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Introduction

Mean field theories beyond physics

Mean field theory in a nutshell: Approximate statistical features
of a n-particle system by a ∞-particle system.

Applications outside of physics:

I economics & finance (systemic risk, income distribution...)

I biology (flocking...)

I sociology (crowd dynamics, voter models...)

I electrical engineering (telecommunications...)

Why mean field game theory?

It replaces particles with rational agents. Laws of motion emerge in
equilibrium and need not be prescribed exogenously.
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Introduction

Mean field theories beyond physics

Main novelties of MFG theory: continuous time (PDEs, SDEs)
and rigorous connection to finite-population models

Most-studied so far: MFG analogs of McKean-Vlasov interacting
diffusion models.  Stochastic differential MFGs

Some recent literature: MFG analogs of

I Spin systems (Horst/Scheinkman)

I Stochastic coalescence (Duffie/Malamud/Manso)
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A prototypical MFG model

A model of systemic risk: Carmona/Fouque/Sun ’13

Mean field model:
n banks with log-monetary reserves (X i

t )t∈[0,T ],

dX i
t = a(X t − X i

t )dt + σρdW i
t + σ

√
1− ρ2dBt ,

X t =
1

n

n∑
k=1

X k
t

Rate of borrowing/lending between banks: a > 0

Goal: Find probabilities of systemic events of the form{
min

0≤t≤T
X t ≤ D

}
, D = default level.
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A prototypical MFG model

A model of systemic risk: Carmona/Fouque/Sun ’13

Mean field game model:
n banks with log-monetary reserves (X i

t )t∈[0,T ],

dX i
t =

[
a(X t − X i

t ) + αi
t

]
dt + σρdW i

t + σ
√

1− ρ2dBt ,

X t =
1

n

n∑
k=1

X k
t

Bank i chooses to borrow/lend from a central bank at rate αi
t ,

to minimize some cost

E
[∫ T

0
f (X i

t ,X t , α
i
t)dt + g(X i

T ,XT )

]
.

Goal: Find systemic event probabilities in Nash equilibrium.
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Stochastic differential mean field games

Stochastic differential games
Agents i = 1, . . . , n have state process dynamics

dX i
t = b(X i

t , µ̄
n
t , α

i
t)dt + σdW i

t + σ0dBt ,

µ̄nt :=
1

n

n∑
k=1

δX k
t
,

with B,W 1, . . . ,W n independent, (X 1
0 , . . . ,X

n
0 ) i.i.d.

Agent i chooses αi to minimize

Jni (α1, . . . , αn) := E
[∫ T

0
f (X i

t , µ̄
n
t , α

i
t)dt + g(X i

T , µ̄
n
T )

]
.

Say (α1, . . . , αn) form an ε-Nash equilibrium if ∀i = 1, . . . , n

Jni (α1, . . . , αn) ≤ ε+ inf
β
Jni (. . . , αi−1, β, αi+1, . . .).
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Stochastic differential mean field games

Mean field limit n→∞?

The problem

Given for each n an εn-Nash equilibrium (αn,1, . . . , αn,n), with
εn → 0, can we characterize the possible limits of µ̄nt ?
Limiting behavior of a representative agent?

Previous results
Lasry/ Lions ’06, Bardi ’11, Feleqi ’13, Gomes ’13,
Carmona/Fouque/Sun ’13, Fischer ’14

A related, better-understood problem

Find a mean field game solution directly, and use it to construct an
εn-Nash equilibrium for the n-player game.
See Huang/Malhamé/Caines ’06 & many others.
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See Huang/Malhamé/Caines ’06 & many others.



A general characterization of the mean field limit for stochastic differential games

Stochastic differential mean field games

Proposed mean field game limit, without common noise

Intuition and the existing literature suggest that µ̄n may converge
to a mean field game (MFG) limit, a process µ satisfying:

α∗ ∈ arg minα E
[∫ T

0 f (Xα
t , µt , αt)dt + g(Xα

T , µT )
]
,

dXα
t = b(Xα

t , µt , αt)dt + σdWt ,

µt = Law(Xα∗
t ).
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t , µt , αt)dt + σdWt + σ0dBt ,

µt = Law(Xα∗
t | FB

t ), FB
t := σ(Bs : s ≤ t).

