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Background

Let {Yi}i≥1 be a sequence of Rd -valued iid zero mean random variables with
common probability law ρ.

Let Sn =
∑n

i=1 Yi . Then Sn/n → 0 a.s. by LLN.

Large Deviation Principle: For c > 0

P(|Sn| > nc) ≈ exp{−n inf{I (y) : |y | ≥ c}},

where for y ∈ Rd ,

I (y) = sup
α∈Rd

{〈α, y〉 − log

∫

Rd

exp〈α, y〉ρ(dy)}.
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Large Deviation Principle.

Definition. Consider a sequence {X ε}ε>0 of E valued r.vs.

I : E → [0,∞] is a rate function on E if for each M <∞,
{x ∈ E : I (x) ≤ M} is compact.

{X ǫ} is said to satisfy the large deviation principle on E (as ε→ 0)
with rate function I if:

For each closed F ⊂ E

lim sup
ǫ→0 ǫ logP(X

ǫ ∈ F ) ≤ − infx∈F I (x).

For each open G ∈ E

lim infǫ→0 ǫ logP(X
ǫ ∈ G) ≥ − infx∈G I (x).

Formally, for small ε:

P(X ǫ ∈ A) ≈ exp

{

− infx∈A I (x)

ε

}

, A ∈ B(E).
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Stochastic Control Connection (Fleming 1978)

Consider a small noise n-dimensional SDE:

dX ε(t) = b(X ε(t))dt +
√
εσ(X ε(t))dW (t), X ε(0) = x .

b, σ suitable coefficients... W a f.d. BM.

Let G ⊂ Rn be bounded open. Let x ∈ G and τ ε = inf{t : X ε(t) ∈ ∂G}.

Interested in limε→0 ε log Px(X
ε(τ ε) ∈ N), where N ⊂ ∂G .
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Stochastic Control Connection (Ctd.)

Formally, with Φ a nonnegative C 2 function, Φ(x) ≈ M1Nc (x), M a large
scaler,

lim
ε→0

ε logPx(X
ε(τ ε) ∈ N) ≈ lim

ε→0
ε logEx

{

e−Φ(X ε(τε))/ε
}

.

Then gε(x) = Ex

{

e−Φ(X ε(τε))/ε
}

solves







Lεgε(x) = 0, x ∈ G

gε(x) = e−Φ(x)/ε, x ∈ ∂G

where Lεg = ε
2Tr(σD

2gσ′) + b · ∇g .

Interested in asymptotics of −ε log gε.
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Stochastic Control Connection (ctd.)

log transform: Let Jε = −ε log gε. Then Jε solves

ε

2
Tr(σD2Jεσ′) + H(x ,∇Jε) = 0

where
H(x , p) = min

v∈Rn
[L(x , v) + p · v ], x ∈ G , p ∈ Rn

and L(x , v) = 1
2(b(x) − v)′[σ(x)σ′(x)]−1(b(x)− v).

Jε can be characterized as the value function of the stochastic control
problem:

Jε(x) = inf
u∈A

Ex

{
∫ τ̃ε

0
L(X̃ ε(t), u(t))dt +Φ(X̃ ε(τ̃ ε))

}

dX̃ ε(t) = u(t)dt +
√
εσ(X ε(t))dW (t), X̃ ε(0) = x
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Stochastic Control Connection (ctd.)

One can argue Jε → J, where J(x) is the value function of the deterministic
control problem:

J(x) = inf
φ,θ

[
∫ θ

0
L(φ(t), φ̇(t))dt +Φ(φ(θ))

]

,

where inf is over all abs. cts. φ such that φ(0) = x , and
θ = inf{t : φ(t) ∈ ∂G}.

Later works: Sheu (1985), Dupuis and Ellis(1997), Feng and Kurtz (2005).
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LDP and Laplace Principle.

