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N
Background

o Let {Y;}i>1 be a sequence of R9valued iid zero mean random variables with
common probability law p.

o Let S, =57, Y Then S,/n— 0 a.s. by LLN.
@ Large Deviation Principle: For ¢ >0
P(|Sn| > nc) = exp{—ninf{I(y) : |y| = c}},

where for y € R,

I(y) = sup {{a,y) —log/ﬂ;d exp(a, y)p(dy)}.

acRd
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Large Deviation Principle.

Definition. Consider a sequence {X®}.~¢ of £ valued r.vs.

@ | : & —[0,00] is a rate function on & if for each M < o0,
{x € £:1(x) < M} is compact.

o {X°} is said to satisfy the large deviation principle on £ (as € — 0)
with rate function / if:
o For each closed F C £

limsup,_,o€elogP(X® € F) < —infyer I(x).
o For each open G € £
liminf._oelogP(X® € G) > —infyeq I(x).

Formally, for small ¢:

P(X® € A) =~ exp {—M} , Ae B(€).
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|
Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:
dX(t) = b(X°(t))dt + Vea(X(t))dW(t), X°(0) = x.
@ b, o suitable coefficients... W a f.d. BM.
@ Let G C R” be bounded open. Let x € G and 7¢ = inf{t : X°(t) € 0G}.

@ Interested in lim._,oclog P, (X*(7°) € N), where N C 06G.
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Stochastic Control Connection (Ctd.)

@ Formally, with ® a nonnegative C2 function, ®(x) & M1yc(x), M a large
scaler,

lim & log P(X*(7) € N) ~ lim < log E {ef“’(XE(TE))/E} .
@ Then g°(x) = E, {e‘q’(XE(TE))/E} solves
Lg*(x)=0, xeG
g (x) = e ®W/e xec oG
where £5g = 5Tr(cD?go’) + b- Vg.

@ Interested in asymptotics of —¢log g°.
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Stochastic Control Connection (ctd.)

@ log transform: Let J* = —clog g®. Then J¢ solves

%Tr(aDZJEJ') +H(x,VJF)=0

where
H(x,p) = min[L(x,v) +p-v], x€ G, pcR"
veR"

and L(x,v) = 3(b(x) — v)'[o(x)o’ (x)]"1(b(x) — v).

@ J® can be characterized as the value function of the stochastic control
problem:

J(x) = inf E, {/0%5 L(XE(t), u(t))dt + ¢(X6(%g))}

ueA

dXE(t) = u(t)dt +ea(XE(t)dW(t), X(0) = x
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|
Stochastic Control Connection (ctd.)

@ One can argue J° — J, where J(x) is the value function of the deterministic
control problem:

0
) =inf | [ t(o(0). 80t + o0(0)

?,

where inf is over all abs. cts. ¢ such that ¢(0) = x, and
0 =inf{t: ¢(t) € 9G}.

@ Later works: Sheu (1985), Dupuis and Ellis(1997), Feng and Kurtz (2005).
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|
LDP and Laplace Principle.

@ LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

o A collection of & valued random variables {X¢} is said to satisfy
Laplace principle with rate function /, if for all h € Cp(E)

. 1 . .
!m) —clog E {exp {—Eh(X )]} = X|2fg{h(x) + 1(x)}.
@ From Donsker-Varadhan:

—elog E{exp[—Lh(X¢)] }=infoep(e)[ [ h(x)dQR(x)+R(Q|IP)].
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-
LDP and Laplace Principle.

@ Goal is to show the convergence of variational expressions:

e—=0

inf oep(e)[J h(x)dQ()+R(QIIP)] == infxee {h(x)+1(x)}.
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-
Some Settings where the Approach Works.

@ Small Noise SPDE (B., Dupuis and Maroulas (2008)).

@ Stochastic Flows of Diffeomorphisms (B., Dupuis and Maroulas
(2010)).

@ Finite and Infinite Dimensional Jump-Stochastic Dynamical Systems
with Small Noise (B., Chen and Dupuis (2013)).

@ Moderate deviation principles for SDE w/ Jumps in Finite and Infinite
Dimensions (B., Dupuis and Ganguly (2016)).

@ Component Size Large Deviations for Configuration Model (Bhamidi,
B., Dupuis and Wu (2017)).

@ Multiscale jump-diffusions — Large Deviations from Stochastic
Averaging Principle (B., Dupuis and Ganguly (2017)).

@ Weakly Interacting Diffusions — Large and Moderate Deviations (B.,
Dupuis and Fischer (2012), B. and Wu (2016)).
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-
A System with Nearest Neighbor Interactions.

