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Main questions

Given B, Brownian motion in its own filtration F B , and given a
bigger filtration F B ,G ⊇ F B :

When is B going to remain a semimartingale? (Bt = B̃t + At )

In particular, when will it have an absolutely continuous finite
variation part?

(
Bt = B̃t +

∫ t
0 asds

)
[same questions for any continuous semimartingale]

How can we estimate the value of the additional information
(F B ,G vs F B ) in terms of stochastic optimization problems
(optimal value w.r.to F B ,G vs optimal value w.r.to F B )?

→ We will answer the above questions via causal transport.
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Brushing up on classical mass transport

Monge-Kantorovich problem. Given two Polish probability
spaces (X, µ), (Y, ν), “move the mass” from µ to ν minimizing the
cost of transportation c : X ×Y → [0,∞]

µ

ν

P := inf
{
Eπ[c(x, y)] : π ∈ Π(µ, ν)

}
,

Π(µ, ν): probability measures on X ×Y with marginals µ and ν.

→ For c lower semi-continuous, duality P = D holds, where

D := sup
{
Eµ[ϕ] + Eν[ψ] : ϕ ∈ Cb(X), ψ ∈ Cb(Y), ϕ(x) + ψ(y) ≤ c(x, y)

}
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What we will do with it

We will work on specific settings (specific Polish spaces,
specific cost functions)

We will impose constraints on the transport plans

We will study constrained primal/dual problems and use them
to tackle the above questions.

→ In a similar spirit: recent application of optimal transport in
model-independent finance→ martingale optimal transport.



Causal transport Duality Semimartingale property Applications Conclusions

What we will do with it

We will work on specific settings (specific Polish spaces,
specific cost functions)

We will impose constraints on the transport plans

We will study constrained primal/dual problems and use them
to tackle the above questions.

→ In a similar spirit: recent application of optimal transport in
model-independent finance→ martingale optimal transport.



Causal transport Duality Semimartingale property Applications Conclusions

What we will do with it

Martingale optimal transport: Suppose traded Call options
on S for maturities T1, T2, for all strikes ⇒ ST1 ∼ µ, ST2 ∼ ν

we “move ST1 to ST2 ” (X = Y = R)

along a martingale (martingale constraint)

in order to determine robust price of a claim c(ST1 ,ST2 ):

inf / sup
{
Eπ[c(ST1 ,ST2 )] : π ∈ Π(µ, ν), π is a martingale

}

Causal optimal transport:

we will “move process (Xt )t to (Yt )t ” (X = Y = path space)

under the causality constraint

to characterize preservation of the semimartingale property:

inf
{
Eπ[c(X ,Y)] : π ∈ Π(µ, ν), π is causal

}
c =?
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Causal optimal transport

Polish probability spaces (X, µ), (Y, ν), time horizon T < ∞

Right-continuous filtrations F X= (F Xt )t∈[0,T ],F
Y= (F Yt )t∈[0,T ],

with F XT = B(X),F YT = B(Y)

Definition ( Causal transport plans ΠF
X,F Y(µ, ν) )

A transport plan π ∈ Π(µ, ν) is called causal between (X,F X, µ)
and (Y,F Y, ν) if, for all t ∈ [0,T ] and D ∈ F Yt , the map

X 3 x 7→ πx(D)

is measurable w.t.to F Xt (πx regular conditional kernel w.r.to X).



Causal transport Duality Semimartingale property Applications Conclusions

Causal optimal transport

Polish probability spaces (X, µ), (Y, ν), time horizon T < ∞

Right-continuous filtrations F X= (F Xt )t∈[0,T ],F
Y= (F Yt )t∈[0,T ],

with F XT = B(X),F YT = B(Y)

Definition ( Causal transport plans ΠF
X,F Y(µ, ν) )

A transport plan π ∈ Π(µ, ν) is called causal between (X,F X, µ)
and (Y,F Y, ν) if, for all t ∈ [0,T ] and D ∈ F Yt , the map

X 3 x 7→ πx(D)

is measurable w.t.to F Xt (πx regular conditional kernel w.r.to X).



