Time inconsistent stochastic control

Dylan Possamaï, joint with Camilo Hernández

Columbia University, NY

Probability and statistics seminar, University of Southern California, Los Angeles, November 11th, 2019

The big picture

What is an equilibrium? Main results An application in contract theory Motivating example Time-inconsistency Three approaches

Outline

1 The big picture

- Motivating example
- Time-inconsistency
- Three approaches

2 What is an equilibrium?

- In discrete-time, (almost) all is well
- Not so much in continuous-time...

3 Main results

- An extended DPP
- The characterising BSDE system
- Verification theorem
- Extensions

An application in contract theory

Motivating example Time-inconsistency Three approaches

Motivating example

• You receive an invitation to your first talk on a new subject a month from now.

Motivating example Time-inconsistency Three approaches

Motivating example

- You receive an invitation to your first talk on a new subject a month from now.
- When receiving the invitation email: plenty of time left, will prepare the slides in two weeks.

Motivating example Time-inconsistency Three approaches

Motivating example

- You receive an invitation to your first talk on a new subject a month from now.
- When receiving the invitation email: plenty of time left, will prepare the slides in two weeks.
- After two weeks: too many things to do actually, will prepare them in a week.

Motivating example Time-inconsistency Three approaches

Motivating example

- You receive an invitation to your first talk on a new subject a month from now.
- When receiving the invitation email: plenty of time left, will prepare the slides in two weeks.
- After two weeks: too many things to do actually, will prepare them in a week.
- After three weeks: still one week left, why start now?

Motivating example Time-inconsistency Three approaches

Motivating example

- You receive an invitation to your first talk on a new subject a month from now.
- When receiving the invitation email: plenty of time left, will prepare the slides in two weeks.
- After two weeks: too many things to do actually, will prepare them in a week.
- After three weeks: still one week left, why start now?
- Morning of the day of the talk: guess I should be starting!

Motivating example Time-inconsistency Three approaches

Motivating example

- You receive an invitation to your first talk on a new subject a month from now.
- When receiving the invitation email: plenty of time left, will prepare the slides in two weeks.
- After two weeks: too many things to do actually, will prepare them in a week.
- After three weeks: still one week left, why start now?
- Morning of the day of the talk: guess I should be starting!

What we should take home from this: human beings have time-depending and slightly inconsistent preferences.

Motivating example Time-inconsistency Three approaches

The basic problem

• On space (Ω, \mathcal{F}) , let \mathbb{P}^{ν} be a weak solution to the controlled SDE

$$X_t = x + \int_0^t \sigma_r(X_{r\wedge \cdot}) \big(b_r(X_{r\wedge \cdot}, \nu_r) \mathrm{d}r + \mathrm{d}W_r \big), \ t \in [0, T].$$

⊒ →

Motivating example Time-inconsistency Three approaches

The basic problem

• On space (Ω, \mathcal{F}) , let \mathbb{P}^{ν} be a weak solution to the controlled SDE

$$X_t = x + \int_0^t \sigma_r(X_{r\wedge \cdot}) \big(b_r(X_{r\wedge \cdot}, \nu_r) \mathrm{d}r + \mathrm{d}W_r \big), \ t \in [0, T].$$

• The reward functional

$$\mathbf{v}(t,\nu) := J(t,t,\nu) = \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{t}^{T} f_{r}(t,X_{r\wedge\cdot},\nu_{r}) \mathrm{d}r + F(t,X_{T\wedge\cdot}) \middle| \mathcal{F}_{t} \right].$$

⊒ →

Motivating example Time-inconsistency Three approaches

The basic problem

• On space (Ω, \mathcal{F}) , let \mathbb{P}^{ν} be a weak solution to the controlled SDE

$$X_t = x + \int_0^t \sigma_r(X_{r\wedge \cdot}) \big(b_r(X_{r\wedge \cdot}, \nu_r) \mathrm{d}r + \mathrm{d}W_r \big), \ t \in [0, T].$$

• The reward functional

$$\mathbf{v}(t,\nu) := J(t,t,\nu) = \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{t}^{T} f_{r}(t,X_{r\wedge\cdot},\nu_{r}) \mathrm{d}r + F(t,X_{T\wedge\cdot}) \middle| \mathcal{F}_{t} \right].$$

• Control problem: because of the dependence in *t*, classical dynamic programming arguments fail (unless for exponential discounting of course). What to do?

∃ ▶ ∢

Motivating example Time-inconsistency Three approaches

The three approaches

• Dismiss the problem altogether: non-fully rational economic agents are too cumbersome.

