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Definition of Book

For linear valuation operators, values and hedges may be determined
for each component and then aggregated across all asset positions to
get the hedge position for the book.

For nonlinear valuation operators this additivity is not valid and one
must work at the level of the book directly.

For a vanilla options book at each traded maturity there are long and
short option positions at each strike.

The net result is that the book has an obligation to the receipt of a
function of the underlying at this maturity ti of the cash flow
ci (S(ti ), ti ), for ti ≤ T .
The longest maturity under consideration is T .

The functions may be constructed from a knowledge of positions and
we presume access to such functions.

They define the book to be valued and hedged.
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Hedged Book Outcomes

For stock positions in dollar terms of a(S(u), u) at time u and
discount rate r the present value of such flows to date are

∑
ti≤t

ci (S(ti ), ti ) e−rti +
∫ t

0

∫ ∞

−∞
e−rua(S(u_), u) (ex − 1) µ(dx , du)

where µ(dx , du) is the integer valued random measure associated with
the finite variation jumps in the log price relative of the stock price.
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Unhedged Valuation

For valuation we follow the G − expectations approach introduced in
Peng (2006) with valuations defined by nonlinear expectations that
are unique viscosity solutions to equations of the form

Vt = G(V )− rV

for a nonlinear operator G for boundary conditions

V (S , 0) = cT (S)

V (S , ti ) = V (S , ti_) + ci (S), 0 < t1 < · · · < tN = T .

The result is a nonlinear valuation at time t of the future cash flows
yet to be realized, when the spot at time t is at level S .
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Spatially Inhomogeneous Compensator

The operator is defined in terms of measure distortions that distort
the compensator of µ that we take to possibly be dependent on the
level of S and in the bilateral gamma class.

We write

ν(S , x)dxdt =

 cp (S )
x exp

(
− x
bp (S )

)
1x>0

+ cn(S )
|x | exp

(
− |x |
bn(S )

)
1x<0

 dxdt
The spatially inhomogeneous compensating measure is then

ν(S ,A) =
∫
A

ν (S , x) dx
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One Price Issues

The law of one price coupled with no arbitrage implies that the value
function V (X ) satisfies

V (aX + bY ) = aV (X ) + bV (Y ).

Hence the valuation function is linear.

The set of acceptable risks are those with a positive value and this is
a very large convex set.

Useful as it may be, it renders optimization useless and defines risk
acceptability too generously.
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Graph of Arbitrages, Positive Alpha, and Acceptable
Opportunities

ArbitragesSet of Positive Values

Set of Acceptable Outcomes
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Conservative valuation in two price economies

When risk acceptability is contracted from a half space to a proper
convex cone containing the nonnegative outcomes that are certainly
acceptable at zero cost, then the acceptable risks become all
outcomes X satisfying

EQ [X ] ≥ 0, for all Q ∈ M

whereM is a collection of test probabilities or scenarios.
Selling X at b(X ) or buying it for a(X ) requires that

X − b(X ) and a(X )− X
are acceptable.
The best and bid and ask prices are

b(X ) = inf
Q∈M

EQ [X ]

a(X ) = sup
Q∈M

EQ [X ]
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Further Remarks on Conservative Valuation I

The maximization objective for risk exposure evaluation should be
concave.

As a consequence the set of outcomes with a positive value are a
convex set but not in general a convex cone.

We now ask why one should scale value with the scale of the
outcome?

If the value is market based and contemplated positions are small
relative to the size of the market then the value of twice the outcome
should be twice the value.
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Conservative valuation and probability distortions

Probabilities of rare or extreme events are not to be trusted and
should be distorted upwards for losses and downwards for gains to
induce risk aversion and the absence of gain enticement.

This is accomplished on evaluating distorted expectations.

Let Ψ(u) be a concave distribution function on the unit interval and
evaluate the value of outcome X with distribution function F (x) and
density f (x) as

b(X ) =
∫
xΨ′ (F (x)) f (x)dx

Ψ′(u) for u near zero lifts the weighting on losses while Ψ′(u) for u
near unity reduces the weighting on gains.
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Distorted Expectations and Lower Price Operators

The lower price formed from distorted expectations is associated with
M the set of supporting measures being all measures Q such that

Q(A) ≤ Ψ (P(A)) , for all A.
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But WHY Probability?

Event probabilities require a knowledge of the frequency of events of
interest relative the frequency of all other possible events.

We may know the former as a measure but not even be able to
enumerate the latter.

