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HIGHLIGHTS

I General credit default model:
consider intergroup contagion and macroeconomic factors

I A set-valued Markov chain (MC) for the default process X
show such an MC exists under given conditions

I Explicit pricing formulas of CDO spreads

I Empirical studies to showcase the theoretical results
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BASIC SETUP

I N defaultable obligors (names): Oi
where i ∈ N = {1, 2, · · · ,N}

I stopping time νi: default time of Oi

I 1− Ri: proportional nominal loss of Oi, where Ri ∈ (0, 1)

I loss process L = (Lt)t≥0

Lt :=

N∑
i=1

(1− Ri)1{νi≤t}

A credit derivative is a c.c. with payoff depending on L.
I exogenous process Y: macroeconomic factors

impact of Y on credit default probabilities; see Bonfim
(2009) and Chen (2010)
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LITERATURE ON DEFAULT MODELS

1. Structure models
Merton (1974), Black and Cox (1976), ...
asset value < debt (barrier)⇒ default

2. Copula models
Li (2000), Hull and White (2004), ...
copula to model joint distribution of defaults

3. Intensity-based models
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LITERATURE ON INTENSITY-BASED MODELS
Two dominating approaches:

1. bottom-up approach
Jarrow and Turnbull (1995), Lando (1998), Duffie and
Singleton (1999), Giesecke and Weber (2006), Cvitanić et al.
(2012) ...
specify the intensity process λi for each name Oi s.t.(

1{νi≤t} −
∫ t

0
λi(s)ds

)
t≥0

is a martingale

2. top-down approach
Errais et al. (2007, 2010), Giesecke et al. (2011), Cont and
Minca (2013), ...
specify the intensity process λL for the aggregate loss L s.t.(

Lt −
∫ t

0
λL(s)ds

)
t≥0

is a martingale
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Definition 1
X = (Xt)t≥0 denotes the default process, where Xt is the set of
names that have defaulted by time t.
X is a set-value process taking values in subsets of N.
|Xt|: number of elements in set Xt (cardinality).

Example. O1 defaults at t = 0.1, O5 at t = 0.5, and O9 at t = 1;
then X1 = {1, 5, 9} and |X1| = 3.

Standing Assumptions
(i) No more than one default occurs at the same time
(ii) Obligors do not recover after the default

I P(|Xt+∆t| − |Xt| > 1) = o(∆t) and τ1 < · · · < τi < · · · < τN

I X is a non-decreasing process, i.e., Xs ⊆ Xt for all 0 ≤ s < t
I The process |X| jumps up by size 1 at default time τi, i ∈ N
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Filtrations
I FY = (FY

t )t≥0: generated by the macroeconomic process Y
I FX = (FX

t )t≥0: generated by the default process X
I N: all the subsets of N, i.e.,N = 2N (N = {1, 2, · · · ,N})

Definition 2

A continuous time N-valued stochastic process X = (Xt)t≥0 is
called an FY-conditional Markov chain if, for all 0 ≤ s ≤ t and
F ∈ N, the following condition holds:

P
(

Xt = F | FX
s ∨ FY

s

)
= P

(
Xt = F | σ(Xs) ∨ FY

s

)
, P-a.s.

Conditioning on Y, (the default process) X is a Markov chain.
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Definition 3

A family of FY-adapted processes Λ = (ΛEF(t))t≥0 or
λ = (λEF(t))t≥0, where E ⊆ F ∈ N, is called the default intensity
family of an N-valued process X = (Xt)t≥0, if the process
XF = (XF(t))t≥0, defined by

XF(t) := 1F(Xt)−
∑
E⊆F

∫ t

0
1{Xs=E}dΛEF(s)

is a martingale for all F ∈ N with respect to the filtration
(FX

t ∨ FY
t )t≥0, where

ΛEF(t) :=

∫ t

0
λEF(s)ds

Think: Xs = E→ Xt = F, where 0 ≤ s ≤ t and E ⊆ F
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REMARKS

I The intensity family Λ or λ in Definition 3 plays an
important role in the compensator of the default process X.

I λEF(t) represents the conditional default rate at time t
when obligors in set E have already defaulted.

I We have λEF(t) = 0, whenever F 6= E ∪ {i}, i ∈ Ec.

