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Motivation

o Stock price : (with large investor's strategy 7)

i.s: w(u, Sy, my)du+ o (u,S;,mu) dW,
o Wealth process : (risk free interest rate r = 0)
S m‘gi; — [ (0, ST 7wa) du + 0 (u, ST, ) W]

o Super Hedging problem of claim h(S7T) :
inf {x>0:3re A st X" > h(SF) P — ps} .

— Prudential approach which leads to expensive prices

o Quantile Hedging of the claim h(S7) : Given p € (0, 1), find
inf {x>0: 3re A st. PXP*">h(S7)]>p} .

How decreases the price when one accepts to keep some hedging risk ?
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@ Dual approach of Félimer and Leukert

© A stochastic target approach

© Non Markovian BSDE representation
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Dual approach of Féllmer and Leukert

Explicit solution in a complete market

o Restriction to a complete market (super-replication< replication)

o Stock price under the (unique) Risk Neutral Measure Q :

dsS“ = o(u,S,)dW, (independent on )

o Wealth process :

dX; = muo(u,Ss) dW,

o Dual problem reformulation :

Maximize the probability of hedge for a given starting wealth x

)

Trmeaj‘(]P’ [X-(,)-’X‘7r > h(S7)]
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Dual approach of Féllmer and Leukert

Féllmer and Leukert approach to quantile hedging

Maximize the probability of hedge for a given initial wealth x

max P (X3 > h(ST)]

max P[X > h(St)] under the constraint E®[X] < x
Xel%

A={X > h(S71)} (3 X = h(57)1a
max P[A] under the constraint E®[h(S7)1a] < x
AcFr
h._ _h(s
v dQX = ey 90

. h
An;%{(r]P’[A] under the constraint Q"[A] < EO[A(ST)]

A interprets as the critical region while testing Q" against P.

Neyman-Pearson lemma = optimal critical region A™(x)

Optimal strategy 7*(x) : the one which replicates h(St)1a«(x)
Quantile replication price  :  x"(p) such that P[A*(x"(p))] = p
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Dual approach of Féllmer and Leukert

Solution in General Case

o Pros :
- Explicit solution in some simple (but important) cases.

- Generic solution of the form : X.(,).’X’7r =h(S57)1a
- Similar structure in incomplete markets.

o Cons :
- Resolution of the dual problem

- Explicit solution not known in general (numerics)

- In incomplete markets, the dual problem is a control problem : how to
solve it?

- Relies heavily on the duality between super-hedgeable claims and risk
neutral measures.

— Alternative dynamic approach
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A stochastic target approach

The particular case of super-hedging

o The super hedging price at time 0
inf {x>0: IreAst. P[XP*" > h(SF)| =1}
o Dynamic version of the super-hedging problem
v(t,s,1) = inf{x>0: 37t Ast. P[XP*" >h(57")] =1}
o Dual approach : v(t,s; 1) = supy E® [h(S5°)]
o Direct approach of Soner and Touzi :
- (DP1) : x > v(t,s,1) = 3w € A s.t. for all stopping time 7 < T
X7T = v(r, ST, 1)
- (DP2) : x < v(t,s,1) = for all stopping time 7 < T andm € A
P (X" > v(r,5797,1)] <1
= Allows to derive PDEs associated to v(-,1).

Romuald ELIE Quantile Hedging and related BSDEs



A stochastic target approach

A stochastic target approach to quantile hedging

@ The quantile hedging price at time 0
inf {x >0: dre Ast. P [X.(,)-’X’7r > h(SZ,'-)] > p}
o Dynamic version of the super-hedging problem
v(t,s,p) = inf{x>0: ImeAst. P[X"" >h(S2"")] >p}
o Non consistent dynamic problem
o Idea : consider the "probability of super-hedging" as a process (Ps)s<i<T

o This process must be a martingale and therefore of the form
S
piP = p—l—/auqu, t<s<T, with o € L?
t

o The quantile hedging price rewrites

v(t,s,p) = inf {x >0: 3reAdand a e L’st. ler,x,th(S;_,,,n) > pLp }
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A stochastic target approach

Dynamic programming for quantile replication

o Dynamic version of the quantile hedging price :
— 2 t,p,a
.— L. X, T 5,7 >
v(t,s.p) mf{xeR, 3(ma) EAXL® st Lyexrsygenn) > Ph }
@ Dynamic programming principle :

