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Multivariate risk measures

@ Risk measures for random vectors
o Multi-asset markets with frictions: Jouini, Meddeb, Touzi '04; Hamel, Heyde, Rudloff '11;

Cascos, Molchanov '16

@ Networks of financial institutions: Chen, lyengar, Moallemi '13; Feinstein, Rudloff,

Weber '17; Biagini, Fouque, Frittelli, Meyer-Brandis '18
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Multivariate risk measures

@ Risk measures for random vectors
o Multi-asset markets with frictions: Jouini, Meddeb, Touzi '04; Hamel, Heyde, Rudloff '11;
Cascos, Molchanov '16

@ Networks of financial institutions: Chen, lyengar, Moallemi '13; Feinstein, Rudloff,
Weber '17; Biagini, Fouque, Frittelli, Meyer-Brandis '18

o Scalar or set-valued functionals usually defined on a subspace of LY (d € N)

o Utility-based shortfall risk measures: A., Hamel, Rudloff '17; Armenti, Crépey, Drapeau,
Papapantoleon ‘18

@ Market risk measures: Hamel, Rudloff, Yankova ‘13; A., Hamel, Rudloff '17

@ Systemic risk measures

@ Time-consistent dynamic risk measures: Feinstein, Rudloff '13; '15
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Multivariate risk measures

@ Risk measures for random vectors
o Multi-asset markets with frictions: Jouini, Meddeb, Touzi '04; Hamel, Heyde, Rudloff '11;
Cascos, Molchanov '16

@ Networks of financial institutions: Chen, lyengar, Moallemi '13; Feinstein, Rudloff,
Weber '17; Biagini, Fouque, Frittelli, Meyer-Brandis '18

o Scalar or set-valued functionals usually defined on a subspace of LY (d € N)

o Utility-based shortfall risk measures: A., Hamel, Rudloff '17; Armenti, Crépey, Drapeau,
Papapantoleon ‘18
@ Market risk measures: Hamel, Rudloff, Yankova '13; A., Hamel, Rudloff '17

@ Systemic risk measures
@ Time-consistent dynamic risk measures: Feinstein, Rudloff '13; '15

o Observation: Compositions of set-valued functions show up in all these settings!
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@ Interconnected financial system
o Failures affecting multiple entities

e e.g. chain of defaults
@ Important in the event of financial crisis

e Systemic vs. institutional risk
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Systemic risk measures

o Consider d financial institutions with a vector X € LY of random shocks.
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Systemic risk measures

o Consider d financial institutions with a vector X € LY of random shocks.

o Look for capital allocations y € R? that are “inserted” to the system before the
shock is realized in such a way that the system becomes safe enough.

o For each y € R?, let A(y) C LY be the set of all safe enough random system states.
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Systemic risk measures

o Consider d financial institutions with a vector X € LY of random shocks.

o Look for capital allocations y € R? that are “inserted” to the system before the
shock is realized in such a way that the system becomes safe enough.

o For each y € R?, let A(y) C LY be the set of all safe enough random system states.

o Examples:

@ Acceptance sets that are insensitive to capital levels (CIM '13):

d
A(y)—{XeL2|AoX+ZyieAp},

i=1

where A: R? — R is an aggregation function (increasing, concave) and
A, = {p < 0} is the acceptance of a scalar convex risk measure p.
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Systemic risk measures

o Consider d financial institutions with a vector X € LY of random shocks.

o Look for capital allocations y € R? that are “inserted” to the system before the
shock is realized in such a way that the system becomes safe enough.

o For each y € R?, let A(y) C LY be the set of all safe enough random system states.

o Examples:

@ Acceptance sets that are insensitive to capital levels (CIM '13):
d

Aly) = {XGLS Ao X+ ui eAp},
i=1

where A: R? — R is an aggregation function (increasing, concave) and
A, = {p < 0} is the acceptance of a scalar convex risk measure p.

@ Acceptance sets that are sensitive to capital levels (FBW '17, BFFM '18, AR '18):

Aly) ={X e Ly| Ao (X +y) € A, }.
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Systemic risk measures

@ More examples:

@ Acceptance sets of shortfall risk measures (AHR '17):
A(y) ={X € LY |E[uo (X +y)] € C},

where u: R — R? is a vector-valued utility function and C C R? is a set such
that C + R% = C.
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Systemic risk measures

@ More examples:

@ Acceptance sets of shortfall risk measures (AHR '17):
A(y) ={X € LY |E[uo (X +y)] € C},

where u: R — R? is a vector-valued utility function and C C R? is a set such
that C +R% = C.

