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Introduction

In a stock market, if there is “adequate volatility”, then there is

relative arbitrage. We shall investigate what “adequate volatility”

might mean, when there is long-term arbitrage, and when there is

arbitrage over arbitrarily short intervals.
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The market

Suppose we have a market of stocks X1, . . . ,Xn represented by

positive continuous semimartingales that satisfy

d logXi (t) = γi (t) dt +
d∑
ν=1

ξiν(t) dWν(t),

for i = 1, . . . , n, where d ≥ n, (W1, . . . ,Wd) is a d-dimensional

Brownian motion, and the processes γi and ξiν are measurable,

adapted to the Brownian filtration, and locally integrable or

square-integrable. The process Xi represents the total

capitalization of the ith company. The market weights are

µi (t) =
Xi (t)

X1(t) + · · ·+ Xn(t)
,

for i = 1, . . . , n.
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Covariance

The ijth covariance process σij is defined for i , j = 1, . . . , n by

σij(t) ,
d〈logXi , logXj〉t

dt

=
d∑
ν=1

ξiν(t)ξjν(t), a.s.

If the eigenvalues of the covariance matrix σ(t) = (σij(t)) are

uniformly bounded away from zero over an interval [0,T ], then the

market is said to be strongly nondegenerate over the interval.
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Portfolios

A portfolio π is defined by its weight processes, π1, . . . , πn, which

are bounded, measurable, adapted to the Brownian filtration, and

add up to one. The portfolio value process Zπ represents the

(positive) value of the portfolio and satisfies

d logZπ(t) =
n∑

i=1

πi (t) d logXi (t) + γ∗π(t) dt, a.s.,

where the excess growth rate process γ∗π is defined by

γ∗π(t) ,
1

2

( n∑
i=1

πi (t)σii (t)−
n∑

i ,j=1

πi (t)πj(t)σij(t)
)
.

Due to the first equation, γ∗π is effectively observable.
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The market portfolio

The market portfolio µ is defined by the market weights

µ1, . . . , µn, and

Zµ(t) = X1(t) + · · ·+ Xn(t), a.s.,

with appropriate initial conditions.

The ijth relative covariance process τij is defined for i , j = 1, . . . , n

by

τij(t) ,
d〈logµi , logµj〉t

dt
=

d〈log(Xi/Zµ), log(Xj/Zµ)〉t
dt

= σij(t)− σiµ(t)− σjµ(t) + σµµ(t), a.s.
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Diverse markets

A market is diverse over the interval [0,T ] if there exists a δ > 0

such that for i = 1, . . . , n,

sup
t∈[0,T ]

µi (t) < 1− δ, a.s.

Lemma. If a market is strongly nondegenerate and diverse over

[0,T ], then there exists ε > 0 such that for i = 1, . . . , n,

inf
t∈[0,T ]

τii (t) > ε, a.s.

Proof. (F (2002).) Let x(t) = (µ1(t), . . . , µi (t)− 1, . . . , µn(t)), so

τii (t) = x(t)σ(t)xT (t) ≥ c‖x(t)‖2> c(1− µi (t))2 > cδ2, a.s.
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Relative arbitrage

For T > 0, there is relative arbitrage versus the market on [0,T ] if

there exists a portfolio π such that

P
[
Zπ(T )/Zµ(T ) ≥ Zπ(0)/Zµ(0)

]
= 1,

P
[
Zπ(T )/Zµ(T ) > Zπ(0)/Zµ(0)

]
> 0.

It is strong relative arbitrage if

P
[
Zπ(T )/Zµ(T ) > Zπ(0)/Zµ(0)

]
= 1.

We are interested in conditions under which volatility produces

relative arbitrage.
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Functionally generated portfolios

Suppose that S is a positive C 2 function defined on a

neighborhood of the open simplex

∆n =
{
x ∈ Rn : x1 + · · ·+ xn = 1, xi > 0

}
.

Then S generates a portfolio π such that

d log
(
Zπ(t)/Zµ(t)

)
= d logS(µ(t)) + dΘ(t), a.s.,

for t ∈ [0,T ], where the drift process Θ is of bounded variation.

The weights πi and drift process Θ are determined by the partial

derivatives of S and the covariance matrix of the market.