@ Ginzburg-Landau in Finite Volume: For t € [0, T] and i=1,... N
N2
axfi(e) = - o (XMa(0) =20/ (XM(6) + &' (XIa(o)) )] dt
+ N [dBi(t) — dBi+1(t)]
o {1/N,...,(N—1)/N,1} is the periodic lattice. l.e. identify Xy/,; with X{".

o {Bj(t)}$2, are independent standard one-dimensional Brownian motions given
on some probability space (V, F,P).
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-
A System with Nearest Neighbor Interactions.

o ¢:R—Ris C? and

/ exp(—¢(x))dx =1, M(A) = / exp(Ax — ¢(x)) < o0
R R

for all A € R, and for all 0 < 00

/ exp(0]¢/(x)] — 6(x))dx < ox.
R
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|
Model Description (ctd.)

o Invariant measure for XV: ®N(dx) = &(dx;)P(dx2) ... ®(dxy) where
®(dx) = e M dx.

@ Consider XV with XN(0) ~ ®" and process M with values in Ms (the space
of signed measures on the unit circle S):

N(t,dd) Zx )8 /n(d0).

@ A LLN for N shown in Guo-Papanicolaou-Varadhan (1988) and a LDP
proved in Donsker-Varadhan (1989).

@ A new proof...

University of Southern California 13 /

YU ETTL A TG TETER DI B IO TG ST TR AT Large Deviations from the Hydrodynamic L 29



Remarks

@ The original proof [DW(1989)] requires control on exponential moments and
exponential probability estimates. This approach has been extended to many
different systems.

@ Exponential estimates are the hardest parts of the proof.

@ The new proof uses stochastic control representations and weak convergence
methods.

@ Proof techniques similar to that for LLN analysis. No exponential estimates
are invoked.

@ Key Technical Step: Suitable Regularity of Densities of Controlled Processes.
Bounds on certain Dirichlet Forms.
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I
Main Result

o Let ML be elements in M3 with total variation bounded by /.
S

o Let for / € N, 2, = C([0, T] : MX%) the Polish space of continuous paths of
signed measures with total variation bounded by /.

@ Then 2= C([0, T] : Ms) = UjenC([0, T] : M%) = Ujen 2. This space is
equipped with the direct limit topology.

@ Theorem {1V} satisfies a LDP in C([0, T] : Ms) with rate function /.
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Rate Function

@ Let
p(A) =log M(X), A € R, h(x) = ilejﬂg{)\x —p(N)}.

o Let  be the collection of all 4z in Q such that for all ¢, u(t, df) = m(t,60)d6
and m satisfies

[ nen(e.0) + W (. 0)Bloeds <
[0,T]xS
o Let P,(R x S) be all m € P(R x S) such that

7(dx df) = m1(dx | 0)d0,

with

mo(H):/]Rmrl(dx\H)7 /Sh(mo(ﬁ))d9<oo.
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Rate Function

o Forue L3([0,T] x S :R) and 7 € P.(R x S) let Mo(u,7) beall €, st.
wu(t, dd) = m(t,0)db, and m solves weakly

Orm(t,0) = % (W (m(t,0))],, — Deu(t,0), m(0,0) = mo(0)

o Letting mo(dx df) = ®(dx)d0, define I : {2 — [0, c0] by

! - dfds + R(||m
(u) {(UW)HEMOO u,m) |: / /| ‘ ( H 0)

for € Q, and set /(1) = co otherwise.
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N
Main Steps in Proof

@ Compact level sets: [ is a rate function on {2, namely for every M < oo
{uwe 2:1(p) < M} is compact.

@ Laplace upper bound: For all F € Cp(£2)

i sup — 3 log Elexp(~NF(u")] > inf {F(1) + 1(s).

N— oo

@ Laplace lower bound: For all F € Cp(£2)

lim inf—% log E[exp(—NF (1V))] < Jgg{F(u) +1(p)}.

N— oo
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|
Variational Representation
@ Boué-Dupuis (1998), B., Fan and Wu (2017).
o Let (V, F,P) be a probability space with an N-dimensional Brownian motion,
BN = (By,... By), and a R"-valued random variable X"V(0) independent of

BV and with probability law MV.

o Let {]-_"t} be any filtration saEisfying the usual conditions such that B is a
{F:}-Brownian motion and X"(0) is Fo measurable.

o Let Kpnv = (V, F, {F:},P, XN(0),BN) and let

AN(Krn) = {4 2 b = (i), 1; is simple and F; adapted}.
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Variational Representation
@ Fora N € AN(Kqw), let
t
BN(t) = B,-(t)+/ YN(s)ds, t€[0,T], i=1,...N.
0

Let

o0 = 1 0) 2 (002 (510
N [dB;i(t) — dBija(t)]

o Disintegrate MN € P(RV), as
MV (dx) = My(dxa)Ma(dxalxa) . .. Mn(dxnlda, ... dxy—1) = ] SN (x, dxi),

and with X"(0) distributed as M", let ®N(dz) = ®N(XN(0), dz).
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Variational Representation

Let F € Cp(§2). Then for all Ne N
1 N
~N log E exp(—NF(u™))

= inf inf IE
I‘IN,ICHN dJNG.AN(IC N)

N T
w2 (R@e) g [ |w,-”(s)|2ds)+F(,:LN)].
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N
Laplace Upper Bound

