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Motivation and overview

I The same firm offers many mutual funds

I Question: given the heterogeneity of investors, what is the optimal
fund menu?

I We find the optimal menu when investors differ in beliefs on
non-systematic risk
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I The fund manager offers returns of the form

R (γ, φ) ≡ φ1εI + φ2εNI − γ

I γ is the fee per dollar invested (Linear pricing!)

I φ1, φ2 are the positions in two risky assets with returns εI , εNI
I εI , εNI , are independent with means ξ, θ, and unit variances.

I θ is a subjective belief of investors, uniformly distributed on [0, θH ].
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Utility values

I Utility:

u (θ,w1) ≡ Eθ [w1]− a

2
varθ [w1]

I Given a menu m, investor’s wealth is (non-exclusivity!)

w1 (p,m) ≡ rw0 +

∫
M

R (γ(m), φ(m)) p(dm).

I The manager maximizes

vm (m) ≡ (1/θH)

∫
Θ×M

γ(m)p∗(dm; θ,m)dθ
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Revelation principle

I Proposition 1. W.l.o.g., we can consider the menus such that type
θ invests in (1, φ(θ)).

I Denoting ξ(θ) ≡ (ξ, θ), the optimal investment by investor is, with
γ = 1, when investing in a single fund,

π(θ, φ) =
1

a‖φ‖2

(
φ>ξ(θ)− 1

)
+

Investor’s value is v(θ) = v(θ, θ), where

v(θ, θ′) =
1

2

((
φ(θ′)>ξ(θ)− 1

)
+

‖φ(θ′)‖

)2

I The manager maximizes, over pairs (γ, φ),
I (φ) ≡ (1/θH)

∫
Θ
π (θ, φ(θ)) dθ, subject to incentive compatibility

constraint that investor θ invests in (1, φ(θ))..
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Relaxed problem

I Proposition 2. A fund loading function φ : Θ→ R2 is incentive
compatible if and only if, for all θ, θ′,

φ(θ′)>ξ(θ)− 1− φ(θ)>φ(θ′)

‖φ(θ)‖2

(
φ(θ)>ξ(θ)− 1

)
+
≤ 0 (1)

I Proposition. Assume φ is incentive compatible. Then, we have

π (θ, φ(θ)) = F (θ, v(θ), v̇(θ)) :=
(
θv̇(θ)− 2v(θ) + ξ

√
2v(θ)− [v̇(θ)]2

)
/a

φ(θ) ≡ 1

aF (θ, v(θ), v̇(θ))

(√
2v(θ)− v̇(θ)2, v̇(θ)

)>
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Calculus of Variations ODE

I The Euler-Lagrange ODE for the relaxed problem
V ≡ supv

∫
Θ
F (θ, v(θ), v̇(θ)) dθ is

v(θ)(1 + v̈(θ))− [v̇(θ)]2 =
3

2ξ

(
2v(θ)− [v̇(θ)]2

) 3
2

0 = v̇(0)

θH = ξv̇(θH)
(
2v(θH)− [v̇(θH)]2

)− 1
2 .

I Theorem. There exists a unique solution v∗ to the ODE, it is
strictly increasing, strictly convex, it attains the supremum in the
relaxed problem, and it gives rise to the solution of the original
problem.
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Solution
I Properties:
– No investor is excluded, F (· · · ) > 0.

– Manager is better off with higher ξ and θH
– φ∗2(0) = 0: the manager offers an index fund.

– Let f (θ) denote the first best optimal funds. We have φ∗2/φ
∗
1 = f2/f1

at θ = 0 and θ = θH .

– Otherwise, ∆ = f2/f1 − φ∗2/φ∗1 > 0 and it is inverse U−shaped -
closet indexing.

– There exist θ1, θ2 such that the optimal exposure to the index is
lower than in the first best for θ ≤ θ1 and higher otherwise, the
optimal exposure to the non index asset is lower than in the first
best for θ ≤ θ2 and higher than in the first best for θ > θ2.

– We have that θ1 < θ2. Therefore, low types are under-invested in
both assets, high types are over-invested in both assets, and
intermediate types in [θ1, θ2] are overinvested in the index and
under-invested in the non index asset.

– There exists an intermediate type θ̄ ∈ (θ1, θ2) such that investors
below θ̄ have lower utility than in the first best while investors above
have higher utility than in the first best.
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Exogenous index fund

I Investors can invest in an outside index fund (εI , γI ).

I Revelation principle still holds.

