

## **Robust Quadratic Hedging via G-Expectation**

Francesca Biagini

Mathematisches Institut Ludwig-Maximilians-Universität München

March 5, 2018



## Introduction

- We consider the problem of mean-variance hedging in the context of volatility uncertainty, within the *G*-expectation framework.
- This talk is based on Biagini, F., Mancin, J., Meyer-Brandis, T., *Robust Mean-Variance Hedging via G-Expectation*, Preprint LMU, 2016.

# Preliminaries (Peng [2])

Let  $\Omega$  be a given set and  $\mathcal{H}$  be a vector lattice of real functions defined on  $\Omega$ , i.e. a linear space containing 1 such that  $X \in \mathcal{H}$  implies  $|X| \in \mathcal{H}$ .

#### Definition

A sublinear expectation  $\mathbb E$  is a functional  $\mathbb E\colon \mathcal H\to\mathbb R$  satisfying the following properties

- 1. Monotonicity: If  $X, Y \in \mathcal{H}$  and  $X \ge Y$  then  $\mathbb{E}[X] \ge \mathbb{E}[Y]$ .
- 2. Constant preserving: For all  $c \in \mathbb{R}$  we have  $\mathbb{E}[c] = c$ .
- 3. Sub-additivity: For all  $X, Y \in \mathcal{H}$  we have  $\mathbb{E}[X] \mathbb{E}[Y] \leq \mathbb{E}[X Y]$ .
- 4. **Positive homogeneity:** For all  $X \in \mathcal{H}$  we have  $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$ ,  $\forall \lambda \ge 0$ .

The triple  $(\Omega, \mathcal{H}, \mathbb{E})$  is called a sublinear expectation space.



We consider a space  $\mathcal{H}$  of random variables having the following property: if  $X_i \in \mathcal{H}, i = 1, ..., n$  then

$$\phi(X_1,\ldots,X_n)\in\mathfrak{H},\quad\forall\phi\in C_{b,Lip}(\mathbb{R}^n),$$

where  $C_{b,Lip}(\mathbb{R}^n)$  is the space of all bounded Lipschitz continuous functions on  $\mathbb{R}^n$ .

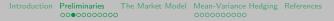
#### Definition

An *m*-dimensional random vector  $Y = (Y_1, \ldots, Y_m)$  is said to be independent of an *n*-dimensional random vector  $X = (X_1, \ldots, X_n)$  if for every  $\phi \in C_{b,Lip}(\mathbb{R}^n \times \mathbb{R}^m)$ 

$$\mathbb{E}[\phi(X,Y)] = \mathbb{E}[\mathbb{E}[\phi(x,Y)]_{x=X}].$$

If n = m, we say that X and Y are identically distributed  $(X \sim Y)$ , if for each  $\phi \in C_{b,Lip}(\mathbb{R}^n)$ 

$$\mathbb{E}[\phi(X)] = \mathbb{E}[\phi(Y)].$$



#### Definition

A random variable X on a sublinear expectation space  $(\Omega, \mathcal{H}, \mathbb{E})$  is called G-normal distributed if for any  $a, b \ge 0$ 

$$aX + bar{X} \sim \sqrt{a^2 + b^2}X,$$

where  $\overline{X}$  is an independent copy of X. Such X is symmetric, i.e.  $\mathbb{E}(X) = \mathbb{E}(-X) = 0$ .

The letter G denotes the function

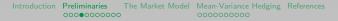
$$G(y) := rac{1}{2}\mathbb{E}(yX^2): \mathbb{R} \mapsto \mathbb{R}.$$

We have the following identity

$$G(y) = \frac{1}{2}\overline{\sigma}^2 y^+ - \frac{1}{2}\underline{\sigma}^2 y^-,$$
 with  $\overline{\sigma}^2 := \mathbb{E}(X^2)$  and  $\underline{\sigma}^2 := -\mathbb{E}(-X^2).$ 

Francesca Biagini

University of Southern California

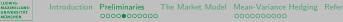


#### Definition

LUDWIG

A stochastic process  $B = (B_t)_{t \ge 0}$  on a sublinear expectation space  $(\Omega, \mathcal{H}, \mathbb{E})$  is called a *G*-Brownian motion if it satisfies the following conditions

- 1.  $B_0 = 0$ ,
- 2.  $B_t \in \mathcal{H}$  for each  $t \geq 0$ .
- 3. For each  $t, s \ge 0$  the increment  $B_{t+s} B_t$  is independent of  $(B_{t_1}, \ldots, B_{t_n})$  for each  $n \in \mathbb{N}$  and  $0 \le t_1 < \ldots < t_n \le t$ .
- 4.  $(B_{t+s} B_t)s^{-1/2}$  is *G*-normally distributed.
  - It is possible to choose a sub-linear space such that the canonical process is a *G*-Brownian motion. In this case the corresponding sub-linear expectation 𝔼<sub>G</sub> is called *G*-expectation.