(F (2002).)
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Relative variance and relative arbitrage

Proposition 1. If there exists an ε > 0 and a k ∈ {1, . . . , n} such

that τkk(t) > ε for all t ∈ [0,T ], a.s., then there exists strong

relative arbitrage versus the market over [0,T ].

Proof. (FKK (2005).) For p > 1, consider the function S(x) = xpk ,

defined for x ∈ ∆n, the unit simplex in Rn. The function S

generates the portfolio π with weights

πi (t) =

{
p − (p − 1)µi (t), for i = k,

−(p − 1)µi (t), otherwise,

and the value process Zπ satisfies

d log
(
Zπ(t)/Zµ(t)

)
= d logµpk(t)− p2 − p

2
τkk(t) dt, a.s.
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Relative variance and relative arbitrage

Essentially, the portfolio π holds p dollars of Xk and −(p − 1)

dollars of the market portfolio. We have

log
(
Zπ(T )/Zµ(T )

)
− log

(
Zπ(0)/Zµ(0)

)
= log

(
µpk(T )/µpk(0)

)
− p2 − p

2

∫ T

0
τkk(t) dt

≤ −p logµk(0)− (p2 − p)εT

2
, a.s.

If p is large enough, then Zπ will underperform Zµ, a.s. By

shorting π and immersing it in a large amount of the market

portfolio, we can construct a long-only portfolio that outperforms

Zµ, a.s., over [0,T ].

11 / 34



Market excess growth

The market excess growth rate γ∗µ measures the average relative

volatility available in the market:

γ∗µ(t) =
1

2

( n∑
i=1

µi (t)σii (t)− σµµ(t)
)

=
1

2

n∑
i=1

µi (t)
(
σii (t)− 2σiµ(t) + σµµ(t)

)
=

1

2

n∑
i=1

µi (t)τii (t), a.s.
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Cumulative γ∗µ for the U.S. market
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Market entropy

The entropy function S is defined by

S(x) , −
n∑

i=1

xi log xi ,

for x ∈ ∆n. The entropy function satisfies

0 ≤ S(x) ≤ log n

where the value 0 is attained only at the vertices of the simplex,

and log n is attained only when all the xi are equal to 1/n. For a

constant c ≥ 0, we define the generalized entropy function by

Sc(x) , S(x) + c , for x ∈ ∆n.
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Entropy-weighted portfolios

The generalized entropy function Sc generates the portfolio π with

weights

πi (t) =
c − logµi (t)

Sc(µ(t))
µi (t),

and the value process Zπ of this entropy-weighted portfolio satisfies

d log
(
Zπ(t)/Zµ(t)

)
= d logSc(µ(t)) +

γ∗µ(t)

Sc(µ(t))
dt, a.s.
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Long-term relative arbitrage

Proposition 2. Suppose that in a market defined for t ≥ 0 there is

an ε > 0 such that for all t, γ∗µ(t) > ε, a.s. Then for large enough

T , there exists strong relative arbitrage versus the market on [0,T ].

Proof. For c > 0, consider the portfolio π generated by Sc . Then

log
(
Zπ(T )/Zµ(T )

)
− log

(
Zπ(0)/Zµ(0)

)
= log

(
Sc(µ(T ))/Sc(µ(0))

)
+

∫ T

0

γ∗µ(t)

Sc(µ(t))
dt

> log
( c

c + log n

)
+

εT

c + log n
, a.s.

Hence, it is just a matter of choosing T large enough.
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Short-term relative arbitrage

It would perhaps be nice if γ∗µ(t) > ε > 0 implied short-term

relative arbitrage, but this is not quite true. Instead:

Proposition 3. For T > 0, suppose that there exists an ε > 0

such that

γ∗µ(t) > ε, a.s.,

for all t ∈ [0,T ], and that for the entropy function S,

ess inf
{
S(µ(t)) : t ∈ [0,T/2]

}
≤ ess inf

{
S(µ(t)) : t ∈ [T/2,T ]

}
.

Then there exists relative arbitrage versus the market on [0,T ].
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Short-term relative arbitrage

Proof. Let

A = ess inf
{
S(µ(t)) : t ∈ [0,T/2]

}
.

Since γ∗µ(t) ≥ ε > 0 on [0,T ], a.s., not all the µi can be

constantly equal to 1/n, so

0 ≤ A < log n, a.s.