(DP1) : Starting with a wealth at time t greater than v(t,s, p),
one can at any time 7 > t be able to (P;)-quantile replicate :

x> v(t,s,p) = I(x,a") st. XEOT > v(r,SEST PLPTY | vr et T]

(DP2) : Starting with a wealth at time t lower than v(t, s, p),
it is impossible to quantile replicate :

x <v(t,s,p) = V(ma) P[XPT>v(r, 55" PrP)] <1, Vrelt,T]
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A stochastic target approach

Formal derivation of the Hamilton Jacobi Bellman equation

o Portfolio dynamics : dXT = w(r,SF, 7)) medr + o (r, ST, ) wrdW,
o Dynamics of v(.,S™, P%) :
0287 a?
dv(r,ST,PY) = |ve +puSTve + > " Vix + = Vep +200S] vip | (r, S, P )dr

+ [0S v + arvp] (r, ST, PP AW,

o Take x ~ v(t,s,p) :

(DP1) = 3I(r*,a") st. XEX™ > y(r,SE5T PLPOTY L vr e[, T
(DP2) = VY(ma) P[X77>v(r,Sr5" PrP)] <1, VreltT]

o Formally, we deduce the following HJB equation
o’s a?
SUp U — | Vi 4 [SVs + —— Vss + —— Vpp + 200svsp | (t,5,p) =0
(aym) 2 2
under the constraint om = [osvs + avp](t, s, p)
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A stochastic target approach

Rigorous derivation

o PDE dynamics in the domain :

2 2

o°s a
sup pum — | Ve + psvs + 5 Ves + > Ver + 2a0svsp | (t,5,p) =0
(o, )

under the constraint o = [osvs + avp|(t, s, p)

@ Main technical difficulty : the auxiliary control « is not bounded.
@ The auxiliary control « is directly related to the primal control .

o Boundary conditions :

atp=0+: v(t,5,0) =0
at p=1—: v(t,s,1) is the super-replication price
att=T-: V(T,S,p) = pg(S)

@ Possible numerical approximation of the solution via PDE scheme

Romuald ELIE Quantile Hedging and related BSDEs



A stochastic target approach

Explicit resolution in the Black Scholes model

o PDE in the Black Scholes model :

2.2 2.2 2 2 2
o°s 0°5° |Vep| a7 $VpVep .
— i =0 th v(T,s,p) = s
Ve + 2 Vss 2 Vop 20_2 Vop + u Vop wi V( ) ,P) Pg( )

o Introduction of the Fenchel-Legendre transform ¥(t,s,.) of v(t,s,.) :

v(t,s,y) = sup pq—v(t,s,p)
p€E[0,1]
o The Fenchel Legendre transform ¥ "solves" the following linear PDE
2.2

2
Ve + 25 Vss + 115qVsq + %qzﬂqq =0 with #(T,s,q) = (g — g(s))*

o We deduce the probabilistic representation :
u(t.s.q) = E[(Q47 — h(5%%)"] with Q" =g+ / EQeadw,
. O
o We retrieve v by re-applying the Fenchel transform.
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A stochastic target approach

Extensions

@ On the Dynamics :

571’

st [ n(sim)dus [ o(SEm)dn,
t t

X7l'

xt [ p(Sp X m)dut [ B(ST XS m) W,
t t
o On the Problems : Given /: RY x R — R and p € Im(¥),
v(t,s;p) = inf{xeR : ImeAst. E[((SP"" X7*")] >p} .
o Possible range of applications
L(s,x) =1{x > g(s)} = Quantile Hedging
{(s,x) = U([x — g(s)]") with U ~ concave = Loss function
L(s,x) = U(x — g(s)) with U  concave = Indifference pricing
@ Dynamic programming based on the reformulation
v(t,sip) =inf {x e Ry : I (ma) € Ax L st £(SE57 XP07T) > ppPe ) .
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A stochastic target approach

(good) leads for extensions...

o Utility maximization under quantile hedging type constraint :
— PDE characterization but no numerics (at that point)

o Combination of several constraints :
Given (1, 0la, ..., lm and p; € Im(¢;) for i < m,
v(t,s;p) = inf{xeR : InrecAstE[} (Sf,-’s’”,X;-’X’")] >pi, Vi<m}

— leads to high dimensional PDE, impossible to solve numerically

o Robust quantile hedging under model uncertainty
Given a class of model (P*)y, try to quantile hedge in any model

inf {x€R : Iredst B [L(\SPT X )] 2, VAL
— consider dynamic games
o One day ahead constraint :
Given a time delay § > 0, try to find
inf {xeR : 3reAst E[¢((X3™)] >p, Vs< T} .
= hard to get a dynamic programming principle
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A BSDE approach to quantile hedging

o Consideration of non markovian terminal claim &.