Taking the view that events of interest happen occasionally while
nothing of interest happens all the time we work with just the
numerator as an infinite measure.

The outcomes of interest are integrable with respect to the infinite
measure and hence constant outcomes are inadmissible.

All outcomes are bounded away from zero on sets of finite measure.

On sets of infinite measure outcomes converge towards zero reflecting
the view that only nothing happens all the time.
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Measure Distorted Valuation

Introduce two increasing functions on the positive half line, G+

concave and above the identity and G− convex and below the identity
with both zero at zero.

The measure distorted lower value of outcome X on an infinite
measure space with measure µ is defined by

b(X ) = −
∫ ∞

0
G+ (µ (X < −a)) da+

∫ ∞

0
G− (µ (X > a)) da

The upper value is given by

a(X ) = −
∫ ∞

0
G− (µ (X < −a)) da+

∫ ∞

0
G+ (µ (X > a)) da
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Measure Distortions and Lower Valuations

The lower valuation using measure distortions is

b(X ) = inf
ν̃∈M

∫
X (ω)ν̃(dω)

a(X ) = sup
ν̃∈M

∫
X (ω)ν̃(dω)

where ν̃ ∈ M just if

G−(ν(A)) ≤ ν̃(A) ≤ G+ (ν(A)) , for all A with ν(A) < ∞.
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Hedged Valuation

For two measure increasing distortions G+,G− concave/convex,
above/below the identity and hedge policy a(S , t) we define the
operator

G(V ) = −
∫ ∞

0
G+

(
ν(S ,

[
a(S , t) (ex − 1)

+V (Sex , t)− V (S , t)

]−
> w

)
dw

+
∫ ∞

0
G−

(
ν(S ,

[
a(S , t) (ex − 1)

+V (Sex , t)− V (S , t)

]+
> w

)
dw

The hedge selection defines

a(S , t) = argmax
a

−
∫ ∞
0 G

+

(
ν(S ,

[
a (ex − 1)

+V (Sex , t)− V (S , t)

]−
> w

)
dw

+
∫ ∞
0 G

−

(
ν(S ,

[
a (ex − 1)

+V (Sex , t)− V (S , t)

]+
> w

)
dw

 .
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Connections to BSPIDE’s

The nonlinear valuation may be related to the solution of Backward
Stochastic Partial Integro-Differential Equations.

For this purpose we work on a filtered probability space associated
with a pure jump Markov process with finite variation jump
compensators for the logarithm of a positive k dimensional Markov
process X .
The compensator has the form

ν(X (t), t, x)dxdt

with

X (t) =
∫
(0,t ]×Rk \{0}

((exp ◦I ) (x)− 1k )ν(X (s), s, x)dxds

+
∫
(0,t ]×Rk \{0}

((exp ◦I ) (x)− 1k )Ñ(dx × ds)

where (exp ◦I )(x) = (ex1 , · · · , exk )T , 1k is the k dimensional vector
with all entries unity, and Ñ(dx × ds) is a compensated jump
measure.
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where (exp ◦I )(x) = (ex1 , · · · , exk )T , 1k is the k dimensional vector
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BSPIDE

On this probability space let χ be a terminal random variable and let
Bt be a lower prudential valuation for χ asscoiated with a driver
function g(t, z) defined on (0,T ]×L2(ν(X (t), t, x)dx) that is
positive, homogeneous and convex in z .

The Backward Stochastic Partial Integro-Differential Equation
(BSPIDE ) solves for (Bt ,Zt ) for t < T the equation

Bt +
∫ T

t
g(s,Zs )ds +

∫
(0,t ]×Rk \{0}

Zs (x)Ñ(ds × dx) = χ.

Dilip B. Madan (Robert H. Smith School of Business) Value and Hedge Book
University of Southern California October 28 2019 20

/ 50



BSPIDE

On this probability space let χ be a terminal random variable and let
Bt be a lower prudential valuation for χ asscoiated with a driver
function g(t, z) defined on (0,T ]×L2(ν(X (t), t, x)dx) that is
positive, homogeneous and convex in z .