• Following Peng [3] and Denis, Hu, and Peng [1], we introduce the following notation: for each  $t \in [0, \infty)$ 

1. 
$$\Omega = C_0(\mathbb{R}_+, \mathbb{R}), \ \Omega_t := \{\omega_{.\wedge t} : \omega \in \Omega\}, \ \mathcal{F}_t := \mathcal{B}(\Omega_t)$$

- 2.  $L_{ip}(\Omega_t) := \{\varphi(B_{t_1}, \cdots, B_{t_n}) | n \in \mathbb{N}, t_1, \ldots, t_n \in [0, t], \varphi \in C_{b, Lip}(\mathbb{R}^n)\}$
- 3. For  $p \ge 1$ ,  $L_G^p(\mathcal{F}_T)$  is the completion of  $L_{ip}(\Omega_T)$  under the norm  $\|\xi\|_p := \mathbb{E}_G[|\xi|^p]^{\frac{1}{p}}$ .
- for p ≥ 1, M<sup>p</sup><sub>G</sub>(0, T) is the completion of the set of elementary processes of the form

$$\eta(t) = \sum_{i=1}^{n-1} \xi_i I_{[t_i, t_{i+1})}(s),$$

where  $0 \le t_1 < t_2 < \ldots < t_n \le T$ ,  $n \ge 1$  and  $\xi_i \in Lip(\Omega_{t_i})$  under the norm

$$\|\eta\|_{M^p_G(0,T)} := \mathbb{E}_G[\int_0^T |\eta(s)|^p ds]^{1/p}.$$



## Definition

Consider

$$X = \phi(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}}), \quad \phi \in C_{b, Lip}(\mathbb{R}^{d \times n})$$

for  $0 \le t_1 < \ldots < t_n < \infty$ . We define the conditional *G*-expectation under  $\mathcal{F}_{t_1}$  as

$$\mathbb{E}_{G}[X|\mathcal{F}_{t_{1}}] := \psi(B_{t_{1}}, B_{t_{2}} - B_{t_{1}}, \dots, B_{t_{j}} - B_{t_{j-1}}),$$

where

$$\psi(x) := \mathbb{E}_{G}[\phi(x, B_{t_{j+1}} - B_{t_{j}}, \dots, B_{t_{n}} - B_{t_{n-1}})].$$



Theorem (Denis, Hu, and Peng [1], Theorem 52 and 54) Let  $(\tilde{\Omega}, \mathcal{G}, \mathbb{P}_0)$  be a probability space carrying a standard Brownian motion W with respect to its natural filtration  $\mathbb{G}$ . Let  $\Theta = [\underline{\sigma}, \overline{\sigma}]$  and denote by  $\mathcal{A}_{0,\infty}^{\Theta}$  the set of all  $\Theta$ -valued  $\mathbb{G}$ -adapted processes on  $[0, \infty)$ . For each  $\theta \in \mathcal{A}_{0,\infty}^{\Theta}$  define  $\mathbb{P}^{\theta}$  as the law of a stochastic integral  $\int_0^{\cdot} \theta_s dW_s$  on the canonical space  $\Omega = C_0(\mathbb{R}_+, \mathbb{R})$ . We introduce the sets

$$\mathcal{P}_1 := \{ \mathbb{P}^{\theta} \colon \theta \in \mathcal{A}_{0,\infty}^{\Theta} \}, \quad and \quad \mathcal{P} := \overline{\mathcal{P}_1}, \tag{2.1}$$

where the closure is taken in the weak topology. Then we have the representation

$$\mathbb{E}_{G}[X] = \sup_{\mathbb{P} \in \mathcal{P}_{1}} \mathbb{E}^{\mathbb{P}}[X] = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}[X], \quad for \ each \ X \in L^{1}_{G}(\Omega).$$
(2.2)

LUDWIG

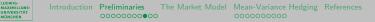


• Similarly an analogous representation holds for the *G*-conditional expectation.