o In a complete market, the replication price identifies as the solution of the
BSDE (with no driver)

,
Y. = YT—/ ZodW,, 0<t<T with Y7 = ¢
t

= Y price process and Z investment strategy (up to the volatility)

o In case of imperfections (e.g. portfolio constraints), the super-replication
price of £ identifies to the minimal solution to the BSDE

T T
Y, = YT—/ stWs+/ dl., 0<t<T with Yy > ¢
t t

where L is an increasing process.
o For the quantile replication price, we expect

Yr>¢ to be replaced by  P(Yr >¢&)>p
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BSDE with weak terminal condition

o Hence, this formally leads to a (no driver) new type of BSDE of the form
T T
Y, = YT—/ stWs+/ dle, 0<t<T  with P(Yr>£)>p
t t

@ More generally, for an increasing loss function ¢, we get

dY: = ZdW, —dL,, with E[{(Yr —&)] > p

o For a random increasing function v, we look towards the minimal solution
to the new type of BSDE

dYe = —g(t, Ye, Z)dt + ZedWe — dL, |, with E[(Y7)] = p

o Constraint on the terminal condition distribution

— " BSDE with weak terminal condition”
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BSDE with weak terminal condition

For a random increasing function ¢ and Lipschitz driver g,
we look towards the minimal solution to the BSDE

dYe = —g(t.Ye, Z)dt + ZedW, — dL. with E[¢(Y7)] = p

Introduction of a supplementary control a € L? and PP := p + fo asdWs

Set of all possible terminal conditions : (1) (P2%)) L2

o We suppose for simplicity ¢ : [0,1] — [0,1]
o Let (Y, Z%),cL2 be the set of solutions to the classical BSDEs

dys = —g(t, Y5, Z0)dt + 28 dWs with Y5 = o (P2Y)

At any time t, we can rewrite Y, = £ [ (PF?)]
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Representation of the solution

o Forave L?, (Y™ = &5 [ (PF™)], Z%) solves the classical BSDE

dyy = —g(t, Y, 78)dt + 722 dWs | with Y5 = o 1(P2Y)

@ Any Y-component of a super-solution to the BSDE with weak terminal
condition is of the form Y.

o For any path «, in order to pay the cheapest price, we define :

veo = essinf{ggT [w—l(P?“’)], o €Ll?st. o/ =aon o, t]} "

o Obtention of Dynamic Programming Principle for the family (Y*),

Y = essinf {5&, [)_/t‘}']’ o el®st. o/ =aon [0, t]} ,0<t<t/<T.

o Y is indistinguishable from a ladlag g-submartingale

Romuald ELIE Quantile Hedging and related BSDEs



Representation of the solution

o Forave L?, (Y™ = &5 [ (PF™)], Z%) solves the classical BSDE

dyy = —g(t, Y, Z8)dt + Z0dW with  Y§ = o (PR

o For any path «, in order to pay the cheapest price, we define :

Y® = essinf {657. [w_l(PQ’-’O‘,)] ,o el’st. o/ =aon |0, t]} , vt

o Additional assumption : ¢~ *(w,.) is continuous for P-a.e w

— Y is indistinguishable from a cadlag g-submartingale

o Characterization of the family (Y),c.2 of solutions :

T T
Dynamics : Y* = ¢ 1 (P2%) +/ g(s, Y&, Z8)ds —/ Z8dWs 4+ 1% —LF on [0, T]

Minimality : L% = essinf{E [Zi‘;|_ﬁ1] ,o el’st. o/ =aon |0, T1]} , Vi <7
Futur indep. : o = a on [0, 7] S (\_/alyza/, I0/)1[0,71 = (Va,Za, z04)1[0#] :
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Continuity of the solution

o Regularity at time t of P& — Y27
o Introduction of a modulus of continuity :

Erre(n) == esssup{|EF [~ (M)] = EE [0 (M), M, M st E[IM — M'"] <1}

o Forany t < T, we get
Y& — V&' < Err(A(PE, PEY) + Erre(A(PE, PEY),
where

p2 — i1 p1 — pe
e Lpn<pay + ?ml{u1>uz}

A (pa, p2) =
o Similar properties on {Pf* = 0} or {Py =1}.
o For a Lipschitz map ¢~*, stability results on classical BSDEs

— Y2 is [-continuous with respect to Pg.
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Convexity of the solution

o Whenever g(.,.) and ¢~* are convex, there exists & such that Y& = Y&

— a BSDE with weak terminal condition boils down to a classical BSDE

o For any t < T, the solution Y& is Fe-convex with respect to P¢.