LDP is equivalent to Laplace principle if the state space is Polish
(Varadhan(1966), Bryc(1990)):

A collection of E valued random variables {X ε} is said to satisfy
Laplace principle with rate function I , if for all h ∈ Cb(E)

lim
ǫ→0

−ǫ log E

{

exp

[

−1

ǫ
h(X ǫ)

]}

= inf
x∈E

{h(x) + I (x)}.

From Donsker-Varadhan:

−ǫ log E{exp[− 1
ǫ
h(X ǫ)]}=infQ∈P(E)[

∫

h(x)dQ(x)+R(Q‖Pε)].
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LDP and Laplace Principle.

Goal is to show the convergence of variational expressions:

infQ∈P(E )[
∫

h(x)dQ(x)+R(Q‖Pε)] ε→0
−→ infx∈E{h(x)+I (x)}.
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Some Settings where the Approach Works.

Small Noise SPDE (B., Dupuis and Maroulas (2008)).

Stochastic Flows of Diffeomorphisms (B., Dupuis and Maroulas
(2010)).

Finite and Infinite Dimensional Jump-Stochastic Dynamical Systems
with Small Noise (B., Chen and Dupuis (2013)).

Moderate deviation principles for SDE w/ Jumps in Finite and Infinite
Dimensions (B., Dupuis and Ganguly (2016)).

Component Size Large Deviations for Configuration Model (Bhamidi,
B., Dupuis and Wu (2017)).

Multiscale jump-diffusions – Large Deviations from Stochastic
Averaging Principle (B., Dupuis and Ganguly (2017)).

Weakly Interacting Diffusions – Large and Moderate Deviations (B.,
Dupuis and Fischer (2012), B. and Wu (2016)).
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A System with Nearest Neighbor Interactions.

Ginzburg-Landau in Finite Volume: For t ∈ [0,T ] and i = 1, . . .N

dXN
i (t) =

N2

2

[

φ′
(

XN
i−1(t)

)

− 2φ′
(

XN
i (t) + φ′

(

XN
i+1(t)

))]

dt

+ N [dBi(t)− dBi+1(t)]

{1/N, . . . , (N − 1)/N, 1} is the periodic lattice. I.e. identify XN
N+1 with XN

1 .

{Bi(t)}∞i=1 are independent standard one-dimensional Brownian motions given
on some probability space (V,F ,P).
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A System with Nearest Neighbor Interactions.

φ : R → R is C 2 and

∫

R

exp(−φ(x))dx = 1, M(λ)
.
=

∫

R

exp(λx − φ(x)) <∞

for all λ ∈ R, and for all σ <∞

∫

R

exp(σ|φ′(x)| − φ(x))dx <∞.
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Model Description (ctd.)

Invariant measure for XN : ΦN(dx)
.
= Φ(dx1)Φ(dx2) . . .Φ(dxN) where

Φ(dx)
.
= e−φ(x)dx .

Consider XN with XN(0) ∼ ΦN and process µN with values in MS (the space
of signed measures on the unit circle S):

µN(t, dθ)
.
=

1

N

N
∑

i=1

XN
i (t)δi/N(dθ).

A LLN for µN shown in Guo-Papanicolaou-Varadhan (1988) and a LDP
proved in Donsker-Varadhan (1989).

A new proof...
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Remarks

The original proof [DW(1989)] requires control on exponential moments and
exponential probability estimates. This approach has been extended to many
different systems.

Exponential estimates are the hardest parts of the proof.

The new proof uses stochastic control representations and weak convergence
methods.

Proof techniques similar to that for LLN analysis. No exponential estimates
are invoked.

Key Technical Step: Suitable Regularity of Densities of Controlled Processes.
Bounds on certain Dirichlet Forms.
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Main Result

Let Ml
S be elements in MS with total variation bounded by l .

Let for l ∈ N, Ωl
.
= C ([0,T ] : Ml

S ) the Polish space of continuous paths of
signed measures with total variation bounded by l .

Then Ω
.
= C ([0,T ] : MS) = ∪l∈NC ([0,T ] : Ml

S) = ∪l∈NΩl . This space is
equipped with the direct limit topology.