Motivating example Time-inconsistency Three approaches

The three approaches

- Dismiss the problem altogether: non-fully rational economic agents are too cumbersome.
- Assume precomittment: solve the maximisation problem

 $\sup_{\nu} J(0,0,\nu),$

and obtain an "optimal" action ν^* . However, in general ν^* will fail to be optimal if one maximises $J(t, t, \nu)$ for t > 0 (Karnam, Ma, Zhang, Zhou,...)

∃ → <</p>

Motivating example Time-inconsistency Three approaches

The three approaches

- Dismiss the problem altogether: non-fully rational economic agents are too cumbersome.
- Assume precomittment: solve the maximisation problem

```
\sup_{\nu} J(0,0,\nu),
```

and obtain an "optimal" action ν^* . However, in general ν^* will fail to be optimal if one maximises $J(t, t, \nu)$ for t > 0 (Karnam, Ma, Zhang, Zhou,...)

• Take time-inconsistency seriously: consider a non-cooperative game, where the agent plays against future versions of himself, and look for sub-game perfect Nash equilibria (Barro, Czichowsky, Ekeland, Laibson, Lazrak, Pollak, Privu, Strotz, Zhou,...)

In discrete-time, (almost) all is well Not so much in continuous-time...

Outline

The big picture

- Motivating example
- Time-inconsistency
- Three approaches

2 What is an equilibrium?

- In discrete-time, (almost) all is well
- Not so much in continuous-time...

3 Main results

- An extended DPP
- The characterising BSDE system
- Verification theorem
- Extensions

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in discrete-time

Perfectly understandable situation. If $(t_i)_{0 \le i \le n}$ is a partition of [0, T]

• Given actions played by Player 0,..., and Player t_{n-2} , Player t_{n-1} faces a standard optimisation problem.

• • = • • = •

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in discrete-time

Perfectly understandable situation. If $(t_i)_{0 \le i \le n}$ is a partition of [0, T]

- Given actions played by Player 0,..., and Player t_{n-2} , Player t_{n-1} faces a standard optimisation problem.
- Player t_{n-2} can solve the problem faced by Player t_{n-1} and obtains a Stackelberg equilibrium, using the optimal response of Player t_{n-1} in his own optimisation.

• • = • • = •

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in discrete-time

Perfectly understandable situation. If $(t_i)_{0 \le i \le n}$ is a partition of [0, T]

- Given actions played by Player 0,..., and Player t_{n-2} , Player t_{n-1} faces a standard optimisation problem.
- Player t_{n-2} can solve the problem faced by Player t_{n-1} and obtains a Stackelberg equilibrium, using the optimal response of Player t_{n-1} in his own optimisation.
- Repeat backwardly.

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in discrete-time

Perfectly understandable situation. If $(t_i)_{0 \le i \le n}$ is a partition of [0, T]

- Given actions played by Player 0,..., and Player t_{n-2} , Player t_{n-1} faces a standard optimisation problem.
- Player t_{n-2} can solve the problem faced by Player t_{n-1} and obtains a Stackelberg equilibrium, using the optimal response of Player t_{n-1} in his own optimisation.
- Repeat backwardly.
- Unfortunately, optimisation problems often lose concavity after a few iterations ⇒ equilibria do not exist in general.

¬ • • **=** • • **=** •

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time

Definition [Ekeland, Lazrak (2008)]

 ν^{\star} is an equilibrium if for any $(t,\nu)\in [0,\mathcal{T})\times\mathcal{V}$

$$\liminf_{\ell \to 0} \frac{J(t,t,\nu^*) - J(t,t,\nu^\ell)}{\ell} \ge 0,$$

where for $\ell \in [0,\,T-t],\,\nu^\ell$ is given by

 $\nu_r^{\ell} := \mathbf{1}_{\{t \le r < t+\ell\}} \nu_r + \mathbf{1}_{\{t+\ell \le r \le T\}} \nu_r^{\star}.$

伺 と く ヨ と く ヨ と

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time

Definition [Ekeland, Lazrak (2008)]

 ν^{\star} is an equilibrium if for any $(t,\nu)\in [0,\mathcal{T})\times\mathcal{V}$

$$\liminf_{\ell\to 0} \frac{J(t,t,\nu^*)-J(t,t,\nu^\ell)}{\ell} \geq 0,$$

where for $\ell \in [0, T - t]$, ν^{ℓ} is given by

$$\nu_r^{\ell} := \mathbf{1}_{\{t \le r < t+\ell\}} \nu_r + \mathbf{1}_{\{t+\ell \le r \le T\}} \nu_r^{\star}.$$

• Definition used in most of the literature in continuous-time.