... wait a second. So far the framework really looks like the
Markov chain models, see Bielecki et al. (2011)

Key Difference
We show that for suitable Λ (or λ) and Y, there exists an
FY-conditional set-valued Markov chain X taking values inN.
In comparison, the existing works usually begin with such a
Markov chain.
Benefit: apply the market prices/spreads to recover default
intensities
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EXISTENCE ASSUMPTIONS

Assumption 4

M = (MEF(t))t≥0 is a family of Poisson processes with intensity 1,
where E ⊆ F. M and Y are independent.

Assumption 5

The intensity family λ = (λEF(t))t≥0 satisfies
I λEF(t) = 0, if E 6= F or F 6= E ∪ {i}, where i ∈ Ec.
I λE(t) := −λEE(t) =

∑
E 6=F λEF(t).

I λEF(t) ≥ 0 for all F = E ∪ {i}, where i ∈ Ec.
I lim

t→+∞

∫ t
0 λEF(s)ds = +∞ for all F = E ∪ {i}, where i ∈ Ec.

Note. We can formulate Assumption 5 using Λ.
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EXISTENCE RESULT

Theorem 6

Let Assumptions 4 and 5 hold, there exists an FY-conditional Markov
chain X with intensity family λ and X0 = ∅.

Model Flexibility:
I Y is arbitrary
I Minimum assumptions on the default intensity family λ
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DYNAMICS OF X

F\E = {x : x ∈ F and x 6∈ E}, where E⊂F and |F\E| = n

Π(F\E) denotes the set of all the permutations of F\E

∀π ∈ Π(F\E), define a sequence of sets (Fπ
k )k=0,1,··· ,n by

Fπ
0 := E and Fπ

k := Fπ
k−1 ∪ {πk}, k = 1, 2, · · · ,n

Remark. E→ Fπ
1 → Fπ

2 → · · · → Fπ
n = F is a default path

Example. Let E = {1, 2} and F = {1, 2, 3, 4}. Suppose Xs = E
and Xt = F, where s < t. Since Π(F\E) = {(3, 4), (4, 3)}, from s
to t, obligors O3 and O4 have defaulted, and the path is
Fπ1

0 = {1, 2} → Fπ1
1 = {1, 2, 3} → Fπ1

2 = {1, 2, 3, 4}
or Fπ2

0 = {1, 2} → Fπ2
1 = {1, 2, 4} → Fπ2

2 = {1, 2, 3, 4}
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Theorem 7

Let Assumptions 4 and 5 hold. ∀ s ≤ t and F ∈ N, we have,
for any bounded FY

t -measurable random variable ξ, that

E
[
1{Xt=F} · ξ | FX

s ∨ FY
s

]
=
∑
E⊆F

1{Xs=E} · E
[
ξG(s, t; E,F)

∣∣∣FY
s

]

H0(s, t; E) := e−
∫ t

s λE(u)du, with λE(t) = −λEE(t) =
∑

E 6=F λEF(t)

Hk+1(s, t; · · · ) :=
∫ t

s λFπ
k Fπ

k+1
(v) · e

−
∫ t

v λFπk+1
(u)du

·Hk(s, v; · · · )dv

G(s, t; E,F) :=


H0(s, t; E), if E = F∑
π∈Π(F\E)

H|F\E|(s, t; Fπ
0 , · · · ,Fπ

|F\E|), if E ⊂ F
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REMARKS

Given Xt = F, Xs = E = F or E ⊂ F, explaining
∑

E⊆F 1{Xs=E}

Hk(s, t; Fπ
0 ,F

π
1 , · · · ,Fπ

k ): probability that X evolves from
Xs = E = Fπ

0 to Xt = Fπ
k (with k defaults) in a particular path

Hence, G(s, t; E,F) captures exactly the transition probability of
X from Xs = E to Xs = F

Remark. If N = 1 or 2, we can obtain very simplified results on
P
[
Xt = F | FX

s ∨ FY
s
]

⇒ potential applications to the FTD (first-to-default baskets),
where N = 5

If N is large (e.g., N = 125 for iTraxx), the computations are
intensity due to the involvement of permutations.
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INTENSITY MODELING

Assumption 8

Let constants βi, ρji > 0 and function h(·) be positive with h(0) = 1.
We define, for all E ∈ N and i ∈ Ec, that