Causal transport Duality Semimartingale property Applications Conclusions

Causal optimal transport

The concept goes back to the Yamada-Watanabe (1971)
criterion on solutions of SDEs; see also Jacod (1980), Kurtz
(2014): ’compatibility’, Lassalle (2015): ’causal transport’.

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt )dBt + b(Yt )dt , b , σ Borel measurable.

Then (B ,Y)#P is a causal plan between (C[0,∞),F ,B#P) and
(C[0,∞),F ,Y#P), where F is the canonical filtration on C[0,∞).

From a transport point of view: from an observed trajectory of B,
the ”mass” can be split at each moment of time into Y only based
on the information available up to that time. When there is no
splitting of mass (Monge transport), a causal plan is then an actual
mapping which is further adapted, i.e. strong solution Y = F(B).
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Causal optimal transport

The concept goes back to the Yamada-Watanabe (1971)
criterion on solutions of SDEs; see also Jacod (1980), Kurtz
(2014): ’compatibility’, Lassalle (2015): ’causal transport’.

Example (Yamada-Watanabe’71)

Assume weak-existence of the solution to the SDE:

dYt = σ(Yt )dBt + b(Yt )dt , b , σ Borel measurable.

Then (B ,Y)#P is a causal plan between (C[0,∞),F ,B#P) and
(C[0,∞),F ,Y#P), where F is the canonical filtration.

Here same filtration (as studied in Lassalle (2015)). We will
instead consider different filtrations (filtration enlargement).
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Causal transport on path space

Our framework:

X = Y = C := C0([0,T ])

W coordinate process on C: Wt (ω) = ωt

F X= F filtration generated by W : Ft :=
⋂

u>t σ(Ws , s ≤ u)

F Y= G obtained as enlargement of F with G = (gt (W))t :

Gt :=
⋂
ε>0

G0
t+ε , G0

t := Ft ∨ σ({Gs , s ≤ t}).

given two measures µ, ν on C, we will study causal transport
plans between (C,F , µ) and (C,G, ν)

we will often consider µ = γ := Wiener measure on C
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Causal coupling

Notations: For a continuous process Z on a (Ω,P):

F Z := Z−1(F ) (right-continuous filtration generated by Z on Ω)
F Z ,G := Z−1(G) (enlargement of F Z with G(Z) = (gt (Z))t∈[0,T ])

Ex. Initial enlargement: gt (Z) = L ∀t ≥ 0, L random var. F Z -mbl
Ex. Progressive enlargement: gt (Z) = τ∧ t , τ random time F Z -mbl

Definition (Causal coupling)

A pair (X ,Y) of continuous processes on a probability space
(Ω,P), is called a causal coupling w.r.to F X and F Y ,G if (X ,Y)#P

is a causal transport plan between (C,F ,X#P) and (C,G,Y#P).
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Causal coupling

Easy to see, e.g. by Brémaud-Yor (1978):

Remark ( Characterizations of causality )

For a pair (X ,Y) of continuous processes on (Ω,P), TFAE:

(X ,Y) is a causal coupling w.r.to F X and F Y ,G ;

P(Dt | F
X
t ) = P(Dt | F

X
T ) P-a.s., for all t ∈ [0,T ], Dt ∈ F

Y ,G
t ;

F
Y ,G
t cond.indep. F X

T given F X
t w.r.to P, for all t ∈ [0,T ];

H-hypothesis holds between F X and F X ∨ F Y ,G w.r.to P.

(every sq.integrable F X -mart. is a sq.integrable F X ∨ F Y ,G-mart.)

Mass transport interpretation: At every time the mass
transported to the 2nd process is only based on the information on
the 1st process up to that time (+ something independent of the
whole 1st process).
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Causal coupling: Brownian case

Lemma

Let X be a Brownian motion and Y a continuous process on (Ω,P).
Then (X ,Y) is a causal coupling w.r.to F X and F Y ,G IFF X is a
Brownian motion in F X ∨ F Y ,G .