同 ト イ ヨ ト イ ヨ ト

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time

Definition [Ekeland, Lazrak (2008)]

 ν^{\star} is an equilibrium if for any $(t,\nu)\in [0,\mathcal{T})\times\mathcal{V}$

$$\liminf_{\ell\to 0} \ \frac{J(t,t,\nu^*)-J(t,t,\nu^\ell)}{\ell}\geq 0,$$

where for $\ell \in [0, T - t]$, ν^{ℓ} is given by

$$\nu_r^{\ell} := \mathbf{1}_{\{t \le r < t+\ell\}} \nu_r + \mathbf{1}_{\{t+\ell \le r \le T\}} \nu_r^{\star}.$$

- Definition used in most of the literature in continuous-time.
- Not completely satisfying, when liminf is 0.

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time

Definition [Ekeland, Lazrak (2008)]

 ν^{\star} is an equilibrium if for any $(t,\nu)\in [0,\mathcal{T})\times\mathcal{V}$

$$\liminf_{\ell\to 0} \ \frac{J(t,t,\nu^*)-J(t,t,\nu^\ell)}{\ell}\geq 0,$$

where for $\ell \in [0, T - t]$, ν^{ℓ} is given by

$$\nu_r^{\ell} := \mathbf{1}_{\{t \le r < t+\ell\}} \nu_r + \mathbf{1}_{\{t+\ell \le r \le T\}} \nu_r^{\star}.$$

- Definition used in most of the literature in continuous-time.
- Not completely satisfying, when liminf is 0.
- Not a "local" property.

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time (2)

Definition [Hernández, P. (2019)]

 ν^{\star} is an equilibrium if for any $\varepsilon > 0$ there exists $\ell_{\varepsilon} > 0$ such that for any $(t, \nu, \tau) \in [0, T) \times \mathcal{V} \times \mathcal{T}_{t, t+\ell_{\varepsilon}}$

$$J(t, t, \nu^{\star}) \geq J(t, t, \nu^{\tau}) - \varepsilon \ell_{\varepsilon}.$$

If ℓ_{ε} can be taken independent of ε , ν^{\star} is called a strict equilibrium, for which

 $J(t,t,\nu^{\star}) \geq J(t,t,\nu^{\tau}).$

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time (2)

Definition [Hernández, P. (2019)]

 ν^{\star} is an equilibrium if for any $\varepsilon > 0$ there exists $\ell_{\varepsilon} > 0$ such that for any $(t, \nu, \tau) \in [0, T) \times \mathcal{V} \times \mathcal{T}_{t, t+\ell_{\varepsilon}}$

 $J(t, t, \nu^*) \geq J(t, t, \nu^{\tau}) - \varepsilon \ell_{\varepsilon}.$

If ℓ_{ε} can be taken independent of ε , ν^{\star} is called a strict equilibrium, for which

 $J(t,t,\nu^{\star}) \geq J(t,t,\nu^{\tau}).$

• First definition is roughly speaking the same as before: ε -equilibrium.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

In discrete-time, (almost) all is well Not so much in continuous-time...

Equilibria in continuous-time (2)

Definition [Hernández, P. (2019)]

 ν^{\star} is an equilibrium if for any $\varepsilon > 0$ there exists $\ell_{\varepsilon} > 0$ such that for any $(t, \nu, \tau) \in [0, T) \times \mathcal{V} \times \mathcal{T}_{t, t+\ell_{\varepsilon}}$

 $J(t, t, \nu^{\star}) \geq J(t, t, \nu^{\tau}) - \varepsilon \ell_{\varepsilon}.$

If ℓ_{ε} can be taken independent of ε , ν^{\star} is called a strict equilibrium, for which

 $J(t,t,\nu^{\star}) \geq J(t,t,\nu^{\tau}).$

- First definition is roughly speaking the same as before: ε -equilibrium.
- Strict equilibria are the ones we want, but (much) harder to prove existence (recent contribution of Huang and Zhou (2018) for CTMC).

In discrete-time, (almost) all is well Not so much in continuous-time...

Literature review

• Large literature in discrete-time. In continuous-time, mostly specific models, solved on a case-by-case basis.

In discrete-time, (almost) all is well Not so much in continuous-time...

Literature review

- Large literature in discrete-time. In continuous-time, mostly specific models, solved on a case-by-case basis.
- Ekeland, Lazrak and Pirvu introduced an extended HJB equation allowing for verification-type results: any smooth solution to the equation allows to construct an equilibrium.