Proposition (Soner, Touzi, and Zhang [5], Proposition 3.4)

Let  $\Omega(t, \mathbb{P}) := \{\mathbb{P}' \in \Omega : \mathbb{P} = \mathbb{P}' \text{ on } \mathcal{F}_t\}$ , where  $\Omega = \mathcal{P}$  or  $\mathcal{P}_1$ . Then for any  $X \in L^1_G(\Omega)$  and  $\mathbb{P} \in \Omega$ , one has

$$\mathbb{E}_{G}[X|\mathcal{F}_{t}] = \underset{\mathbb{P}' \in \mathfrak{Q}(t,\mathbb{P})}{\operatorname{ess \, sup}} \mathbb{E}^{\mathbb{P}'}[X|\mathcal{F}_{t}], \ \mathbb{P}-a.s.$$
(2.3)



#### Definition

The quadratic variation of the G-Brownian motion is defined as

$$\langle B \rangle_t = B_t^2 - 2 \int_0^t B_s dB_s, \qquad \forall t \leq T,$$

and it is a continuous increasing process which is absolutely continuous with respect to dt.

- Here  $\langle B \rangle$  perfectly characterizes the part of uncertainty, or ambiguity, of B.
- For  $s, t \ge 0$ , we have that  $\langle B \rangle_{s+t} \langle B \rangle_s$  is independent of  $\mathcal{F}_s$  and  $\langle B \rangle_{s+t} \langle B \rangle_s \sim \langle B \rangle_t$ .
- We say that  $\langle B \rangle_t$  is  $N([\underline{\sigma}^2 t, \overline{\sigma}^2 t] \times \{0\})$ -distributed, i.e., for all  $\varphi \in C_{b,Lip}(\mathbb{R})$ ,

$$\mathbb{E}_{G}\left[\varphi(\langle B\rangle_{t})\right] = \sup_{\underline{\sigma}^{2} \le v \le \overline{\sigma}^{2}} \varphi(vt).$$
(2.4)



## **G**-Martingales

#### Definition

A process  $M = (M_t)_{t \in [0,T]}$  is called G-martingale if  $\mathbb{E}_G[|M_t|] < \infty$  for all  $t \in [0,T]$  and  $E_G[M_t|\mathcal{F}_s] = M_s$  for all  $s \leq t \leq T$ . If M and -M are both G-martingales, M is called a symmetric G-martingale.

Theorem (Theorem 4.5 of Song [6]) Let  $\beta > 1$  and  $H \in L_G^{\beta}(\mathcal{F}_T)$ . Then the G-martingale M with  $M_t := \mathbb{E}_G[H|\mathcal{F}_t]$ ,  $t \in [0, T]$ , has the following representation

$$M_t = X_0 + \int_0^t \theta_s dB_s - K_t,$$

where K is a continuous, increasing process with  $K_0 = 0$ ,  $K_T \in L^{\alpha}_G(\mathcal{F}_T)$ ,  $(\theta_t)_{t \in [0,T]} \in M^{\alpha}_G(0,T)$ ,  $\forall \alpha \in [1,\beta)$ , and -K is a G-martingale.



Theorem (Theorem 2.2 of Peng [4]) Let  $H \in L_{ip}(\Omega_T)$ , then for every  $0 \le t \le T$  we have

$$\mathbb{E}_{G}[H|\mathcal{F}_{t}] = \mathbb{E}_{G}[H] + \int_{0}^{t} \theta_{s} dB_{s} + \int_{0}^{t} \eta_{s} d\langle B \rangle_{s} - 2 \int_{0}^{T} G(\eta_{s}) ds, \quad (2.5)$$
  
where  $(\theta_{t})_{t \in [0,T]} \in M_{G}^{2}(0,T)$  and  $(\eta_{t})_{t \in [0,T]} \in M_{G}^{1}(0,T).$ 

w



## The Setting

- Consider a finite time horizon T.
- The financial market consists of two primary assets:

$$\begin{cases} dX_t = X_t dB_t, & X_0 > 0, \\ d\gamma_t = 0, & \gamma_0 = 1, \end{cases}$$

where B is a G-Brownian motion.