Motivating example to study causal coupling in a filtration
enlargement framework:

Example

Let B be a Brownian motion on (Ω,P), which remains a semi-
martingale w.r.to the enlarged filtration F B ,G , with decomposition

dBt = dB̃t + dAt .

Then, for any T > 0, (B̃ ,B) is a causal coupling w.r.to F B̃ and
F B ,G , that is, (B̃ ,B)#P ∈ ΠF ,G(γ, γ).
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Optional projections under causality

Notation. Let Λ be (F ⊗ G)-adapted, càdlàg, with integrable
variation on [0,T ], Λ0 = 0. We denote by oΛF (resp. FΛo) its
optional (resp. dual optional) projection w.r.t. (π,F ⊗ {∅,C}).

Proposition

For any π ∈ ΠF ,G(µ, ν): FΛo and oΛF are π-indistinguishable.

Idea: oΛF formalizes Eπ[Λt |Ft ], FΛo formalizes
∫ t

0 E
π[dΛs |Fs]

Therefore:

FΛo
t =

∫ t

0
Eπ[dΛs |Fs] =

∫ t

0
Eπ[dΛs |Ft ] = Eπ

[∫ t

0
dΛs

∣∣∣∣Ft

]
= Eπ[Λt |Ft ] = oΛFt .
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Preliminary results

Define the following set of test functions:

H := span
({

g
[
f − Eµ[ f |F Xt ]

]
: f ∈ Cb(X), g ∈ Bb(Y,F Yt ), t ∈ [0,T ]

})
Lemma

π ∈ Π(µ, ν) is causal w.r.to F X and F Y ⇐⇒ Eπ[ h ] = 0 ∀h ∈ H .

Lemma
Assume that µ satisfies the following weak-continuity property:

∀f ∈ Cb(X), t ∈ [0,T ] : x 7→ Eµ[ f |F Xt ](x) is continuous.

Then the set ΠF
X,F Y(µ, ν) is compact for weak convergence.

Remark. Wiener measure γ satisfies weak-continuity.
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Duality

Theorem

Let µ be weakly-continuous, and c : X ×Y → (−∞,∞] be bounded
from below and lsc. Then there is no duality gap:

P := inf
π∈ΠF

X ,FY (µ,ν)

Eπ[ c ] = sup
φ∈Cb (X), ψ∈Cb (Y), h∈H

φ⊕ψ≤c+h

{
Eµ[φ] + Eν[ψ]

}
= sup

ψ∈Cb (Y), h∈H
ψ≤c+h

Eν[ψ] =: D

and the primal problem is attained.

→We will use the causal optimal transport problem P to study
semimartingale decompositions in enlarged filtrations.
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Semimartingale property

Notations. (ω, ω̄): generic element in C×C, γ = Wiener measure,
Vt (Z): total variation of a process/path Z up to time t .

Theorem (I)
Let ν be a measure on C such that ν � γ. Then TFAE:

(i) causal optimal transport inf
π∈ΠF ,G(γ,ν)

Eπ[VT (ω̄ − ω)] < ∞,

(ii) for some continuous G-adapted A s.t. Eν[VT (A)] < ∞,

ξt (ω̄) := ω̄t − At (ω̄) is a (ν,G)-Brownian motion.

Moreover, under (i)-(ii): (a) π̂ := (ξ, id)#ν is optimal in (i),

(b) ∀ π ∈ ΠF ,G(γ, ν) with finite cost, the process Ã(ω, ω̄) := A(ω̄)
is the (π, {∅,C} × G)-dpp of the process Λt (ω, ω̄) := ω̄t − ωt .

Remark. Under π̂: ω̄t = ωt + At (ω̄) (remember the example)
↑
G-BM
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Semimartingale property

Theorem (II)
TFAE:

1. any process B which is a Brownian motion on some (Ω,P),
remains a semimartingale in the enlarged filtration F B ,G ;

2. the causal transport problem (i) is finite for some ν ∼ γ.