In discrete-time, (almost) all is well Not so much in continuous-time...

Literature review

- Large literature in discrete-time. In continuous-time, mostly specific models, solved on a case-by-case basis.
- Ekeland, Lazrak and Pirvu introduced an extended HJB equation allowing for verification-type results: any smooth solution to the equation allows to construct an equilibrium.
- Extended by Björk, Khapko, and Murgoci to general Markovian diffusion models.

In discrete-time, (almost) all is well Not so much in continuous-time...

Literature review

- Large literature in discrete-time. In continuous-time, mostly specific models, solved on a case-by-case basis.
- Ekeland, Lazrak and Pirvu introduced an extended HJB equation allowing for verification-type results: any smooth solution to the equation allows to construct an equilibrium.
- Extended by Björk, Khapko, and Murgoci to general Markovian diffusion models.
- However, extended HJB equation only justified formally by passing to the limit in discrete-time models.

In discrete-time, (almost) all is well Not so much in continuous-time...

Literature review

- Large literature in discrete-time. In continuous-time, mostly specific models, solved on a case-by-case basis.
- Ekeland, Lazrak and Pirvu introduced an extended HJB equation allowing for verification-type results: any smooth solution to the equation allows to construct an equilibrium.
- Extended by Björk, Khapko, and Murgoci to general Markovian diffusion models.
- However, extended HJB equation only justified formally by passing to the limit in discrete-time models.
- Different from classical control problems, where HJB equation and optimal controls are intimately linked.

イボト イラト イラト

An extended DPP The characterising BSDE system Verification theorem Extensions

Outline

The big picture

- Motivating example
- Time-inconsistency
- Three approaches

2 What is an equilibrium?

- In discrete-time, (almost) all is well
- Not so much in continuous-time...

3 Main results

- An extended DPP
- The characterising BSDE system
- Verification theorem
- Extensions

An application in contract theory

An extended DPP The characterising BSDE system Verification theorem Extensions

An extended DPP

Though classical DPP does not hold, can obtain

Lemma [Hernández, P. (2019)]

If ν^{\star} is an equilibrium, then, for any $\epsilon > 0$, $\tau \in \mathcal{T}_{0,\ell_{\epsilon}}$

$$\begin{split} & \mathsf{v}(0,\,\nu^{\star}) \leq \sup_{\nu \in \mathcal{V}} J(0,\,\nu), \\ & \mathsf{v}(0,\,\nu^{\star}) \geq \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{0}^{\tau} f_{r}(0,\,X_{r\wedge},\,\nu_{r}) \mathrm{d}r + \mathsf{v}(\tau,\,\nu^{\star}) + J(\tau,\,0,\,\nu^{\star}) - J(\tau,\,\tau,\,\nu^{\star}) \right] - \varepsilon \ell_{\varepsilon} \,. \end{split}$$

If ν^{\star} is a strict equilibrium then

$$\mathbf{v}(\mathbf{0},\nu^{\star}) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{\mathbf{0}}^{\tau} f_{r}(\mathbf{0},X_{r\wedge \cdot},\nu_{r}) \mathrm{d}\mathbf{r} + \mathbf{v}(\tau,\nu^{\star}) + J(\tau,\mathbf{0},\nu^{\star}) - J(\tau,\tau,\nu^{\star}) \right]$$

• • = • • = •

An extended DPP The characterising BSDE system Verification theorem Extensions

An extended DPP

Though classical DPP does not hold, can obtain

Lemma [Hernández, P. (2019)]

If ν^{\star} is an equilibrium, then, for any $\epsilon > 0$, $\tau \in \mathcal{T}_{0,\ell_{\epsilon}}$

$$\begin{split} & \mathsf{v}(0,\,\nu^{\star}) \leq \sup_{\nu \in \mathcal{V}} J(0,\,\nu), \\ & \mathsf{v}(0,\,\nu^{\star}) \geq \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{0}^{\tau} f_{r}(0,\,X_{r\wedge},\,\nu_{r}) \mathrm{d}r + \mathsf{v}(\tau,\,\nu^{\star}) + J(\tau,\,0,\,\nu^{\star}) - J(\tau,\,\tau,\,\nu^{\star}) \right] - \varepsilon \ell_{\varepsilon} \,. \end{split}$$

If ν^{\star} is a strict equilibrium then

$$\mathbf{v}(0,\nu^{\star}) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{0}^{\tau} f_{r}(0,X_{r\wedge \cdot},\nu_{r}) \mathrm{d}r + \mathbf{v}(\tau,\nu^{\star}) + J(\tau,0,\nu^{\star}) - J(\tau,\tau,\nu^{\star}) \right]$$