(need to consider the I.s.c. envelope of the solution)

o Probabilistic proof of the property.

o "Facelift"
— if ¢ deterministic, one can replace 1) ! by its convex envelope

= similar solutions on [0, T)

o In a Markovian framework, natural link with the previous PDEs.
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Duality for the solution

o Suppose that g and 1)~ are convex + technical conditions
o Introduce g the Fenchel transform of g w.r.t. (y, z).

o Introduce 1) ! the Fenchel transform of 1)~ w.r.t. p.

o Consider the following dual control problem :

-
v . . Vo~ v T—1 v,
Yo(O):= e E [/o L (s s A)ds - Lyo (/L)

t
where th"A =1 —I—/ Ls"”\(z/sds + AsdWs)
0

o We have the following correspondence

Yo(p) = sup(pt - Yo(£)) and  ¥o(4) = sup(p( = Yo(p))

o Standard explicit relation between the optimizers
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Formal link with second order BSDEs

o Particular case of deterministic coefficients and driver independent of z

o For a € L? (with a > 0), recall that (Y, Z%) is solution to the classical
BSDE with driver g and terminal condition ¢ ~*(P%)

o Denoting B := [/ asdWs; Y= —Y%and Z° := —Z%/a, we get
Yo = o M(p+BY)+ / —g(s,— Y )ds — / Z8dBS, P —as.

o B“ behaves under the canonical meas. P° as B under the pullback one P*

— Y under P° looks like Y*" under P* where (V' Z"") solves

T T
P = g i(pe BT)+/ —g(s,— V" )dsf/ 2P"dB,, P —as.
o Therefore, we get : — Y, = esssup,, Y§ = ess sup,, v

— Link with 2BSDE solution but no aggregation procedure.
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One possible extension : BSDE with mean reflexion

o Consider a time running constraint on the distribution of Y :
E[6(Y:)] >0, 0<t<T.
o For any date t, the reflection is related to the law of Y;

o Consider the BSDE dynamics

T T
Yt:§+/ g(s,Ys,Zs)ds—/ Z. - dBs + Kt — K¢
t

t

with the previous constraint and the analogous new Skorokhod condition :

/OT]E[w(Y,)]th:O.

o Dynamically non consistent problem but we derive the well posed-ness of
the BSDE
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BSDE with mean reflexion

T T
Yt:5+/ g(s,Ys,Zs)ds—/ Zs - dBs + KT — Kt
t t
E[¥(Ye)] >0, 0<t<T

/OTIE[w(Yt)]th =0.

o First observation : K must be deterministic or there is no continuous
minimal solution.

The classical penalization procedure is a priori non monotonic.
o Existence and uniqueness of the solution under the bi-Lipschitz condition :
ailx = y[1 < [h(x) = h(y)| < calx—y]
@ Use of a fixed point argumentation.

The Skorokhod condition implies the minimality of the solution
(at least when the driver does not depend on Y')
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Question : BSDE with mean reflexion <> mean field BSDE ?

T T
Yf:‘£+/ g(57 YS7Zs)d5_/ Zs - dBs + K1 — Kt
t t
E[¢(Ye)] 20, 0<t<T
T
| et =o.
0

o Can we approximate the solution of this mean-field reflected BSDE by a

reflected BSDEs ?

o If B=(B,...,B") are independent BM, can we solve the coupled
system ?7

. T . . T . .
YN =¢ +/ g(s, YN, ziNyds — / zY - dBs + KN — kN
t

t
1N
. i,N
with N 'E:l (YY) >0
o What are the asymptotics when N — oo ?
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other possible extensions...

...which are on tracks :
o Addition of jumps
o Consideration of a constraint in non linear expectation

o Consideration of weak reflections in a dynamically consistent manner :
E[y(Y-)] >0, for any stopping time 7 < T .

.. which should be reasonable :
@ extension to a quadratic driver

o BSDE for utility maximization with quantile hedging constraint

.. which seem more challenging :
o Case of coupled FBSDE for insider models
o BSDE for quantile hedging under portfolio constraints
o Consideration of one day ahead constraints : E¢[1)(Yiss5)] > 0.
o 2BSDE with weak terminal condition for robust quantile hedging

@ Numerics for BSDE with weak terminal condition ?
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