Remark. When 1.-2. hold: dBt = dB̃t + dAt , and (B̃ ,B) causal
coupling w.r.to F B̃ ,F B ,G . We now consider a variation of the
causal problem in (i), to characterize the case where

dBt = dB̃t + αt (B)dt .

(e.g., Brownian bridge, initial enlargement with Jacod’s condition,
progressive enlargement by a random time: Jeulin-Yor’s formula)
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The absolutely continuous case

Notations. For h ∈ C, define [ht ] as ḣt , when it exists, and +∞ else

Theorem (I’)
Let ν be a measure on C such that ν � γ, and ρ : R→ R+ a
convex even function s.t. ρ(+∞) = +∞ and ρ(0) = 0. Then TFAE:

(i’) causal optimal transport inf
π∈ΠF ,G(γ,ν)

Eπ
[∫ T

0
ρ([ω̄t − ωt ])dt

]
< ∞,

(ii’) for some G-predictable α s.t. Eν
[∫ T

0 ρ(αs)ds
]
< ∞,

ξt (ω̄) := ω̄t −

∫ t

0
αs(ω̄)ds is a (ν,G)-Brownian motion.

Moreover, under (i)-(ii): (a) π̂ := (ξ, id)#ν is optimal in (i),

(b) ∀ π ∈ ΠF ,G(γ, ν) with finite cost, the process α̃(ω, ω̄) := α(ω̄)
is the (π, {∅,C} × G)-pp of the process [ω̄t − ωt ].
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The absolutely continuous case

Theorem (II’)
TFAE:

1. any process B which is a Brownian motion on some (Ω,P),
remains a semimartingale in the enlarged filtration F B ,G , with
absolutely continuous FV part;

2. the causal transport problem (i’) is finite for some ν ∼ γ and
some function ρ as in Theorem I’ (eqv., for ρ = | . | ).
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Cameron-Martin cost

For ρ(x) = x2/2, if causal problem with ν = γ is finite, then:

dBt = dB̃t + αt (B)dt , with α square integrable

by Girsanov, B BM w.r.t. F B ,G under new measure Q

by martingale representation, H ′-hypothesis holds for F B ,
F B ,G , i.e. all F B -semimartingales are F B ,G-semimartingales;

in case of initial enlargement with r.v. L(B) with law `, the
value of causal problem equals all the following:

1
2E

γ[
∫ T

0 α2
t dt] = Ent(P|Q) =

∫
Ent(γL=x |γ)`(dx) = I(B , L(B)),

where I(B , L(B)) := Ent(PB ,L(B)|PB ⊗ PL(B)) is the mutual
information between B and L(B).
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Extensions

Our results have natural extensions in two directions:

→ Multidimensional processes.

→ General continuous semimartingales: for non-Brownian
processes, generalization of the definition of causality:

Eπ[(ωt − ωs)fs(ω̄)] = 0, 0 ≤ s < t ≤ T , fs ∈ L∞(C,Gs , ν),

which leads to analogous results.
In particular, if X continuous semimartingale which remains a
semimartingale in the enlarged filtration F X ,G , with X = X̃ + N
⇒ the transport plan (X̃ ,X)#P satisfies the condition above.
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Applications to stochastic optimization

Aim: use causal transport framework to give an estimate of
the value of the additional information, for some classical
stochastic optimization problems (difference of optimal value
of these problems with or without additional information).

Idea: take projection w.r.to causal couplings of the optimizers
in the problem with the larger filtration (additional information),
so building a feasible element in the problem with the smaller
filtration and making a comparison possible.

Pflug (2009) uses this idea in discrete-time, to gauge the
dependence of multistage stochastic programming problems
w.r.to different reference probability measures.
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Utility maximisation

B d-dimensional Brownian motion on (Ω,P).