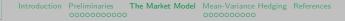


#### Definition

A trading strategy  $\varphi = (\phi_t, \xi_t)_{t \in [0,T]}$  with value  $V_t(\varphi) = \phi_t X_t + \xi_t$  is called admissible self-financing if  $(\phi_t)_{t \in [0,T]} \in \Phi$ , where

$$\Phi := \left\{ \phi \text{ predictable} | \mathbb{E}_{G} \left[ \left( \int_{0}^{T} \phi_{t} X_{t} dB_{t} \right)^{2} \right] < \infty \right\},$$

and  $V_t(\varphi) = V_0 + \int_0^t \phi_s dX_s$ ,  $\forall t \in [0, T]$ .



 Mean-variance hedging: Given H ∈ L<sup>2+ε</sup><sub>G</sub>(𝔅<sub>T</sub>), for an ε > 0, minimize the residual terminal risk defined as

$$J_{0}(V_{0},\phi) := \mathbb{E}_{G}\left[ (H - V_{T}(V_{0},\phi))^{2} \right] = \sup_{P \in \mathcal{P}} E^{P} \left[ (H - V_{T}(V_{0},\phi))^{2} \right]$$
(3.1)

by the choice of  $(V_0, \phi) \in \mathbb{R}_+ \times \Phi$ .

#### Lemma

AXIMILIANS

The initial wealth of the optimal mean-variance portfolio  $V_0^*$  lies in the interval  $[-\mathbb{E}_G[-H], \mathbb{E}_G[H]]$ .



#### Proposition

There exists a unique solution for the mean-variance hedging problem, i.e.

$$\inf_{(V_0,\phi)\in\mathbb{R}_+\times\Phi}\mathbb{E}_G\left[(H-V_T(V_0,\phi))^2\right] = \mathbb{E}_G\left[(H-V_T(V_0^*,\phi^*))^2\right], \quad (3.2)$$
  
For  $(V_0^*,\phi^*)\in\mathbb{R}_+\times\Phi.$ 



## Mean-Variance Hedging

• We consider  $H \in L^{2+\epsilon}_{G}(\mathcal{F}_{\mathcal{T}})$  with decomposition

$$H = \mathbb{E}_{G} [H] + \int_{0}^{T} \theta_{s} dB_{s} - K_{T}(\eta)$$
  
=  $\mathbb{E}_{G} [H] + \int_{0}^{T} \theta_{s} dB_{s} + \int_{0}^{T} \eta_{s} d\langle B \rangle_{s} - 2 \int_{0}^{T} G(\eta_{s}) ds.$  (4.1)

• Any random variable in  $L^{2+\epsilon}_{G}(\mathcal{F}_{T})$  is the limit in the  $L^{2+\epsilon}_{G}$ -norm of elements in  $L_{ip}(\Omega_{T})$ .



#### Theorem

Let be given a claim  $H \in L^{2+\epsilon}_G(\mathcal{F}_T)$  and a sequence of random variables  $(H^n)_{n\in\mathbb{N}}$  such that  $\|H - H^n\|_{2+\epsilon} \to 0$  as  $n \to \infty$ . Then as  $n \to \infty$  we have

$$J_n^* \to J^*,$$

where, for every  $n \in \mathbb{N}$ ,

$$J_n^* := \inf_{(V_0,\phi) \in \mathbb{R}_+ imes \Phi} \mathbb{E}_G \left[ \left( H^n - V_T(V_0,\phi) \right)^2 \right]$$

and

$$J^* := \inf_{(V_0,\phi) \in \mathbb{R}_+ imes \Phi} \mathbb{E}_G \left[ (H - V_T(V_0,\phi))^2 \right].$$



#### Proposition

Consider a claim  $H \in L^{2+\epsilon}_{G}(\mathfrak{F}_{T})$  of the following form

$$H = \mathbb{E}_{G}[H] + \int_{0}^{T} \theta_{s} dB_{s} + \int_{0}^{T} \eta_{s} d\langle B \rangle_{s} - \int_{0}^{T} 2G(\eta_{s}) ds, \qquad (4.2)$$

where  $\theta \in M^2_G(0, T)$  and  $\eta \in M^1_G(0, T)$  is a deterministic process. The optimal mean-variance portfolio is given by

$$(V_0^*, \phi^*) = (\frac{\mathbb{E}_G[H] - \mathbb{E}_G[-H]}{2}, \frac{\theta}{X}).$$



• Example I: For  $H = c + \int_0^T \theta_s dB_s + \int_0^T \eta_s d\langle B \rangle_s - \int_0^t 2G(\eta_s) ds$  in  $L_{ip}(\Omega_T)$ , then  $\eta$  is deterministic if and only if

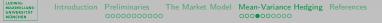
$$H=\frac{a(T)}{2}B_T^2+b(T)B_T+c(T),$$

for a, b, c deterministic functions.

