1(r , j) be the column of L in which LHj locates. e.g.
L−1(2, 5) = 4.

Let v = {v1, . . . , vN},

X v ,r ,j(i) =
∑
n

X v ,r ,j
n (i),

where X v ,r ,j(i) is a row depending on when LHj appears in r .

For example,

X v ,2,5
n (i) =

(
Xn(i , 1),Xn(i , 2),Xn(i , 3), 0, vnXn(i , 5)).
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Constrained Aumann-Shapley allocation
We define the Constrained Aumann-Shapley allocation(CAS) in the
permutation r as

CAS(r ,Xn(i , j)) :=

∫ 1

0

∂

∂vn
ES(X v ,r ,j(i))

∣∣∣
v=q

dq,

Lemma

CAS(r ,Xn(i , j)) = η(r , i , j)
∂

∂vn
ES
(
X v (i , j)

)∣∣∣
v=1

,

where

η(r , i , j) =

√∑
1≤s≤L−1(r,j) ES

(
X (i ,L(r , s))

)2 −√∑1≤s<L−1(r,j) ES
(
X (i ,L(r , s))

)2
ES
(
X (i , j)

) .

I CAS is a scaled version of Euler

I Losses with the same LH need to be added to the same portfolio at
the same time, to ensure computational efficiency
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CAS allocation of IMCC

We define the CAS allocation for IMCC as

IMCCC (Xn(i , j) |X ) := 0.5
ESR,S(X (i))

ESR,C(X (i))

1

5!

5!∑
r=1

CASF,C(r ,Xn(i , j)).

It is a full allocation.
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Stress scaling adjustment
In the previous two methods, the Xn(i , j) induced risk contribution is not

considered in the stress scaling factor ESR,S(X (i))
ESR,C(X (i))

.

We define the Euler allocation with stress scaling adjustment as

IMCCE,S
(
Xn(i , j) |X (i)

)
:= 0.5

∂

∂vn

[ESR,S
(
X v ,j(i)

)
ESR,C

(
X v ,j(i)

)ESF,C
(
X v ,j(i)

)]∣∣∣
v=1

.

Lemma

IMCCE,S
(
Xn(i , j) |X (i)

)
= 0.5

[ESR,S(X (i))

ESR,C(X (i))
ESF,C

(
Xn(i , j) |X (i)

)
+
ESF,C(X (i))

ESR,C(X (i))
ESR,S

(
Xn(i , j) |X (i)

)
−ESR,S(X (i))ESF,C(X (i))

ESR,C(X (i))2
ESR,C

(
Xn(i , j) |X (i)

)]
.
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Simulation analysis 1

X̃ (i , j), normal with mean 0 and annual volatility 30%

Risk profiles are simulated for 250 days

Independence among different days

The following correlation structure in the same day:

1. Independence

2. Strong positive correlation among RFs and LHs

3. Strong positive correlation among RFs, independent among LHs

4. Independent among RFs, strong positive correlation among LHs
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Longer LH leads to larger percentage of allocation
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Simulation analysis 2
Three hedging structures:

1. Strong hedging between EQ and IR

2. Strong hedging between LH1 and LH2

3. Strong hedging between two risk positions in the same bucket

FRTB allocations produce

I no negative allocations for hedging among different bucket

I some negative allocations for hedging in the same bucket, but with
smaller magnitude
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FRTB allocations are more stable
Histograms and fitted kernel densities for allocations in Case 3:
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Simulation analysis 3

Loss in EQ with 40-days LH and CM with 60 days LH have 9 times of
volatility in the stress period than the normal period.

Two reduced set of risk factors

Set A : Include both RFs with large variations

Set B : Exclude both RFs with large variations

Set A Set A Set B Set B
(Adj) (Without adj) (Adj) (Without adj)

CM.60 4.00% 2.24% 1.43% 1.43%
EQ.40 5.04% 3.26% 2.11% 2.11%

Table: IMCC(Set A)=11.55 and IMCC(Set B)=3.14

The choice of reduced set of risk factors has large impact on allocations.
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Conclusion

Two allocation methods reduce FRTB allocations to Euler allocations

I Computational efficiency

I Easy to adapt to the current system

Simulation analysis shows

I Longer LH leads to more allocation

I Much less negative allocations

I More stable allocations

I Sensitive to the choice of reduced set of risk factors

Thanks for your attention!
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