@ Fix F € Cp(£2) and let € € (0,1). Choose for each N € N, MV ¢ P(RN),
system v and N € AV(Kw) such that

<]

— 4 log Eexp(~NF(u"))>Eqn [ TI (ROM@)+ [ [v1(5)2ds ) +F(a")]| —e.
@ Since F is bounded, there is a C € (0, 00) such that
SUPpyeN ﬂ:nN(ﬁ Z,N:I R(!B{VH(D))SC) SUPNENEHN (ﬁ ZIIVZI .foT \1/1,’\1(5)\2d5)ﬁc

@ By a localization argument, we can assume that for every N

2NZ/ s)[?ds < C as.
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N
Consequences of Bounded Costs

Suppose

SUPNeN E|'|’V(% pl R(@P’Hd)))SCo, S“pNEN(ﬁ = ./.o.r \w{v(s)‘l’ds)gco,

o Lemma 1 Let Quu(t) = £(XM(t)). Then, there exists Cr € (0,00) s.t. for
te[0, 7], B
Hy(t) = R(Qun(t)[|®V) < CrN for all N € N.

o Let Vi =9; — 0;41 and a positive f on RN that is continuously differentiable
along Vi,..., Vy, define

N
() =apn(vh) =3 [ O gn(gy

i JRN f(x)

o Lemma 2 For t € [0, T] and N € N, XV (t) has a density py(t, ) w.r.t &N
which is continuously differentiable, once in time and twice along Vi,..., Vy,
and satisfies for some C € (0, c0):

1

T C
Iy <?/0 ﬁN(s,-)ds> < N for all N > 1.
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Consequences of Bounds on RE and Dirichlet Forms

o {aMN} is a tight sequence of 2-valued random variables.

o {vN} is a tight sequence of P(R x S) valued r.v., where

vN(dx df) = SN | ON(d) (i w141y (0)d0

@ Define uy as
N(t,0) = Zl/) i—1y/nim(9), (£,6) €10, T] x S.
Then {u} is a sequence of r.v. with values in

Se, = {u € 12([0, T] % S) - / \u(t, 0)Pdodt < co} .

[0,T]xS

With the weak topology on the Hilbert space S, is compact and thus

{uN}nen is a tight sequence of Sc,-valued random variables.

@ Suppose (ﬁN, u, z/N) converges in distribution along a subsequence to
(i, u,v). Then i € Moo(u,v), ass.
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-
Completing the Proof of Upper Bound.

I}anjgoff%log]Eexp( NF( )>+e
1

ZIWJQOfIEHN< ( ) ;( (®V]|) + /0T|w,{v(s)|2ds>)

:migofEnN (F (,1"’) + R(WN||mo) + / /\u,\, s,0)| d5d9>
ZI_E<F( ) + R(v||mo) + / /| (s,0 |2dsd9>

EF(7)+ 1)) = inf [F(u) + 1),

%

where the next to last inequality follows from 1 € M. (u,v) as.
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Laplace Lower Bound.

@ Fix F € Cp(2), and let € > 0. Choose i* € {2 such that

F(") + 1) < inf {F(n) + 1)} + € < o0,

@ Choose u* € L?([0, T] x S) and 7* € P.(R x S) such that ji* € Moo (u*,7*)
and

(i) +e> » [/ /|u s 0)2d9ds} + R(x*|mo)-

@ Fix 6 € (0,1) and let u™ € C* be such that ||u™ — u*|]2 < m

@ Lemma There is a unique @** € 2 s.t. @** € M(u**,7*). Furthermore, as
50, 1" = i(8) > i*
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-
Control Synthesis.

o Let *(dx, df) = 7} (dx|0)d6 and define
_ i/N
dN(dx) = /v/ 7 (dx|0)ds, 1<i<N,
(i-1)/N
o Let XV(0) be a R"-valued r.v. with distribution
NN (dx) = &V (dxy) ... N (dxn).

o Define ¥V € L2([0, T] : R) as

N . .
. e (JT 0
M) =D "u (JW, N) LT/, g+1)7/M (2), t €0, T].
=
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-
Control Synthesis.

o Lemma Let iV be constructed using MY and {/N} . Then
1
li - N **
NTOON/O § [y (t))?dt = / /|u (t,0)dodt,

N

1 s *

i > R(®)|[®) < R(*||m), forall N €N
i=1

and iV converges to i** in distribution in 2.
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N
Completing the Proof of Lower Bound.

@ Choose § small s.t. |F(a*) — F(2**)| <e.

@ Then

lim sup —% log E exp (7,\//: (HN))

N— o0

< limsup Epu (F (/Z’V) +%ZN:( R(®VN| o) + %/OT 1/J,N(s)|2ds>>

N—oo

< F(R™) + R(7*||mo) + // |u**(s,0)|*dsd6

(7*) + R(7*||mo) + // 0)|?dsd + € + 26

F

< (") + 1(i*) + 2¢ + 20

< inf {F(p)+ (1)} + 3e + 20
HeQ

<
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