Theorem {µN} satisfies a LDP in C ([0,T ] : MS ) with rate function I .
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Rate Function

Let
ρ(λ)

.
= logM(λ), λ ∈ R, h(x)

.
= sup

λ∈R
{λx − ρ(λ)}.

Let Ω̃ be the collection of all µ in Ω such that for all t, µ(t, dθ) = m(t, θ)dθ
and m satisfies

∫

[0,T ]×S

[h(m(t, θ)) + [h′(m(t, θ))]2θ]dtdθ <∞,

Let P∗(R× S) be all π ∈ P(R × S) such that

π(dx dθ) = π1(dx | θ)dθ,

with

m0(θ) =

∫

R

xπ1(dx |θ),
∫

S

h(m0(θ))dθ <∞.
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Rate Function

For u ∈ L2([0,T ]× S : R) and π ∈ P∗(R× S) let M∞(u, π) be all µ ∈ Ω̃, s.t.
µ(t, dθ) = m(t, θ)dθ, and m solves weakly

∂tm(t, θ) =
1

2

[

h′(m(t, θ))
]

θθ
− ∂θu(t, θ), m(0, θ) = m0(θ)

Letting π0(dx dθ) = Φ(dx)dθ, define I : Ω → [0,∞] by

I (µ) = inf
{(u,π):µ∈M∞(u,π)}

[

1

2

∫ T

0

∫

S

|u(s, θ)|2dθds + R(π‖π0)
]

for µ ∈ Ω̃, and set I (µ) = ∞ otherwise.
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Main Steps in Proof

Compact level sets: I is a rate function on Ω, namely for every M <∞
{µ ∈ Ω : I (µ) ≤ M} is compact.

Laplace upper bound: For all F ∈ Cb(Ω)

lim sup
N→∞

− 1

N
logE[exp(−NF (µN))] ≥ inf

µ∈Ω
{F (µ) + I (µ)}.

Laplace lower bound: For all F ∈ Cb(Ω)

lim inf
N→∞

− 1

N
logE[exp(−NF (µN))] ≤ inf

µ∈Ω
{F (µ) + I (µ)}.
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Variational Representation

Boué-Dupuis (1998), B., Fan and Wu (2017).

Let (V̄, F̄ , P̄) be a probability space with an N-dimensional Brownian motion,
BN = (B1, . . .BN), and a RN -valued random variable X̄N(0) independent of
BN and with probability law ΠN .

Let {F̄t} be any filtration satisfying the usual conditions such that BN is a
{F̄t}-Brownian motion and X̄N(0) is F̄0 measurable.

Let KΠN
.
= (V̄ , F̄ , {F̄t}, P̄, X̄N(0),BN ) and let

AN(KΠN )
.
= {ψ : ψ = (ψi )

N
i=1, ψi is simple and F̄t adapted}.
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Variational Representation

For a ψN ∈ AN(KΠN ), let

B̄N
i (t)

.
= Bi(t) +

∫ t

0
ψN
i (s)ds, t ∈ [0,T ], i = 1, . . .N.

Let

dX̄N
i (t) =

N2

2

[

φ′
(

X̄N
i−1(t)

)

− 2φ′
(

X̄N
i (t) + φ′

(

X̄N
i+1(t)

))]

dt

+ N
[

dB̄i(t)− dB̄i+1(t)
]

Disintegrate ΠN ∈ P(RN), as

ΠN(dx)
.
= Π1(dx1)Π2(dx2|x1) . . .ΠN(dxN |dx1, . . . , dxN−1)

.
=

N
∏

i=1

Φ̄N
i (x , dxi ),

and with X̄N(0) distributed as ΠN , let Φ̄N
i (dz)

.
= Φ̄N

i (X̄
N(0), dz).
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Variational Representation

Let F ∈ Cb(Ω). Then for all N ∈ N

− 1

N
logE exp(−NF (µN))