 Example II: If H = Φ(e<sup>B<sub>T</sub></sup>) for some real valued Lipschitz function Φ, then η is deterministic if and only if

$$H = a(T)B_T + b(T)e^{B_T} + c(T),$$

for a, b, c deterministic functions, see also Vorbrink [7].



Theorem (**Mean Uncertainty**) Let  $H \in L^{2+\epsilon}_G(\mathfrak{F}_T)$  be of the form

$$H = \mathbb{E}_{G}[H] + \int_{0}^{T} \theta_{s} dB_{s} + \int_{0}^{T} \psi(\langle B \rangle_{s}) d\langle B \rangle_{s} - 2 \int_{0}^{T} G(\psi(\langle B \rangle_{s})) ds,$$

where  $(\theta_t)_{t \in [0,T]} \in M^2_G(0,T)$  and  $\psi : \mathbb{R} \to \mathbb{R}$  is such that there exists  $k \in \mathbb{R}$  for which

$$|\psi(x)-\psi(y)|\leq |x-y|^k,$$

for all  $x, y \in \mathbb{R}$ . The optimal mean-variance portfolio is given by

$$(V_0^*,\phi^*)=(\frac{\mathbb{E}_G[H]-\mathbb{E}_G[-H]}{2},\frac{\theta}{X}).$$



- We can characterise the class of contingent claims with η given by a function with polynomial growth of (B). This set includes the family of Lipschitz function of (B).
- This includes volatility swaps, i.e.  $H = \sqrt{\langle B \rangle_T} K$  with  $K \in \mathbb{R}_+$ , and other volatility derivatives.

 In fact, given a Lipschitz function Φ, the claim Φ(⟨B⟩<sub>T</sub>) can be written as

$$\Phi(\langle B \rangle_T) = \mathbb{E}_G \left[ \Phi(\langle B \rangle_T) \right] + \int_0^T \partial_x u(s, \langle B \rangle_s) \langle B \rangle_s d\langle B \rangle_s - 2 \int_0^T G(\partial_x u(s, \langle B \rangle_s)) \langle B \rangle_s ds,$$

where u(t, x) solves

MAXIMILIANS-

$$\begin{cases} \partial_t u + 2G(x\partial_x u) = 0, \\ u(T, x) = \Phi(x), \end{cases}$$

as a consequence of the nonlinear Feynman-Kac formula for *G*-Brownian motion (see Peng [4]) and the *G*-Itô formula (see Peng [2]).



#### Denote

$$H = \mathbb{E}_{G}[H] + \theta_{t_1} \Delta B_{t_2} + \eta_{t_1} \Delta \langle B \rangle_{t_2} - 2G(\eta_{t_1}) \Delta t_2, \qquad (4.3)$$

where  $0 \leq t_1 < t_2 \leq T$ ,  $\theta_{t_1} \in L^2_G(\mathcal{F}_{t_1})$ ,  $\Delta B_{t_2} := B_{t_2} - B_{t_1}$  and similarly for  $\Delta \langle B \rangle_{t_2}$  and  $\Delta t_2$ .

#### Theorem (Mean and volatility uncertainty)

Consider a claim  $H \in L^{2+\epsilon}_{G}(\mathcal{F}_{T})$  with decomposition as in (4.3). The optimal mean-variance portfolio is given by  $(V_{0}^{*}, \phi^{*})$ , where  $\phi^{*} = \theta/X$  and  $V_{0}^{*}$  solves

$$\inf_{V_0} \mathbb{E}_G \Big[ (\mathbb{E}_G[H] - V_0)^2 \lor (\mathbb{E}_G[H] - V_0 - (\overline{\sigma}^2 - \underline{\sigma}^2) \Delta t_2 |\eta_{t_1}|)^2 \Big].$$
(4.4)



#### Example

Let H be

$$H = \mathbb{E}_{G}[H] + \theta_{t_{i}} \Delta B_{t_{i+1}} + \eta_{t_{i}} \Delta \langle B \rangle_{t_{i+1}} - 2G(\eta_{t_{i}}) \Delta t_{i+1},$$

where  $\theta_{t_i} \in L^2_G(\mathcal{F}_{t_i})$  and  $\eta_{t_i} = e^{B_{t_i}}$ . The optimal initial wealth of the mean-variance portfolio is different from  $\frac{\mathbb{E}_G[H] - \mathbb{E}_G[-H]}{2}$ .