• Extends to arbitrary $t \in [0, T]$,

• • = • • = •

An extended DPP The characterising BSDE system Verification theorem Extensions

An extended DPP

Though classical DPP does not hold, can obtain

Lemma [Hernández, P. (2019)]

If ν^{\star} is an equilibrium, then, for any $\epsilon > 0$, $\tau \in \mathcal{T}_{0,\ell_{\epsilon}}$

$$\begin{split} & \mathsf{v}(0,\,\nu^{\star}) \leq \sup_{\nu \in \mathcal{V}} J(0,\,\nu), \\ & \mathsf{v}(0,\,\nu^{\star}) \geq \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{0}^{\tau} f_{r}(0,\,X_{r\wedge},\,\nu_{r}) \mathrm{d}r + \mathsf{v}(\tau,\,\nu^{\star}) + J(\tau,\,0,\,\nu^{\star}) - J(\tau,\,\tau,\,\nu^{\star}) \right] - \varepsilon \ell_{\varepsilon} \,. \end{split}$$

If ν^{\star} is a strict equilibrium then

$$\mathbf{v}(0,\nu^{\star}) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\mathbb{P}^{\mathcal{V}}} \left[\int_{0}^{\tau} f_{r}(0,X_{r\wedge},\nu_{r}) \mathrm{d}r + \mathbf{v}(\tau,\nu^{\star}) + J(\tau,0,\nu^{\star}) - J(\tau,\tau,\nu^{\star}) \right]$$

- Extends to arbitrary $t \in [0, T]$,
- but not to intervals of length longer than ℓ_{ε} .

→ < Ξ → <</p>

An extended DPP The characterising BSDE system Verification theorem Extensions

An extended DPP (2)

Iterating the previous DPP for arbitrary partitions of [0, T] with mesh smaller than ℓ_{ε} , and passing to the limit

Theorem [Hernández, P. (2019)]

If ν^* is an equilibrium then

$$\mathbf{v}(0,\nu^{\star}) = \sup_{\nu \in \mathcal{V}} \mathbb{E}^{\mathbb{P}^{\mathcal{V}}} \left[\mathbf{v}(\tau,\nu^{\tau}) + \int_{0}^{\tau} \left(f(r,r,X_{r\wedge\cdot},\nu_{r}) - \frac{\partial F}{\partial s}(r) - \int_{r}^{T} \frac{\partial f}{\partial s}(r,u,X_{r\wedge\cdot},\nu_{u}^{\star}) \mathrm{d}u \right) \mathrm{d}r \right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

An extended DPP The characterising BSDE system Verification theorem Extensions

HJB BSDE system

Define the Hamiltonian

 $\begin{aligned} H_t(x,z) &:= \sup_{a \in A} h_t(t,x,z), \ h_t(s,x,z,a) := f_t(s,x,a) + b_t(x,a) \cdot \sigma_t(x)^\top z, \\ \nu_t^*(x,z) &:= \operatorname{argmax}_{a \in A} h_t(t,x,z,a). \end{aligned}$

くぼう くほう くほう

An extended DPP The characterising BSDE system Verification theorem Extensions

HJB BSDE system

Define the Hamiltonian

 $\begin{aligned} H_t(x,z) &:= \sup_{a \in A} h_t(t,x,z), \ h_t(s,x,z,a) := f_t(s,x,a) + b_t(x,a) \cdot \sigma_t(x)^\top z, \\ \nu_t^*(x,z) &:= \operatorname{argmax}_{a \in A} h_t(t,x,z,a). \end{aligned}$

Extended DPP relates value of the agent at equilibrium to

$$\begin{cases} Y_t = F(T, X_{\cdot \wedge T}) + \int_t^T (H_r(X, Z_r) - \partial Y_r^r) dr - \int_t^T Z_r \cdot dX_r, \\ Y_t^s = F(s, X_{\cdot \wedge T}) + \int_t^T h_r(s, X, \nu_r^*(X_{r \wedge \cdot}, Z_r), Z_r^s) dr - \int_t^T Z_r^s \cdot dX_r, \end{cases}$$

where

$$\partial Y_t^s := \frac{\partial}{\partial_s} Y_t^s$$

(日本) (日本) (日本)

An extended DPP The characterising BSDE system Verification theorem Extensions

HJB BSDE system (2)

• For exponential discounting $f_s(t, x, a) = e^{-\delta(s-t)}\tilde{f}(s, x, a)$, we have $\partial Y_t^s = -\delta Y_s \implies$ no coupling and classical HJB BSDE.