LE(i) :=

h(|E|) ·
∑
j∈E

ρji, if E 6= ∅

βi, if E = ∅

and LE :=
∑
i∈Ec

LE(i), with LN := 0

Let Φ(·, ·) be a positive functional mapping from [0,∞)× Rd to R+.
The intensity family λ = (λEF(t))t≥0 is given by

λEF(t) =


Φ(t,Yt) · LE(i), if F = E ∪ {i} and i ∈ Ec

−Φ(t,Yt) · LE, if E = F
0, otherwise
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MODEL EXPLANATIONS

I βi: base default intensity of Oi (no contagion)
I ρji: individual contagion rate of Oj on Oi

Recall j ∈ E (defaulted set) and i ∈ Ec (surviving set)
I h : {0, 1, · · · ,N} → R+: impact of default magnitude
I LE(i): intergroup contagion effect of E on obligor Oi

I LE: aggregate impact of defaulted obligors in E on all
survivors in Ec

I Φ: contagion effect of macroeconomic factors

Note. With Assumption 8 on the intensity family λ, we can
further reduce the results of Theorem 7 (conditional probability
and expectation of X).
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AFFINE JUMP-DIFFUSION Y

Assumption 9

(i) Φ(t, y) = y for all t ≥ 0.
(ii) The macroeconomic factor process Y is given by

dYt = κ(θ − Yt)dt + σ
√

YtdWt + dJt, with Y0 = y0

κ, θ, σ > 0, W B.M., J compound Poisson (primary parameter l and
secondary exponential with mean µ). W and J are independent.

Duffie and Garleanu (2001) and Mortensen (2006):

E
[
e−g

∫ t
0 Ysds

]
= eA(g,0,t)+y0·B(g,0,t), g > 0
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CDO
Consider the proportion version of the loss process

Lt =
RX(t)

N
=

∑
i∈Xt

(1− Ri)

N
, t ≥ 0

Attach points are 0 < · · · < pK ≤ 1 and tranche i is [pi−1, pi].
The accumulated loss of tranche i is defined by

L(i)(Xt) := (Lt − pi−1)+ − (Lt − pi)
+

I (Default Leg) The protection seller covers L(i)(Xt).
I (Premium Leg) The protection buyer pays upfront fees

u(i)∆pi = u(i) × (pi − pi−1) at inception and periodic
premiums or spreads s(i)(∆pi − L(i)(Xtk−1))∆k at each
payment time tk, where k = 1, · · · ,m.
(∆k = 1/4 quarterly payments and m is the term.)
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SPREADS

Proposition 10

s(i) =

m∑
k=1

e−rtkE
[
L(i)(Xtk)− L(i)(Xtk−1)

]
− u(i)∆pi

m∑
k=1

e−rtk
(
∆pi − E[L(i)(Xtk−1)]

)
∆k

where E denotes expectation under the risk neutral probability.

E[L(i)(Xtk)] =

N∑
n=0

∑
F∈A(n)

∑
π∈Π(F\∅)

n∑
j=0

L(i)(F)L̂π(n)α
(n)
j (π)

· E
[

e
−LFπj

·
∫ tk

0 Φ(u,Yu)du
]
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EXAMPLE I

Homogeneous Contagion Model (HCM)
Let (intensity) Assumption 8 hold. We assume ρij = ρ for all
i 6= j, Φ(t, y) = y and h(n) = e−δn, where δ is a constant.

Proposition 11

Let Assumptions 4 and 9 hold. Under the HCM, we have

E
[
L(i)(Xtk)

]
=

N−1∑
j=0

Γ
(i)
j · exp

(
A(aj, 0, tk) + y0B(aj, 0, tk)

)
+ 1

We can also compute P(|Xt| = n) explicitly.