Hence, we can choose δ > 0 such that

A + 2δ < log n,

and

P
[

inf
t∈[0,T/2]

S(µ(t)) < A + δ
]
> 0.
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Short-term relative arbitrage

Let us define the stopping time

τ1 = inf
{
t ∈ [0,T/2] : S(µ(t)) ≤ A + δ

}
∧ T ,

in which case

P
[
τ1 ≤ T/2

]
> 0.

We can now define a second stopping time

τ2 = inf
{
t ∈ [τ1,T ] : S(µ(t)) = A + 2δ

}
∧ T ,

and we have τ1 ≤ τ2, a.s.

19 / 34



Short-term relative arbitrage

Now consider the generalized entropy function

Sδ(x) , S(x) + δ,

for the same δ > 0 as we chose above, so Sδ(x) ≥ δ. Let π be

generated by Sδ, and we have

log
(
Zπ(τ2)/Zµ(τ2)

)
− log

(
Zπ(τ1)/Zµ(τ1)

)
= logSδ(µ(τ2))− logSδ(µ(τ1)) +

∫ τ2

τ1

γ∗µ(t)

Sδ(µ(t))
dt, a.s.,

for the times τ1 and τ2.
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Short-term relative arbitrage
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Short-term relative arbitrage

Suppose that τ1 ≤ T/2, so τ1 < τ2, a.s. There are two cases:

1. If τ2 < T , then

logSδ(µ(τ2))− logSδ(µ(τ1))

≥ log(A + 3δ)− log(A + 2δ)

> 0, a.s.,

and since ∫ τ2

τ1

γ∗µ(t)

Sδ(µ(t))
dt > 0, a.s.,

we have

log
(
Zπ(τ2)/Zµ(τ2)

)
− log

(
Zπ(τ1)/Zµ(τ1)

)
> 0, a.s.
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Short-term relative arbitrage

2. If τ2 = T , then

A + δ ≤ Sδ(µ(t)) < A + 3δ, a.s.,

for t ∈ [τ1,T ], a.s., so

logSδ(µ(τ2))− logSδ(µ(τ1)) +

∫ τ2

τ1

γ∗µ(t)

Sδ(µ(t))
dt

> log
A + δ

A + 2δ
+

εT

2(A + 3δ)
, a.s.

Again there are two cases:
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Short-term relative arbitrage

1. If A = 0, let

δ =
εT

6 log 2
,

in which case,

logSδ(µ(τ2))− logSδ(µ(τ1)) +

∫ τ2

τ1

γ∗µ(t)

Sδ(µ(t))
dt

> log
A + δ

A + 2δ
+

εT

2(A + 3δ)
= 0, a.s.,

so

log
(
Zπ(τ2)/Zµ(τ2)

)
− log

(
Zπ(τ1)/Zµ(τ1)

)
> 0, a.s.
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Short-term relative arbitrage

2. If A > 0, then

lim
δ↓0

[
log

A + δ

A + 2δ
+

εT

2(A + 3δ)

]
=
εT

2A
> 0,

so for small enough δ > 0

logSδ(µ(τ2))− logSδ(µ(τ1)) +

∫ τ2

τ1

γ∗µ(t)

Sδ(µ(t))
dt

> log
A + δ

A + 2δ
+

εT

2(A + 3δ)
> 0, a.s.,

and

log
(
Zπ(τ2)/Zµ(τ2)

)
− log

(
Zπ(τ1)/Zµ(τ1)

)
> 0, a.s.
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Short-term relative arbitrage

Now consider the portfolio η defined by:

1. For t ∈ [0, τ1), η(t) = µ(t), the market portfolio.

2. For t ∈ [τ1, τ2), η(t) = π(t), the portfolio generated by Sδ
with δ chosen as in the two cases we considered.

3. For t ∈ [τ2,T ], η(t) = µ(t).
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Short-term relative arbitrage

If τ1 = T , then η(t) = µ(t) for all t ∈ [0,T ], so

log
(
Zη(T )/Zµ(T )

)
= log

(
Zη(0)/Zµ(0)

)
, a.s.

If τ1 6= T , then τ1 ≤ T/2 and τ1 < τ2, a.s. By the construction of

η, we have

log
(
Zη(T )/Zµ(T )

)
− log

(
Zη(0)/Zµ(0)

)
= log

(
Zπ(τ2)/Zµ(τ2)

)
− log

(
Zπ(τ1)/Zµ(τ1)

)
> 0, a.s.,

with the inequality following from two the cases we considered.