< 同 > < 三 > < 三 >

An extended DPP The characterising BSDE system Verification theorem Extensions

HJB BSDE system (2)

- For exponential discounting $f_s(t, x, a) = e^{-\delta(s-t)}\tilde{f}(s, x, a)$, we have $\partial Y_t^s = -\delta Y_s \implies$ no coupling and classical HJB BSDE.
- This is the non-Markovian version of the non-local PDE system derived first by Ekeland and Lazrak (2008).

• • = • • = •

An extended DPP The characterising BSDE system Verification theorem Extensions

HJB BSDE system (2)

- For exponential discounting $f_s(t, x, a) = e^{-\delta(s-t)}\tilde{f}(s, x, a)$, we have $\partial Y_t^s = -\delta Y_s \implies$ no coupling and classical HJB BSDE.
- This is the non-Markovian version of the non-local PDE system derived first by Ekeland and Lazrak (2008).
- Earlier contributions argued by passing informally to the limit from discretetime. Thanks to our extended DPP

Theorem [Hernández, P. (2019)]

If ν^* is an equilibrium, then there exists a solution to the BSDE system, and necessarily $\nu^* = \nu^*(X, Z)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

An extended DPP The characterising BSDE system Verification theorem Extensions

Verification theorem

Theorem [Hernández, P. (2019)]

If there exists a sufficiently integrable solution to the BSDE system, then $\nu^*(X, Z)$ is an equilibrium,

 $Y_t^s = J(s, t, \nu^*), \text{ and } Y_t = v(t, \nu^*).$

< ロ > < 同 > < 回 > < 回 > :

An extended DPP The characterising BSDE system Verification theorem Extensions

Verification theorem

Theorem [Hernández, P. (2019)]

If there exists a sufficiently integrable solution to the BSDE system, then $\nu^*(X, Z)$ is an equilibrium,

$$Y_t^s = J(s, t, \nu^*), \text{ and } Y_t = v(t, \nu^*).$$

 Non-Markovian extension of earlier results (Ekeland and Lazrak, Björk et al., Wei et al.).

・ 同 ト ・ ヨ ト ・ ヨ ト

An extended DPP The characterising BSDE system Verification theorem Extensions

Verification theorem

Theorem [Hernández, P. (2019)]

If there exists a sufficiently integrable solution to the BSDE system, then $\nu^*(X, Z)$ is an equilibrium,

$$Y_t^s = J(s, t, \nu^*), \text{ and } Y_t = v(t, \nu^*).$$

- Non-Markovian extension of earlier results (Ekeland and Lazrak, Björk et al., Wei et al.).
- The equilibrium is not necessarily strict.

・ 同 ト ・ ヨ ト ・ ヨ ト

An extended DPP The characterising BSDE system Verification theorem Extensions

Verification theorem

Theorem [Hernández, P. (2019)]

If there exists a sufficiently integrable solution to the BSDE system, then $\nu^*(X, Z)$ is an equilibrium,

$$Y_t^s = J(s, t, \nu^*), \text{ and } Y_t = v(t, \nu^*).$$

- Non-Markovian extension of earlier results (Ekeland and Lazrak, Björk et al., Wei et al.).
- The equilibrium is not necessarily strict.
- Under mild conditions (Lipschitz + integrability) can prove wellposedness of the BSDE system

- 4 同 2 4 日 2 4 日 2

An extended DPP The characterising BSDE system Verification theorem Extensions

Extensions

• Extension to controlled volatility: 2BSDE system instead of BSDE system. Verification, and DPP still hold. But need more regularity to produce equilibria.

・ 同 ト ・ ヨ ト ・ ヨ ト

An extended DPP The characterising BSDE system Verification theorem Extensions

Extensions

- Extension to controlled volatility: 2BSDE system instead of BSDE system. Verification, and DPP still hold. But need more regularity to produce equilibria.
- More general time-inconsistency

$$J(t, t, \mathbb{M}) := \mathbb{E}^{\mathbb{P}^{\nu}} \left[\int_{t}^{T} f(t, r, X_{r \wedge \cdot}, \nu_{r}) dr + G(t, X_{T \wedge \cdot}) \middle| \mathcal{F}_{t} \right] + F\left(t, \mathbb{E}^{\mathbb{P}^{\nu}} \left[h(X_{T \wedge \cdot}) \middle| \mathcal{F}_{t} \right] \right),$$

including mean-variance: system of 3 coupled (2)BSDEs (need to add $\mathbb{E}^{\mathbb{P}^{\nu}}[h(X_{T\wedge \cdot})|\mathcal{F}_t]$ as a state).