We call this a strong MFG solution, since µt is FB
t -adapted.

Without some kind of uniqueness (hard to come by!), we should
expect only a weak solution:

µt = Law(Xα∗
t | Fµ,Bt ), with X0, (µ,B),W independent.
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Stochastic differential mean field games

Standing assumptions

Admissible controls for n-player game

Any Fn
t -adapted process, where

Fn
t ⊃ σ(X 1

0 , . . . ,X
n
0 ,W

1
s , . . . ,W

n
s ,Bs : s ≤ t).

Technicalities
b, f , g continuous, control space A ⊂ Rk closed, b Lipschitz in
(x , µ), growth assumptions...
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Stochastic differential mean field games

Main results

Theorem (Mean field limit)

Given for each n an εn-Nash equilibrium with εn → 0, the sequence
(µ̄n)∞n=1 is tight, and every limit is a weak MFG solution.
Conversely, every weak MFG solution can be obtained as a limit in
this way.

Theorem (Existence, with R. Carmona & F. Delarue)

There exists a weak MFG solution.

Theorem (Uniqueness, with R. Carmona & F. Delarue)

A Yamada-Watanabe-type theorem holds for MFGs, and under
strong additional assumptions we have pathwise uniqueness.

Theorem (Existence, with K. Webster)

“Translation invariant” MFGs admit strong solutions.
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A surprise in the case of no common noise

Interacting particle system without common noise

Particles i = 1, . . . , n have dynamics

dX i
t = b(X i

t , µ̄
n
t )dt + σdW i

t ,

µ̄nt :=
1

n

n∑
k=1

δX k
t
,

with W 1, . . . ,W n independent, (X 1
0 , . . . ,X

n
0 ) i.i.d.
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A surprise in the case of no common noise

Mean field limit n→∞

Theorem

1. µ̄n are tight in C ([0,T ];P(R)).

2. Every weak limit µ is such that a.e. realization
ν ∈ C ([0,T ];P(R)) satisfies the McKean-Vlasov (MV)
equation: {

dXt = b(Xt , νt)dt + σdWt ,

νt = Law(Xt).

See: Oelschläger ’84, Gärtner ’88.
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A surprise in the case of no common noise

McKean-Vlasov equations (MFG without control)

Strong McKean-Vlasov solution: A deterministic µ s.t.:{
dXt = b(Xt , µt)dt + σdWt ,

µt = Law(Xt).

Weak McKean-Vlasov solution: A stochastic µ s.t.:{
dXt = b(Xt , µt)dt + σdWt ,

µt = Law(Xt | Fµt ), with X0, W , µ independent.

Theorem
A random measure µ is a weak solution if and only if it is
concentrated on the set of strong solutions, that is a.e. realization
is a strong solution.
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A surprise in the case of no common noise

MFG solutions without common noise

Strong MFG solution: A deterministic µ s.t.:
α∗ ∈ arg minα E

[∫ T
0 f (Xα

t , µt , αt)dt + g(Xα
T , µT )

]
,

dXα
t = b(Xα

t , µt , αt)dt + σdWt ,

µt = Law(Xα∗
t ).

Weak MFG solution: A stochastic µ s.t.:
α∗ ∈ arg minα E

[∫ T
0 f (Xα

t , µt , αt)dt + g(Xα
T , µT )

]
,

dXα
t = b(Xα

t , µt , αt)dt + σdWt ,

µt = Law(Xα∗
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A surprise in the case of no common noise

Weak vs strong MFG solutions

Until now, the MFG literature only considered strong solutions:

A natural question:

Are weak MFG solutions concentrated on the set of strong MFG
solutions? In other words, is a.e. realization of a weak MFG
solution a strong MFG solution?

Answer
NO.

Conclusion
Strong solutions are not enough to describe mean field limits.

The obstruction
When µ is deterministic, the control α can anticipate µ.
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A surprise in the case of no common noise

A resolution

A sufficient condition
For each deterministic µ = (µt)t∈[0,T ], find an optimal control
α∗[µ] = (α∗[µ]t)t∈[0,T ]. Suppose

α∗[µ]t = α∗[µ·∧t ]t , for all t, µ.

Then every weak solution is concentrated on the set of strong
solutions.