= inf
ΠN ,K

ΠN

inf
ψN∈AN (K

ΠN
)
ĒΠN

[

1

N

N
∑

i=1

(

R(Φ̄N
i ‖Φ) +

1

2

∫ T

0
|ψN

i (s)|2ds
)

+ F (µ̄N)

]

.
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Laplace Upper Bound

Fix F ∈ Cb(Ω) and let ǫ ∈ (0, 1). Choose for each N ∈ N, ΠN ∈ P(RN), a
system KΠN and ψN ∈ AN(KΠN ) such that

− 1
N
logE exp(−NF (µN ))≥Ē

ΠN

[

1
N

∑N
i=1

(

R(Φ̄N
i
‖Φ)+ 1

2

∫ T

0
|ψN

i
(s)|2ds

)

+F (µ̄N )
]

−ǫ.

Since F is bounded, there is a C ∈ (0,∞) such that

supN∈N Ē
ΠN (

1
N

∑N
i=1 R(Φ̄N

i ‖Φ))≤C , supN∈N Ē
ΠN

(

1
2N

∑N
i=1

∫ T
0 |ψN

i (s)|
2ds

)

≤C .

By a localization argument, we can assume that for every N

1

2N

N
∑

i=1

∫ T

0
|ψN

i (s)|2ds ≤ C a.s.
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Consequences of Bounded Costs

Suppose

supN∈N
Ē
ΠN (

1
N

∑N
i=1 R(Φ̄N

i
‖Φ))≤C0, supN∈N

(

1
2N

∑N
i=1

∫ T

0
|ψN

i
(s)|2ds

)

≤C0.

Lemma 1 Let Q̄ΠN (t) = L(X̄N(t)). Then, there exists CT ∈ (0,∞) s.t. for
t ∈ [0,T ],

HN(t)
.
= R(Q̄ΠN (t)‖ΦN) ≤ CTN for all N ∈ N.

Let Vi = ∂i − ∂i+1 and a positive f on RN that is continuously differentiable
along V1, . . . ,VN , define

IN(f ) = 4DN(
√
f ) =

N
∑

i=1

∫

RN

(Vi f (x))
2

f (x)
ΦN(dx).

Lemma 2 For t ∈ [0,T ] and N ∈ N, X̄N(t) has a density p̄N(t, ·) w.r.t ΦN

which is continuously differentiable, once in time and twice along V1, . . . ,VN ,
and satisfies for some C ∈ (0,∞):

IN

(

1

T

∫ T

0
p̄N(s, ·)ds

)

≤ C

N
for all N ≥ 1.
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Consequences of Bounds on RE and Dirichlet Forms

{µ̄N} is a tight sequence of Ω-valued random variables.

{νN} is a tight sequence of P(R × S) valued r.v., where

νN(dx dθ)
.
=
∑N

i=1 Φ̄
N
i (dx)I(i/N,(i+1)/N](θ)dθ.

Define uN as

uN(t, θ)
.
=

N
∑

i=1

ψN
i (t)I((i−1)/N,i/N](θ), (t, θ) ∈ [0,T ] × S .

Then {uN} is a sequence of r.v. with values in

SC0

.
=

{

u ∈ L2([0,T ]× S) :

∫

[0,T ]×S

|u(t, θ)|2dθdt ≤ C0

}

.

With the weak topology on the Hilbert space SC0
is compact and thus

{uN}N∈N is a tight sequence of SC0
-valued random variables.

Suppose (µ̄N , uN , νN) converges in distribution along a subsequence to
(µ̄, u, ν). Then µ̄ ∈ M∞(u, ν), a.s.
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Completing the Proof of Upper Bound.

lim inf
N→∞

− 1

N
logE exp

(

−NF
(

µN
))

+ ǫ

≥ lim inf
N→∞

ĒΠN

(

F
(

µ̄N
)

+
1

N

N
∑

i=1

(

R(Φ̄N
i ‖Φ) +

1

2

∫ T

0
|ψN

i (s)|2ds
)

)

= lim inf
N→∞

ĒΠN

(

F
(

µ̄N
)

+ R(νN‖π0) +
1

2

∫ T

0

∫

S

|uN(s, θ)|2dsdθ
)

≥ Ē

(

F (µ̄) + R(ν‖π0) +
1

2

∫ T

0

∫

S

|u(s, θ)|2dsdθ
)

≥ Ē [F (µ̄) + I (µ̄)] ≥ inf
µ∈Ω

[F (µ) + I (µ)] ,

where the next to last inequality follows from µ̄ ∈ M∞(u, ν) a.s.
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Laplace Lower Bound.