The Backward Stochastic Partial Integro-Differential Equation
(BSPIDE ) solves for (Bt ,Zt ) for t < T the equation

Bt +
∫ T

t
g(s,Zs )ds +

∫
(0,t ]×Rk \{0}
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BSPIDE and Valuation

In this Markovian context the lower prudential valuation can be
written as

Bt = V (t,X (t))

where
V (T ,X (T ) = χ

and V solves the semilinear partial integro-differential equation
.
V +KV (t, x)− g(t,DVt ,x )

= 0

KV (t, x) = dTt ∇V

+
∫

Rk \{0}
(DVt ,x −∇V (t, x)T x (ey − 1))ν(dy)

DVt ,x = V (t, xey )− V (t, x)

dt =
∫

Rk \{0}
x (ey − 1) ν(x , t, dy)
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Valuations and Risk Acceptability

The lower prudential value is related to risk acceptability via

Bt = inf
Q∈Sg

EQ [χ|Ft ] .

Here Sg consists of all measures Q for which the representation M of
the stochastic logarithm satisfies a condition related to g .

ξ =
dQ
dP

ξ = E(M), E is stochastic exponential

M =
∫
(0,T ]×Rk \{0}

Hs (y)Ñ(ds × dy)

with∫
z(y)Hs (y)ν(X (s), s, y)dy ≤ g(s, z), z ∈ L2 (ν(X (s), s, y)dy) .
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Discounted Valuations

In the formulation with discounting it is discounted values that are
nonlinear martingales.

Hence we write

e−rtV (X (t), t) = inf
Q∈M

EQ
[
e−rT χ

]
.

Define
W (X (t), t) = e−rtV (X (t), t)

and observe that ·
W = −rW + e−rt

·
V

Recognizing the time reversion we write
·
V + GV − rV = 0

or equivalently that
·
W + GW = 0
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The Valuation Driver

For the moment we ignore the hedge and just consider valuation.

The distorted variation we work with is

GW = −
∫ ∞

0
G+

(
ν(X , [W (Xex , t)−W (X , t)]− > w

)
dw

+
∫ ∞

0
G−

(
ν
(
X , [W (Xex , t)−W (X , t)]+ > w

))
dw .

The variation on the other hand is

V(W ) = −
∫ ∞

0

(
ν(X , [W (Xex , t)−W (X , t)]− > w

)
dw

+
∫ ∞

0

−ν
(
X , [W (Xex , t)−W (X , t)]+ > w

)
dw
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The Valuation Driver II

Define

Γ+ = G+ − I
Γ− = I − G−

and observe that

GW = VW −
∫ ∞

0
Γ+
(

ν(X , [W (Xex , t)−W (X , t)]− > w
)
dw

−
∫ ∞

0
Γ−
(

ν
(
X , [W (Xex , t)−W (X , t)]+ > w

))
dw .
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The Valuation Driver III

Now define
Z (y) = W (Xey , t)−W (X , t)

and let

g(t, z) =
∫ ∞

0
Γ+
(
ν(X , [z(y)− > w ]

)
dw
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∫ ∞

0
Γ−
(
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)
dw
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The semilinear equation

We then write
GW = VW − g(t,Z )

or equivalently
·
W + VW − g(t,Z ) = 0

The semilinear equation in W is on noting KW = VW that

·
W +KW − g(t,DWt ,x ) = 0
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BSPIDE and Risk Acceptability

We now write that

e−rtV (t, x) +
∫ T

t
g(s,Zs )ds +

∫
(t ,T ]×Rk \{0}

Zs (y)Ñ(ds × dy) = χ.

Furthermore we have that

e−rtV (t,X (t)) = inf
Q∈Sg

EQ[e−rT χ|Ft ].
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Illustrate on a Vanilla Book of SPY options

We wish to illustrate computations on a vanilla book of options on
SPY .

But for a genuine Markov context we must establish a dependence of
the law of motion on observables.

It is unreasonable to suppose that SPY return distributions over long
periods used in estimation will show a dependence of such on the
level of the index.

We consider instead a dependence on the ratio of the index level to a
geometrically weighted average of past prices.
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A Preliminary Investigation

For a thousand days ending December 31, 2018 we obtain data on
daily returns one day forward.

And the contemporaneous ratio of the index level to a geometrically
weighted average.

With weights λn for prices lagged n days and λ = 0.9.

We then bucket the returns based on the level of the ratio.

The bilateral gamma model is then estimated separately in each
bucket using digital moment estimation.

From the estimated parameters one may evaluate the return drift
separately in each bucket.
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Drift and the Ratio

The Figure presents the dependence observed for the drift as a
function of the ratio.
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MLE Estimation of BG dependence on Spot Average Ratio

We employed a thousand days of data ending December 31, 2018 on
the one day forward return and the contemporaneous spot average
ratio.

The ratio lies between 0.96 and 1.03 in the data and for the bilateral
gamma simulated using median parameter values.