Open problem

For a family of optimal control problems parametrized by paths
(µt)t∈[0,T ], under what conditions is the dependence of the
optimal control on the parameter adapted?



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Section 5

MFG limit proof outline
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Particles i = 1, . . . , n have dynamics

dX i
t = b(X i

t , µ̄
n
t )dt + σdW i

t + σ0dBt ,

µ̄nt :=
1

n

n∑
k=1

δX k
t
,

with B,W 1, . . . ,W n independent, (X 1
0 , . . . ,X

n
0 ) i.i.d.



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Mean field limit n→∞, an unorthodox approach

Theorem

1. (µ̄n,B,W 1,X 1) are tight in C ([0,T ];P(R)× R3).

2. Every weak limit (µ,B,W ,X ) solves the conditional
McKean-Vlasov (CMV) equation:{

dXt = b(Xt , µt)dt + σdWt + σ0dBt ,

µt = Law(X | Fµ,Bt ), with X0, (µ,B),W independent.

This approach keeps track of a representative particle and thus
adapts well to the MFG setting.
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Proving the MFG limit

Theorem
Given for each n an εn-Nash equilibrium (αn,1, . . . , αn,n) with
εn → 0, the sequence (µ̄n)∞n=1 is tight, and every limit is a weak
MFG solution.

Proof outline

1. Deal with lack of exchangeability.

2. Control the controls.

3. Prove tightness.

4. Check dynamics and fixed point condition at limit.

5. Prove optimality of limits.
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A pipe dream

If αn,i
t = α̂(t,X i

t , µ̄
n
t ) for some nice function α̂, ∀1 ≤ i ≤ n, then

reduce to the particle system case.
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Step 1: Exchangeability

Naive idea
Study the joint law of (µ̄n,B,W 1, αn,1,X 1).

Problem
No reason to expect (αn,1, . . . , αn,n) or (X 1, . . . ,X n) to be
exchangeable.

Solution
Randomly select representative agent. Study the laws

Qn =
1

n

n∑
i=1

Law
(
µ̄n,B,W i ,X i , αn,i

)
= Law

(
µ̄n,B,W U ,XU , αn,U

)
,

where U ∼ Uniform{1, . . . , n} is independent of everything.



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 1: Exchangeability

Naive idea
Study the joint law of (µ̄n,B,W 1, αn,1,X 1).

Problem
No reason to expect (αn,1, . . . , αn,n) or (X 1, . . . ,X n) to be
exchangeable.

Solution
Randomly select representative agent. Study the laws

Qn =
1

n

n∑
i=1

Law
(
µ̄n,B,W i ,X i , αn,i

)
= Law

(
µ̄n,B,W U ,XU , αn,U

)
,

where U ∼ Uniform{1, . . . , n} is independent of everything.



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 1: Exchangeability

Naive idea
Study the joint law of (µ̄n,B,W 1, αn,1,X 1).

Problem
No reason to expect (αn,1, . . . , αn,n) or (X 1, . . . ,X n) to be
exchangeable.

Solution
Randomly select representative agent. Study the laws

Qn =
1

n

n∑
i=1

Law
(
µ̄n,B,W i ,X i , αn,i

)
= Law

(
µ̄n,B,W U ,XU , αn,U

)
,

where U ∼ Uniform{1, . . . , n} is independent of everything.



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 2: Control the controls

Problem
Find a good space for the controls, αn,i . Compactness is difficult
in L0([0,T ];A), with topology of convergence in measure.

Solution
Use relaxed controls,

V := weak closure
{
dtδα(t)(da) : α ∈ L0([0,T ];A)

}
∼=
(
L0([0,T ];P(A)), τrelaxed

)
.

Drift with a relaxed control Λ is
∫
A b(Xt , µt , a)Λt(da).

An extreme case
Suppose g ≡ f ≡ 0. Then any strategies (αn,1, . . . , αn,n) are Nash,
and any relaxed control can arise in the limit.
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Step 5: Optimality

Problem
What is the right class of admissible (relaxed) controls Λ for the
MFG?

Natural but bad choice #1

Require Λ adapted to the filtration FX0,µ,B,W
t generated by

(X0, µ,B,W ), the given sources of randomness for the control
problems. This class is too small, and does not necessarily contain
our limit.