Since P[τ1 6= T ] > 0, there exists relative arbitrage on [0,T ].

27 / 34



Adequate volatility

Corollary. Suppose that γ∗µ(t) > ε > 0, a.s., for t ∈ [0,T ], and

that the market is strongly nondegenerate over that interval. Then

there exists relative arbitrage versus the market on [0,T ].

Proof. There are two cases:

1. If the market is diverse over [0,T/2], then Proposition 1

ensures short-term strong relative arbitrage.

2. If the market is not diverse over [0,T/2], then A = 0 in

Proposition 3, and short-term relative arbitrage follows.
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An example, with variations

Let n = 3, let T > 0, and let 0 < a < e−T/2/9. Suppose that

(W , θ,B) is a 3-dimensional Brownian motion with the usual

filtration F. For t ∈ [0,T ] and for i = 1, 2, 3, define

Xi (t) = eW (t)−t/2
(1

3
+ ϕ(t)et/2 cos

(
θ(t) + (i − 1)2π/3

))
,

where ϕ is a martingale driven by B with a < ϕ(t) < 3a. Then the

processes Xi are martingales, and it can be shown that

γ∗µ(t) > 3a2/4. Since the price processes in this market are

martingales, relative arbitrage does not exist. Since the motions

induced by W , θ, and ϕ span R3, the covariance matrix is

nonsingular. This market is not strongly nondegenerate.
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An example, with variations

We define an F-martingale ψ for t ∈ [0,T ] by

ψ(t) =

∫ t

0

(
a2 − ψ2(s)

)
dB(s),

and we have

−a < ψ(t) < a, a.s.

Then define ϕ for t ∈ [0,T ] by

ϕ(t) = 2a + ψ(t),

so

a < ϕ(t) < 3a, a.s.,

and

d〈ϕ〉t = d〈ψ〉t =
(
a2 − ψ2(t)

)2
dt, a.s.
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An example
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Variations

Let n = 3, let T > 0, and let 0 < a < e−T/2/9. Suppose that

(W , θ,B) is a 3-dimensional Brownian motion with the usual

filtration F. For t ∈ [0,T ] and for i = 1, 2, 3, define

Xi (t) = eW (t)−t/2
(1

3
+ ϕ(t)et/2 cos

(
θ(t) + (i − 1)2π/3

))
,

where ϕ is a martingale driven by B with a < ϕ(t) < 3a. Then the

processes Xi are martingales, and it can be shown that

γ∗µ(t) > 3a2/4. Since the price processes in this market are

martingales, relative arbitrage does not exist. Since the motions

induced by W , θ, and ϕ span R3, the covariance matrix is

nonsingular. This market is not strongly nondegenerate.
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Variations

The weights µi (t) for the model

Xi (t) = eW (t)−t/2
(1

3
+ a cos

(
θ(t) + (i − 1)2π/3

))
,

lie in a circle on the simplex ∆3 centered at (1/3, 1/3, 1/3), so

S(µ(t)) =
(
µ21(t) + µ22(t) + µ23(t)

)1/2
= const.

S generates a portfolio π with value function Zπ such that

d log
(
Zπ(t)/Zµ(t)

)
= d logS(µ(t))− γ∗π(t) dt

= −γ∗π(t) dt, a.s.

Since γ∗π(t) > 0, this produces immediate relative arbitrage.
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Variations

Let n = 3, let T > 0, and let 0 < a < e−T/2/9. Suppose that

(W , θ,B) is a 3-dimensional Brownian motion with the usual

filtration F. For t ∈ [0,T ] and for i = 1, 2, 3, define

Xi (t) = κ(t)
(1

3
+ ϕ(t)et/2 cos

(
θ(t) + (i − 1)2π/3

))
,

where ϕ is a martingale driven by B with a < ϕ(t) < 3a. Then the

processes Xi are martingales, and it can be shown that

γ∗µ(t) > 3a2/4. Since the price processes in this market are

martingales, relative arbitrage does not exist. Since the motions

induced by κ > 0, θ, and ϕ span R3, the covariance matrix is

nonsingular. This market is not strongly nondegenerate.
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Volatility and arbitrage

Conclusion: γ∗µ(t) > ε > 0 will generate relative
arbitrage, but not over arbitrarily short intervals.
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Volatility and arbitrage

Thank you!
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