Note. Γj and aj are explicitly given.
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PART I. TOY EXAMPLES

I Number of obligors: N = 125
I Risk-free interest rate: r = 5%

I Payment frequency: ∆ = 1/4 (quarterly)
I Recovery rate: Ri ≡ R = 40%

I Process Y (taken from Duffie and Garleanu (2001)):
y0 = 1, κ = 0.6, θ = 0.02, σ = 0.141, l = 0.2, and µ = 0.1

I HCM parameters:
ρ = 0.05, δ = −0.008, and a0 = 0.35
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Table 1: 5-year CDO Tranche Spreads under HCM and NCM

Tranches HCM Spread (bp) NCM Spread (bp)
[0, 3%] 1502 918

[3%, 6%] 1240 590
[6%, 9%] 1095 511
[9%, 12%] 977 435
[12%, 22%] 839 359
[22%, 60%] 619 283

Note. NCM stands for Near-neighbor Contagion Model, where
each obligor Oi only impacts its two neighbors Oi−1 and Oi+1.
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Table 2: Attachment and Detachment Time under HCM

Tranches Detachment # Attachment t Detachment t
[0, 3%] 7 0.5 1.25

[3%, 6%] 13 1.25 1.75
[6%, 9%] 19 1.75 2.25
[9%, 12%] 25 2.25 3
[12%, 22%] 46 3 11
[22%, 60%] 125 11 294

Note. t is in unit of years.

3%×N(125)/60% = 6.25⇒ [0, 3%] detach at the 7th default
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Figure 1: Sensitivity Analysis of CDO Tranche Spreads under HCM
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Recall h(n) = e−δ n measures the magnitude
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In addition, we have also considered recovery rate R, number
of payments m, mean-reversion speak κ of Y.

I The CDO tranche spreads are very sensitive to all factors
considered here, except for the macroeconomy volatility σ.

I Among all six factors considered, only the default
contagion rate ρ is positively related with respect to the
tranche spreads, while the rest shows negative relation.

I The tranche spreads are extremely elastic to the default
contagion rate ρ and contagion recovery rate δ. One can
interpret δ as the government intervention or self recovery
rate of the group. The equity tranche is less sensitive to δ
comparing with other tranches since it mainly reflects
idiosyncratic risk.
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PART II. MARKET CALIBRATION

I Data: 5-year CDX North American Investment Grade (5Y
CDX.NA.IG) from Seo and Wachter (2018)

I Attachment points: 0, 3, 7, 10, 15, 30 (in percentage)
I Full sample: 10/05 - 9/08; Pre-crisis sample: 10/05 - 9/07;

Post-crisis sample: 10/7 - 9/08
I Goal: estimate x = (a0, κ, θ, σ, µ, l, δ, ρ, y0)

I Best fit x̂:

min
x

6∑
i=1

(
Tranche imodel − Tranche imarket

Tranche imarket

)2



INTRODUCTION APPROACH RESULTS PRICING NUMERICAL STUDIES References

Table 3: Calibrated Parameters

Parameters Full Pre-crisis Post-crisis
a0 1.9762 1.1985 1.8978
κ 0.5626 0.5631 0.3619
θ 0.4428 0.1765 0.6893
σ 0.1197 0.0743 0.1984
µ 2.5805 1.8237 3.0000
l 0.5138 2.0000 0.2537
δ -0.0098 -0.0269 0.0079
ρ 0.0025 0.0014 0.0039
y0 1.8460 0.9974 2.1535

Note. a0 =
∑N

j=1 βi (aggregate base default rates).
h(n) = e−δn, δ < 0 (resp. δ < 0) implies positive (negative) effect
on credit spreads.
ρ (default intensity) almost tripled from 0.0014 to 0.0039.



INTRODUCTION APPROACH RESULTS PRICING NUMERICAL STUDIES References

Table 4: Calibration of 5Y CDX.NA.IG Tranches and Index

Full Pre-crisis Post-crisis
Data Model Data Model Data Model

[0, 3%] 39 26 31 17 54 37
[3%, 7%] 238 222 108 88 498 498
[7%, 10%] 102 96 25 26 255 229
[10%, 15%] 54 56 12 13 136 145
[15%, 30%] 27 26 6 6 69 65
[30%, 100%] NA 11 NA 1 NA 27

Index 67 87 42 55 116 142
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Table 5: Implied Default Contagion Rate ρ

Full Pre-crisis Post-crisis
[0, 3%] 0.116% 0.045% 0.177%

[3%, 7%] 0.086% 0.035% 0.136%
[7%, 10%] 0.083% 0.033% 0.129%
[10%, 15%] 0.081% 0.033% 0.112%
[15%, 30%] 0.030% 0.035% 0.062%

implied ρ: model = data

implied default contagion rate smile
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