Natural but bad choice #2

Require that B and W remain Wiener processes with respect to
the filtration generated by (X0, µ,B,W ,Λ). This class is too large,
and our limit may not be optimal in this class.
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Step 5: Optimality

The right choice

Require Λ to be compatible, meaning that FΛ
t is conditionally

independent of FX0,µ,B,W
T given FX0,µ,B,W

t , for each t.

Lemma
Under any weak limit, the relaxed control Λ is compatible.

Lemma
A relaxed control Λ is compatible if and only if there exists a
sequence of FX0,µ,B,W

t -adapted strict controls
α̂k = α̂k(t,X0, µ,B,W ), continuous in µ, such that

(X0, µ,B,W , α̂k(t,X0, µ,B,W ))⇒ (X0, µ,B,W ,Λ).



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 5: Optimality

The right choice

Require Λ to be compatible, meaning that FΛ
t is conditionally

independent of FX0,µ,B,W
T given FX0,µ,B,W

t , for each t.

Lemma
Under any weak limit, the relaxed control Λ is compatible.

Lemma
A relaxed control Λ is compatible if and only if there exists a
sequence of FX0,µ,B,W

t -adapted strict controls
α̂k = α̂k(t,X0, µ,B,W ), continuous in µ, such that

(X0, µ,B,W , α̂k(t,X0, µ,B,W ))⇒ (X0, µ,B,W ,Λ).



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 5: Optimality

The right choice

Require Λ to be compatible, meaning that FΛ
t is conditionally

independent of FX0,µ,B,W
T given FX0,µ,B,W

t , for each t.

Lemma
Under any weak limit, the relaxed control Λ is compatible.

Lemma
A relaxed control Λ is compatible if and only if there exists a
sequence of FX0,µ,B,W

t -adapted strict controls
α̂k = α̂k(t,X0, µ,B,W ), continuous in µ, such that

(X0, µ,B,W , α̂k(t,X0, µ,B,W ))⇒ (X0, µ,B,W ,Λ).



A general characterization of the mean field limit for stochastic differential games

MFG limit proof outline

Step 5: Optimality

Fix a weak limit (µ,B,W ,Λ,X ). Show Λ optimal among
compatible controls:

1. Consider first a FX0,µ,B,W
t -adapted strict control

α̂(t,X0, µ,B,W ), with α̂ continuous in µ.

2. Construct an admissible strategy for the n-player game via
βn,it = α̂(t,X i

0, µ̄
n,B,W i ).

3. By εn-Nash property in n-player game, αn,i is nearly superior
to βn,i for agent i .

4. Passing the inequality to the limit (using continuity of α̂ in
µ), Λ is superior to α̂(t,X0, µ,B,W ).

5. Conclude by approximating general compatible controls by
such α̂(t,X0, µ,B,W ).
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Refinements

Strict controls

We are more interested in MFG solutions with strict controls,
meaning Λt = δαt for some A-valued process α.

Theorem
Suppose for each (x , µ) the set

{(b(x , µ, a), z) : a ∈ A, z ≥ f (x , µ, a)}

is convex. Then for every weak MFG solution there exists another
weak MFG solution with strict control with the same
Law(µ,B,W ,X ).
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Refinements

Strong controls

We are even more interested in MFG solutions with strong
controls, meaning Λt = δαt for some FX0,µ,B,W

t -progressive
A-valued process α.

Theorem
Suppose b is affine in (x , a), f is strictly convex in (x , a), and g is
convex in x. Then every weak MFG solution necessarily has strong
control.

⇒ Can state MFG limit theorem without reference to relaxed
controls or compatibility
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Refinements

Uniqueness

We are even more interested in strong MFG solutions, meaning the
control is strong and also η is B-measurable, so

µt = Law(Xt ∈ · | FB
t ).

Theorem
Suppose b = b(x , a) is affine in (x , a) and independent of the
mean field, f is strictly convex in (x , a), g is convex in x,
f = f1(t, x , µ) + f2(t, x , a), and monotonicity holds: ∀µ, ν,∫

[f1(t, x , µ)− f1(t, x , ν) + g(x , µ)− g(x , ν)] (µ− ν)(dx) ≥ 0.

Then “pathwise uniqueness” holds, and the unique weak MFG
solution is strong. In particular, for every sequence of εn-Nash
equilibria converges to the unique MFG solution.
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