I Lemma. If
γI ≥ γ∗I ≡ ξ −

√
2v∗(0)

then, the optimal fund menu is as before.
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Additional IC constraint
I IC now requires also

2v(θ) ≥ (ξ − γI )2 + [v̇(θ)]2

I Lagrangian:

∫
Θ

Hλ (θ, v(θ), v̇(θ)) dθ ≡
∫

Θ

{F (θ, v(θ), v̇(θ)) + λ(θ)c (v(θ), v̇(θ))} dθ

where
c (v(θ), v̇(θ)) ≡ 2v(θ)− [v̇(θ)]2 − (ξ − γI )2

I Lemma. Denote by C the set of points where the function λ is
continuous. If(

Hλ
v(θ) − d

dθH
λ
v̇(θ)

)
(θ, v(θ), v̇(θ)) = 0, θ ∈ C, (2)

Hλ
v̇(θ) (θ, v(θ), v̇(θ)) = 0, θ ∈ {0, θH}, (3)

λ(θ)c (v(θ), v̇(θ)) = 0, θ ∈ Θ, (4)

and Hλ
v̇(θ) (θ, v(θ), v̇(θ)) is continuous (equivalent to v̇(θ) = 0 for θ

not in C), then v attains the supremum in the relaxed problem.
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Solution
I a) Assume that γI < ξ/3, then the function

v∗(θ) ≡ 1

2
(ξ − γI )2 +

1

2

(
θ − θH

3

)2

+

(5)

attains the supremum in the relaxed problem.
b) Assume that γI ∈ [ξ/3, γ∗I ) and denote by (w , θ∗) ∈ C 2

p (Θ;R)×Θ
the unique solution to the free boundary problem defined by

0 = w(θ) (1 + ẅ(θ))− [ẇ(θ)]2 − 3

2ξ

(
2w(θ)− [ẇ(θ)]2

) 3
2
, θ ∈ Θ,

(6)

subject to the boundary conditions

0 = ẇ(θ∗) = w(θ∗)− 1

2
(ξ − γI )2 , (7)

= θH − ξẇ(θH)
(

2w(θH)− [ẇ(θH)]2
)− 1

2
. (8)

Then the function

v∗(θ) ≡ 1

2
(ξ − γI )2 + 1{θ>θ∗}

(
w (θ)− 1

2
(ξ − γI )2

)
(9)

attains the supremum in the relaxed problem.
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Properties

– The manager optimally offers the index to all investors below a
certain cutoff type.

– When γI < ξ/3 the constraint binds for all types and the optimal
menu provides the utilities to all players that are the same as in the
case in which the manager offers two funds given by (γI , e1) and
(γNI , e2), with γNI = θH/3.
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Future research?

I A screening problem with
- multiple goods
- flexible quantities
- buyers can mix contracts
- unobserved preferences on some of the goods
- linear pricing
- the seller can offer the products in bundles
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Proof of Proposition 1.

Lemma. It is sufficient for investor θ to invest only in two funds.
This is because the optimization problem of investor θ can be written as

vi (θ,m) = sup
x∈R2

sup
p∈µx

+(M)

{
x1ξ1 + x2θ −

1

2
a‖x‖2 −

∫
M

γ(m)p(dm)

}
(10)

where

µx
+(M) =

{
p ∈ µ+(M) :

∫
M

φ(m)p(dm) = x

}
. (11)

Then, the result follows from standard deterministic optimization results.
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Proof of Proposition 1.

Suppose investor of type θ ∈ Θ allocates money to a pair of funds
(m1(θ),m2(θ)). We need to choose the fund loading vector φ(θ) so that

2∑
k=1

γ0(mk(θ))pk(θ) = π(θ, φ(θ)), (12)

a

2

∥∥∥∥∥
2∑

k=1

pk(θ)φ0(mk(θ))

∥∥∥∥∥
2

= v(θ) =
1

2a‖φ(θ)‖2

(
φ(θ)>ξ(θ)− 1

)
, (13)

The solution is

φ(θ) =
p1(θ)φ0(m1(θ)) + p2(θ)φ0(m2(θ))

p1(θ)γ0(m1(θ)) + p2(θ)γ0(m2(θ))
. (14)
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ODE
Lemma. Assume that v∗ ∈ C 2(Θ;R) is a solution to the boundary value
problem. Then, v∗ is optimal for the relaxed problem.
Proof: Let v be another feasible function. It can be shown that F is
concave, so that∫

Θ

(
F (x , v(θ), v̇(θ))− F (x , v∗(θ), v̇∗(θ))

)
dθ ≤ ∆(v , v∗) (15)

≡
∫

Θ

(
(v(θ)− v∗(θ))F ∗v∗(θ)(θ) + (v̇(θ)− v̇∗(θ))F ∗v̇∗(θ)(θ)

)
dθ

(16)

Integration by parts shows that

∆(v , v∗) =
(
(v − v∗) (θ)F ∗p (θ)

)∣∣∣θH
θ=0

+

∫
Θ

(v − v∗) (θ)

(
F ∗v (θ)− d

dθ
F ∗p (θ)

)
dθ

(17)

= (v(θH)− v∗(θH))F ∗p (θH)− (v(0)− v∗(0))F ∗p (0) = 0 (18)

where the last two equalities follow from the fact that v∗ solves the ODE
and the boundary conditions.
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Thank you for your attention!

For potential PhD students in Social Sciences at Caltech:
http://www.hss.caltech.edu/content/graduate-studies
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