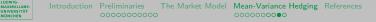
Consider a claim  $H \in L^{2+\epsilon}_{G}(\mathcal{F}_{T})$  of the form

$$H = \mathbb{E}_{G}[H] + \int_{0}^{t_{2}} \theta_{s} dB_{s} + \eta_{t_{0}} \Delta \langle B \rangle_{t_{1}} - 2G(\eta_{t_{0}}) \Delta t_{1} + \eta_{t_{1}} \Delta \langle B \rangle_{t_{2}} - 2G(\eta_{t_{1}}) \Delta t_{2},$$
(4.5)

where  $0 = t_0 < t_1 < t_2 = T$ ,  $(\theta_s)_{s \in [0, t_2]} \in M^2_G(0, t_2)$ ,  $\eta_{t_0} \in \mathbb{R}$ ,  $\eta_{t_1} \in L^2_G(\mathcal{F}_{t_1})$  and

$$|\eta_{t_1}| = \mathbb{E}_G[|\eta_{t_1}|] + \int_0^{t_1} \mu_s dB_s + \xi_{t_0} \Delta \langle B \rangle_{t_1} - 2G(\xi_{t_0}) \Delta t_1, \qquad (4.6)$$

for  $(\mu_s)_{s\in[0,t_1]}\in M^2_G(0,t_1)$  and  $\xi_{t_0}\in\mathbb{R}$ .



#### Theorem

LUDWIG-

The optimal mean-variance portfolio for  $H \in L^{2+\epsilon}_G(\mathcal{F}_T)$  of the form (4.5) is given by

$$\phi_t^* X_t = \left( heta_t - rac{\mu_t(\overline{\sigma}^2 - \underline{\sigma}^2)\Delta t_2}{2}
ight) \mathbb{I}_{(t_0,t_1]}(t) + heta_t \mathbb{I}_{(t_1,t_2]}(t)$$

and

$$V_0^* = \mathbb{E}_G[H] - \frac{1}{2}(\overline{\sigma}^2 - \underline{\sigma}^2)\Delta t_2 \mathbb{E}_G[|\eta_{t_1}|] - \epsilon,$$

where  $\epsilon \in \mathbb{R}$  solves

$$\begin{split} \inf_{\epsilon} \mathbb{E}_{G} \bigg[ \bigg( \frac{|\eta_{t_{1}}|}{2} (\overline{\sigma}^{2} - \underline{\sigma}^{2}) \Delta t_{2} + \Big| \epsilon + \bigg( \eta_{t_{0}} - \frac{1}{2} (\overline{\sigma}^{2} - \underline{\sigma}^{2}) \xi_{t_{0}} \Delta t_{1} \bigg) \Delta \langle B \rangle_{t_{1}} + \\ &- 2 \left( G(\eta_{t_{0}}) - \frac{1}{2} (\overline{\sigma}^{2} - \underline{\sigma}^{2}) \Delta t_{1} G(\xi_{t_{0}}) \right) \Delta t_{1} \bigg| \bigg)^{2} \bigg]. \end{split}$$



### Thank you for your attention!



- Laurent Denis, Mingshang Hu, and Shige Peng. Function Spaces and Capacity Related to Sublinear Expectation: Application to G-Brownian Motion Paths. *Potential Analysis*, 34(2):139–161, 2011.
- [2] Shige Peng. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. *Stochastic Analysis and Applications*, 2:541–567, 2007.
- [3] Shige Peng. G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty. arXiv:0711.2834, 2007.
- [4] Shige Peng. Nonlinear expectations and stochastic calculus under uncertainty. http://arxiv.org/abs/1002.4546, 2010.
- [5] H. Mete Soner, Nizar Touzi, and Jianfeng Zhang. Martingale representation theorem for the G-expectation. *Stochastic Processes* and their Applications, 121(2):265–287, 2011.
- [6] Yongsheng Song. Some properties of G-evaluation and its applications to G-martingale decomposition. *Science China Mathematics*, 54(2): 287–300, 2011.



# [7] Jörg Vorbrink. Financial markets with volatility uncertainty. *Journal of Mathematical Economics*, 53:64–78, 2014.