Fix F ∈ Cb(Ω), and let ǫ > 0. Choose µ̄∗ ∈ Ω such that

F (µ̄∗) + I (µ̄∗) ≤ inf
µ∈Ω

{F (µ) + I (µ)} + ǫ <∞,

Choose u∗ ∈ L2([0,T ] × S) and π∗ ∈ P∗(R × S) such that µ̄∗ ∈ M∞(u∗, π∗)
and

I (µ̄∗) + ǫ ≥ 1

2

[
∫ T

0

∫

S

|u∗(s, θ)|2dθds
]

+ R(π∗‖π0).

Fix δ ∈ (0, 1) and let u∗∗ ∈ C∞ be such that ‖u∗∗ − u∗‖2 ≤ δ
2(1+‖u∗‖2)

.

Lemma There is a unique µ̄∗∗ ∈ Ω s.t. µ̄∗∗ ∈ M(u∗∗, π∗). Furthermore, as
δ → 0, µ̄∗∗ ≡ µ̄∗∗(δ) → µ̄∗.

Amarjit Budhiraja Department of Statistics & Operations Research University of North Carolina at Chapel Hill Joint work with SaLarge Deviations from the Hydrodynamic Limit for a System with Nearest Neighbor Interactions
University of Southern California 26 /

29



Control Synthesis.

Let π∗(dx , dθ) = π∗1(dx |θ)dθ and define

Φ̄N
i (dx)

.
= N

∫ i/N

(i−1)/N
π∗1(dx |θ)dθ, 1 ≤ i ≤ N,

Let X̄N(0) be a RN -valued r.v. with distribution

ΠN(dx)
.
= Φ̄N

1 (dx1) . . . Φ̄
N
N(dxN).

Define ψN
i ∈ L2([0,T ] : R) as

ψN
i (t)

.
=

N
∑

j=1

u∗∗
(

jT

N
,
i

N

)

I(jT/N,(j+1)T/N](t), t ∈ [0,T ].
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Control Synthesis.

Lemma Let µ̄N be constructed using ΠN and {ψN
i } . Then

lim
N→∞

1

N

∫ T

0

N
∑

i=1

|ψN
i (t)|2dt =

∫ T

0

∫

S

|u∗∗(t, θ)|2dθdt,

1

N

N
∑

i=1

R(Φ̄N
i ‖Φ) ≤ R(π∗‖π0), for all N ∈ N

and µ̄N converges to µ̄∗∗ in distribution in Ω.
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Completing the Proof of Lower Bound.

Choose δ small s.t. |F (µ̄∗)− F (µ̄∗∗)| ≤ ǫ.

Then

lim sup
N→∞

− 1

N
logE exp

(

−NF
(

µN
))

≤ lim sup
N→∞

ĒΠN

(

F
(

µ̄N
)

+
1

N

N
∑

i=1

(

R(Φ̄N
i ‖Φ) +

1

2

∫ T

0
|ψN

i (s)|2ds
)

)

≤ F (µ̄∗∗) + R(π∗‖π0) +
1

2

∫

S

∫ T

0
|u∗∗(s, θ)|2dsdθ

≤ F (µ̄∗) + R(π∗‖π0) +
1

2

∫

S

∫ T

0
|u∗(s, θ)|2dsdθ + ǫ+ 2δ

≤ F (µ̄∗) + I (µ̄∗) + 2ǫ+ 2δ

≤ inf
µ∈Ω

{F (µ) + I (µ)}+ 3ǫ+ 2δ.
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