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Outline

The big picture

- Motivating example
- Time-inconsistency
- Three approaches

2 What is an equilibrium?

- In discrete-time, (almost) all is well
- Not so much in continuous-time...

3 Main results

- An extended DPP
- The characterising BSDE system
- Verification theorem
- Extensions

An application in contract theory

The setting

• Setting similar to Hölmstrom and Milgrom (1987). Principal hires Agent to perform a task on his behalf. Agent chooses control $\alpha \in A$, and induces probability measure \mathbb{P}^{α} such that

$$X_t = x + \int_0^t \alpha_s \mathrm{d}s + \sigma W_t^{\alpha}, \ t \in [0, T]$$

The setting

• Setting similar to Hölmstrom and Milgrom (1987). Principal hires Agent to perform a task on his behalf. Agent chooses control $\alpha \in A$, and induces probability measure \mathbb{P}^{α} such that

$$X_t = x + \int_0^t \alpha_s \mathrm{d}s + \sigma W_t^{lpha}, \ t \in [0, T].$$

• Principal rewards Agent at time T with $\xi(X_{\wedge T})$. Agent's criterion is

$$J(t,\alpha,\xi) := \mathbb{E}^{\mathbb{P}^{\alpha}} \left[f(T-t)\xi(X_{\wedge T}) - \int_{t}^{T} f(s-t)\frac{\alpha_{s}^{2}}{2} \mathrm{d}s \right],$$
with $f(0) = 1$

The setting

• Agent looks for equilibria, so that Principal can only offer $\xi(X_{\wedge T})$ such that at least one exists. By our results, equilibria exist if and only if we have a solution to

$$Y_t = \xi(X_{\cdot \wedge T}) + \int_t^T \left(\frac{Z_r^2}{2} - \partial Y_r^r\right) \mathrm{d}r - \int_t^T Z_r \cdot \mathrm{d}X_r,$$

$$Y_t^s = f(T-s)\xi(X_{\cdot \wedge T}) + \int_t^T Z_r Z_r^s - f(r-s)\frac{Z_r^2}{2} \mathrm{d}r - \int_t^T Z_r^s \cdot \mathrm{d}X_r,$$

the equilibrium is $\nu_{\cdot}^{\star} := Z_{\cdot}$, and $J(t, \alpha^{\star}, \xi) = Y_t = Y_t^t$.

E 5 4.

The BSDE system

• We can directly check that

$$\boldsymbol{Y}_{t}^{s} = \frac{f(T-s)}{f(T)}\boldsymbol{Y}_{t}^{0} + f(T-s)\mathbb{E}^{\mathbb{P}^{\nu^{\star}}}\left[\int_{t}^{T}\left(\frac{f(r)}{f(T)} - \frac{f(r-s)}{f(T-s)}\right)\frac{Z_{r}^{2}}{2c}\mathrm{d}r\middle|\mathcal{F}_{t}\right].$$

Notice that when $f(t) := e^{-\delta t}$, the second term vanishes \longrightarrow this is the effect due to time-inconsistency.

The BSDE system

• We can directly check that

$$\boldsymbol{Y}_{t}^{s} = \frac{f(T-s)}{f(T)}\boldsymbol{Y}_{t}^{0} + f(T-s)\mathbb{E}^{\mathbb{P}^{\nu^{\star}}}\left[\int_{t}^{T}\left(\frac{f(r)}{f(T)} - \frac{f(r-s)}{f(T-s)}\right)\frac{Z_{r}^{2}}{2c}\mathrm{d}r\middle|\mathcal{F}_{t}\right].$$

Notice that when $f(t) := e^{-\delta t}$, the second term vanishes \longrightarrow this is the effect due to time-inconsistency.