On a coarse grid from 0.85 to 1.05 in five steps of 0.05 we take the
candidate value of each of the four parameters at these levels for the
ratio to be free parameters to be estimated.

At all points including the coarse grid the actual parameters are taken
from the coarse grid candidate values as a smooth function using a
Gaussian Kernel smoother.

This avoids having to describe up front a functional form for the
dependence.
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FFT construction of Likelihood

Given the BG parameters for any level Z of the spot average ratio a
density may be constructed by Fourier inversion.

The densities are constructed on a fine grid of 50 points for the Z
ratio taken from the inverse distribution function of the data on the
ratio at uniformly spaced quantiles in steps of two percentage points.

For arbitrary Z levels, we use the closest Z value on the fine grid
where the density has been precomputed.

This minimizes the number of Fourier inversions to be computed.

The logarithm of the thousand densities evaluated at the observed
returns are summed to construct the log likelihood to be maximized.
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Parameter Dependence on Spot Average Ratio

The Figure presents the dependence of the four bilateral gamma
parameters on the spot average ratio.
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Dependence of Expected Return on Spot Average Ratio

The Figure show the dependence of the expected return in basis
points on the level of the spot average ratio.

The drift though positive falls with the level of the ratio.
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Markov Model for the Average, Y, and the Spot Average
Ratio, Z

In a continuous formulation the average Y (t) may be constructed
from the Spot prices S(t) by

Y (t) = θ
∫ t

−∞
e−θ(t−u)S(u)du.

Let Z (t) = S(t)/Y (t). It follows that

dY = θ (Z (t)− 1)Y (t)dt

The dynamics for the ratio are given by

dZ = −θZ (t) (Z (t)− 1) dtZ (t) ((ex − 1) ∗ µ(dx , du))
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The Compensator for Z

The compensator for Z is given by

ν (Z , dx) dt =

 cp (Z )
x exp

(
− x
bp (Z )

)
1x>0

+ cn(Z )
|x | exp

(
− |x |
bn(Z )

)  dxdt
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Value and Hedge Policy Functions

Hence Z (t),Y (t) is a two dimensional Markov process and we seek
the value and hedge policy functions

V (Z (t),Y (t), t)

a(Z (t),Y (t), t)

to be solved for on a three dimensional grid for Z ,Y and time t.

We do this on an 18 core Alienware Machine.
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The Operator to be Solved

We solve

Vt = G(V )− rV − θZ (Z − 1)VZ + θ(Z − 1)YVY .

For

G(V )

= −
∫ ∞

0
G+

(
ν(Z ,

[
a(Z ,Y , , t) (ex − 1)

+V (Zex ,Y , t)− V (Z ,Y , t)

]−
> w)

)
dw

+
∫ ∞

0
G−

(
ν(Z ,

[
a(Z ,Y , t) (ex − 1)

+V (Zex ,Y , t)− V (Z ,Y , t)

]+
> w)

)
dw .

Dilip B. Madan (Robert H. Smith School of Business) Value and Hedge Book
University of Southern California October 28 2019 39

/ 50



The Operator to be Solved

We solve

Vt = G(V )− rV − θZ (Z − 1)VZ + θ(Z − 1)YVY .

For

G(V )

= −
∫ ∞

0
G+

(
ν(Z ,

[
a(Z ,Y , , t) (ex − 1)

+V (Zex ,Y , t)− V (Z ,Y , t)

]−
> w)

)
dw

+
∫ ∞

0
G−

(
ν(Z ,

[
a(Z ,Y , t) (ex − 1)

+V (Zex ,Y , t)− V (Z ,Y , t)

]+
> w)

)
dw .

Dilip B. Madan (Robert H. Smith School of Business) Value and Hedge Book
University of Southern California October 28 2019 39

/ 50



The Boundary Conditions

The boundary conditions in reversed time are

V (Z ,Y , 0) = CT (YZ )

V (Z ,Y , ti ) = V (Z ,Y , ti−) + ci (Y (ti−)Z ), ti > 0.

For cash flows being held at maturities ti with claims to ci (S).

The policies locally maximize G(V ) over choices for hedge positions a.
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Implementation Details

We take a non-uniform grid of 50 points on the average between half
and twice the initial level.

We also take a 40 point non-uniform grid on the ratio between 0.9
and 1.1.

The book of claims hedged have maturities under a year.

The backward recursion is implemented on 20 time steps.
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Integrating the compensator

The integral of the compensator ν(Z , x)dx over sets A is
accomplished by simulation.