Financial market: riskless asset ≡ 1, and m ≤ d risky assets:

dS i
t = S i

t

(
b i

t dt +
d∑

j=1

σ
ij
t dB j

t

)
, i = 1, ...,m.

|b i
t (ω) − b i

t (ω̃)| ≤ L
∑d

j=1 sups≤t |ω
j
s − ω̃

j
s |, same for σij , σ bdd

λi
t : proportion of an agent’s wealth invested in the ith stock at

time t : assume λi
t ∈ [0, 1] (no short-selling)

A(F B): set of admissible portfolios for the agent without
anticipative information (F B -progressively measurable λ)

A(F B ,G): set of admissible portfolios for the agent wit
anticipative information (F B ,G-progressively measurable λ)
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Utility maximisation

→ We want to compare the utility maximization problems:

v = sup
λ∈A(F B )

E[U(Xλ
T )], v(G) = sup

λ∈A(F B ,G)

E[U(Xλ
T )].

(Xλ
t )t : wealth process corresponding to λ, Xλ

0 = 1.

utility function U : R+ → R concave, increasing, and s.t.

F := U ◦ exp is C-Lipschitz, concave and increasing.

e.g. U(x) = xa

a , a ≤ 0; U(x) = ln(x); U(x) = − 1
a e−ax , a ≥ 1

Proposition

Assume that v and v(G) are both finite, then

0 ≤ v(G) − v ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω̄ − ω)].
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Utility maximisation

Remark. In a complete market, for log utility, and for initial
enlargements of filtrations, the difference v(G) − v is known
explicitly (Pikovsky-Karatzas 1996).

Steps of the proof:

fix a causal transport π ∈ ΠF ,G(γ, γ)

consider v to be solved in the ω variable and v(G) in ω̄

take (ε-)optimizer λ̂ = λ̂(ω̄) for v(G)

(π,F × {∅,C})-optional projection: λ̃ ∈ A(F B)

in particular λ̃t (ω) = λ̃t (ω, ω̄) = Eπ[λ̂t |Ft ] = Eπ[λ̂t |FT ]

substitute in v
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Optimal stopping

In spirit same as in the above problems, but “projecting stopping
times” is less obvious. We need a weaker notion:

Definition (Randomized stopping time (RST))

A RST Σ w.r.to a filtration H , written Σ ∈ RST(H), is a càdlàg,
increasing, H-adapted process, with Σ0 = 0 and ΣT = 1.

Remark. Projection of RSTs is possible thanks to our proposition
on projections under causality.



Causal transport Duality Semimartingale property Applications Conclusions

Optimal stopping

Some motivation

We want to minimize E[`(B , τ)], where ` : C[0,T ] × R+ is a
given cost function, B a Brownian motion on some probability
space, and τ a stopping time.

An analogous formulation of the problem can be done by
fixing the probability space to be the path space C[0,T ],
endowed with Wiener measure and with canonical process W .

The cost to be paid for having fixed the probability space is
that optimization should be done over randomized stopping
times instead of stopping times.
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Optimal stopping

→ We want to compare the optimization problems:

v := inf
L∈RST(F )

E

[∫
`(W , t)dLt

]
, v(G) := inf

L∈RST(G)
E

[∫
`(W , t)dLt

]
.

The cost function ` is F -optional, and K -Lipschitz in its first
argument with respect to a metric d on C×C, uniformly in time

Proposition

Assume that v and v(G) are both finite, then

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[d(ω, ω̄)].

E.g. `(x, t) = f(xt ) and `(x, t) = f(sups≤t xs) satisfy the above
assumption, with d(ω, ω̃) = ‖ω − ω̃‖∞, if f is Lipschitz. In this case

0 ≤ v − v(G) ≤ K inf
π∈ΠF ,G(γ,γ)

Eπ[VT (ω̄ − ω)].
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Conclusions

We impose causal constraint on transport plans

We show attainability and duality for the causal optimal
transport problem

We characterize the preservation of semimartingale property
in enlarged filtrations via causal optimal transport problems

We use causal transport to estimate the value of additional
information in several stochastic optimization problems
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