• This implies also that

$$Z_t^s = \frac{f(T-s)}{f(T)} Z_t^0 + f(T-s) \widetilde{Z}_t^s,$$

where \widetilde{Z}^s appears in the following martingale representation

$$M_t^s := \mathbb{E}^{\mathbb{P}^{\nu^*}}\left[\int_0^T \left(\frac{f(r)}{f(T)} - \frac{f(r-s)}{f(T-s)}\right) \frac{Z_r^2}{2} \mathrm{d}r \middle| \mathcal{F}_t\right] = M_0^s + \int_0^t \widetilde{Z}_r^s \mathrm{d}X_r.$$

An upper bound for the problem

• Notice that

$$\xi(X_{\cdot\wedge T}) = \frac{Y_0}{f(T)} + \int_0^T \frac{f(r)}{f(T)} \frac{Z_r^2}{2} \mathrm{d}r + \int_0^T \sigma Z_r^0 \mathrm{d}W_r^{\alpha^*}.$$

> < ≣>

э

An upper bound for the problem

Notice that

$$\xi(X_{\cdot\wedge T}) = \frac{Y_0}{f(T)} + \int_0^T \frac{f(r)}{f(T)} \frac{Z_r^2}{2} \mathrm{d}r + \int_0^T \sigma Z_r^0 \mathrm{d}W_r^{\alpha^*}.$$

• Principal wants to solve

$$\sup_{\xi \in \Xi} \mathbb{E}^{\mathbb{P}^{\alpha^{\star}}} \left[X_{T} - \xi(X_{\cdot \wedge T}) \right] = x - \frac{\mathbf{Y}_{0}}{f(T)} + \sup_{\xi \in \Xi} \mathbb{E}^{\mathbb{P}^{\alpha^{\star}}} \left[\int_{0}^{T} \left(Z_{r} - \frac{f(r)}{f(T)} \frac{Z_{r}^{2}}{2} \right) \mathrm{d}r \right]$$
$$\leq x - \frac{\mathbf{Y}_{0}}{f(T)} + \frac{1}{2} \int_{0}^{T} \frac{f(T)}{f(r)} \mathrm{d}r,$$

the optimal Z being $Z_t^{\star} := f(T)/f(t)$

> < ≣>

An upper bound for the problem

Notice that

$$\xi(X_{\cdot\wedge T}) = \frac{Y_0}{f(T)} + \int_0^T \frac{f(r)}{f(T)} \frac{Z_r^2}{2} \mathrm{d}r + \int_0^T \sigma Z_r^0 \mathrm{d}W_r^{\alpha^*}.$$

• Principal wants to solve

$$\sup_{\xi \in \Xi} \mathbb{E}^{\mathbb{P}^{\alpha^{\star}}} \left[X_{T} - \xi(X_{\cdot \wedge T}) \right] = x - \frac{\mathbf{Y}_{0}}{f(T)} + \sup_{\xi \in \Xi} \mathbb{E}^{\mathbb{P}^{\alpha^{\star}}} \left[\int_{0}^{T} \left(Z_{r} - \frac{f(r)}{f(T)} \frac{Z_{r}^{2}}{2} \right) \mathrm{d}r \right]$$
$$\leq x - \frac{\mathbf{Y}_{0}}{f(T)} + \frac{1}{2} \int_{0}^{T} \frac{f(T)}{f(r)} \mathrm{d}r,$$

the optimal Z being $Z_t^{\star} := f(T)/f(t)$

• Y_0 is fixed to the reservation utility *R* of Agent.

Verification

• Since Z^{\star} is deterministic, $\widetilde{Z}^{s} = 0$, so that

$$Z_r^0 = \frac{f(T)}{f(T-r)} Z_r^* = \frac{f^2(T)}{f(r)f(T-r)}.$$

∋> ∋

Verification

• Since Z^{\star} is deterministic, $\widetilde{Z}^{s} = 0$, so that

$$Z_r^0 = \frac{f(T)}{f(T-r)} Z_r^* = \frac{f^2(T)}{f(r)f(T-r)}.$$

• The previous reasoning gives us the following candidate optimal contract

$$\xi^{\star} := \frac{R}{f(T)} + \int_{0}^{T} \frac{f(T)}{2f(r)} - \frac{f^{2}(T)}{f^{2}(r)f(T-r)} dr + \int_{0}^{T} \frac{f(T)}{f(r)f(T-r)} dX_{r}.$$

Verification

• Since Z^* is deterministic, $\widetilde{Z}^s = 0$, so that

$$Z_r^0 = \frac{f(T)}{f(T-r)} Z_r^* = \frac{f^2(T)}{f(r)f(T-r)}.$$

• The previous reasoning gives us the following candidate optimal contract

$$\xi^{\star} := \frac{R}{f(T)} + \int_{0}^{T} \frac{f(T)}{2f(r)} - \frac{f^{2}(T)}{f^{2}(r)f(T-r)} dr + \int_{0}^{T} \frac{f(T)}{f(r)f(T-r)} dX_{r}.$$

• Can check directly that this is an admissible contract which attains the upper bound.

Thank you for your attention!

Dylan Possamaï Time-inconsistent stochastic control