The potential jumps are taken to lie between ±30% in steps of a
basis point.

At these points one evaluates all outcomes and the measure change
to a gamma density of shape parameter 0.075.

We simulate from the gamma density and evaluate expectations of
measure changed outcomes to perform the required integration.

These measures are distorted and integrated over tail levels to
construct the measure distorted value.

Values and Hedge positions are smoothed at each time step using
Gaussian Process Regression.
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Explicit Boundary Functions

The book on the underlier SPY was estimated for June 26, 2019
using information on dollar vega exposures bucketed by strike in two
percentage point intervals at traded maturities.

The number of options at each strike is then constructed by dividing
the dollar vega in the bucket by the vega for the specific strike taken
at its implied volatility.

Summing the spot dependent option payoffs times positions delivers
the functions ci (S).

There were 29 maturities below a year in the option book ranging
from one to 358 days.
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Sample Claims By Maturity

The Figure presents graphs of state contingent claims in millions of
dollars for a sample of the 29 maturities
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Hedge Positions By Z and Y

We present a sample of graphs showing how hedge positions vary
with Z for different levels of Y and time.

The blue curves are for the current level of the average with red and
black for 10 dollars down and up.
The positions fall with time.
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Value Function By Z and Y

We present four graphs showing the nonlinear value as a function of
Z for three settings on Y for now, three, six, and nine months in.
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Hedge Position Regression Coeffi cients

The hedge positions were regressed on the delta, gamma, and levels
of Z ,Y ,Z 2,Y 2 separately for each level of time maturity.

The Table shows results for a sample of times to maturity.

Regressing Hedge Positions on
Time Left Delta Gamma Z Y Z^2 Y^2 RSQ

1 1.1293 29.9751 1723.6023 195.7961 ­8.3502 ­0.3197 0.9302
0.9 1.0964 36.8843 318.8334 48.4325 ­1.5291 ­0.0785 0.9243
0.8 1.4404 40.2417 95.7524 12.5620 ­0.4641 ­0.0205 0.9200
0.7 2.1472 66.0671 19.6692 3.4710 ­0.0950 ­0.0057 0.9080
0.6 2.0326 62.7417 8.7496 1.6764 ­0.0425 ­0.0027 0.9007
0.5 2.3538 73.7335 4.8765 0.8572 ­0.0237 ­0.0014 0.8791
0.4 5.6210 191.1055 2.6347 0.4515 ­0.0129 ­0.0007 0.8611
0.3 6.9205 197.6278 3.2125 0.4428 ­0.0158 ­0.0007 0.8342
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Hedge Position T-Stats

The Table shows the corresponding t-stats.

T­Stats
Time Left Delta Gamma Z Y Z^2 Y^2

1 17.77 10.68 16.77 73.64 ­16.24 ­71.09
0.9 15.46 11.71 11.67 68.52 ­11.20 ­65.67
0.8 18.08 11.29 13.40 67.87 ­12.99 ­65.32
0.7 22.23 15.23 9.77 66.50 ­9.43 ­64.38
0.6 19.86 13.64 8.75 64.65 ­8.50 ­62.60
0.5 19.28 13.47 8.65 58.71 ­8.42 ­56.99
0.4 18.96 14.29 8.36 55.32 ­8.17 ­53.76
0.3 21.73 13.70 9.45 50.24 ­9.32 ­49.09
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Remark on Lower Stress Levels

We reduced the stress level from 0.75 to 0.1 in the measure distortion
parameters.

The regression results were of a similar order at the lower stress level.

The high delta coeffi cients at lower times to maturity may reflect a
fall in the deltas relative to the position taken.

We note that as books are continuously refurbished one never reaches
a situation where the time to maturity of all claims held is below
three months.

Hence the only relevant observations are closer to the first row of the
coeffi cient and t-statistic matrices.
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Conclusion

Nonlinear valuation and hedging activities must be conducted at the
level of books.

The valuation is a particular form of a G expectation.
It is related to the solution of a BSPIDE for a particular driver.

The driver is constructed as a Choquet type capacity applied to tail
measures as a risk charge.

The hedges maximize a local variation less a risk charge associated
with the driver.

The valuation and hedging scheme is illustrated in a dynamic
Markovian setting for a book on SPY .

The local motion is seen to be Markov in the ratio of the spot price
to an exponentially weighted average of past prices.

Optimal hedges are sensitive to the spot average ratio.
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