@ Nonlinear interaction with capital levels (BFFM '18):
Aly) ={X € Lg| T o (X,y) € Ay},

where I': R x RY — R is an aggregation function (e.g. related to
Eisenberg-Noe model).
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Systemic risk measures

@ More examples:

@ Acceptance sets of shortfall risk measures (AHR '17):
A(y) ={X € LY |E[uo (X +y)] € C},

where u: R — R? is a vector-valued utility function and C C R? is a set such
that C +R% = C.

@ Nonlinear interaction with capital levels (BFFM '18):
Aly) ={X € Lg| T o (X,y) € Ay},

where I': R x RY — R is an aggregation function (e.g. related to
Eisenberg-Noe model).

o Generalization for a lender of last resort: use random capital allocations Y € LY with
a deterministic sum ijl Y; € R to be allocated when the shock is realized. Take

AY)={X e Lj|To(X,Y)€EA,}.
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Systemic risk measures

o Let X =LY and Y the linear space of all capital allocations (e.g. R? or a subspace
of LY).

@ The acceptance family (A(Y))yecy can be seen as a set-valued function
A:Y — 2%, Define F: X — 2¥ by

F(X)=A'(X)={Y eY|X e AY)}.

A and F are set-valued inverses of each other: A= F~' F = A1
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Systemic risk measures

o Let X =LY and Y the linear space of all capital allocations (e.g. R? or a subspace
of LY).

@ The acceptance family (A(Y))yecy can be seen as a set-valued function
A:Y — 2%, Define F: X — 2¥ by

F(X)=A'(X)={Y eY|X e AY)}.

A and F are set-valued inverses of each other: A= F~' F = A1
o How to define a systemic risk measure?

o Fully set-valued approach assuming Y = R? (FRW '17): The systemic risk
measure is defined as R¥* = F.

@ Scalarization approach using a “price” functional 7: ) — R (BFFM '18): The
systemic risk measure is defined by

pPX) = jnf {w(Y) | X € A} = it {x(V)| Y € F(X)}.
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Systemic risk measures

o Let X =LY and Y the linear space of all capital allocations (e.g. R? or a subspace
of LY).
@ The acceptance family (A(Y))yecy can be seen as a set-valued function
A:Y — 2%, Define F: X — 2¥ by
FX)=AT"'"(X)={Y €Y | X € AY)}.

A and F are set-valued inverses of each other: A= F~' F = A1
@ How to define a systemic risk measure?

o Fully set-valued approach assuming Y = R? (FRW '17): The systemic risk
measure is defined as R¥* = F. — too linear and high-dimensional

@ Scalarization approach using a “price” functional 7: ) — R (BFFM '18): The
systemic risk measure is defined by

pPX) = jnf {w(Y) | X € A} = it {x(V)| Y € F(X)}.

— too scalar, allocation part is killed

usc Quasiconvex compositions January 14, 2019



Systemic risk measures

o Let Z be a linear space of “prices” for capital allocations. (Typically, Z = R™ with
1<m<d)

o Let G: Y — 2% be a set-valued function that can be used to “price” capital
allocations.
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Systemic risk measures

o Let Z be a linear space of “prices” for capital allocations. (Typically, Z = R™ with
1<m<d)

o Let G: Y — 2% be a set-valued function that can be used to “price” capital
allocations.

o Fully set-valued approach assuming ) = R%: G(y) = y + R%
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Systemic risk measures

o Let Z be a linear space of “prices” for capital allocations. (Typically, Z = R™ with
1<m<d)

o Let G: Y — 2% be a set-valued function that can be used to “price” capital
allocations.

o Fully set-valued approach assuming ) = R%: G(y) = y + R%
@ Scalarization approach using a price function 7: Y — R: G(Y) =n(Y) + R4
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Systemic risk measures

o Let Z be a linear space of “prices” for capital allocations. (Typically, Z = R™ with
1<m<d)
o Let G: Y — 2% be a set-valued function that can be used to “price” capital
allocations.
o Fully set-valued approach assuming ) = R%: G(y) = y + R%
@ Scalarization approach using a price function 7: Y — R: G(Y) =n(Y) + R4

@ In general: if ) is a space of random variables, then G can be a monotone,
convex/quasi-convex set-valued function.
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Systemic risk measures

o Let Z be a linear space of “prices” for capital allocations. (Typically, Z = R™ with
1<m<d)

o Let G: Y — 2% be a set-valued function that can be used to “price” capital
allocations.

o Fully set-valued approach assuming ) = R%: G(y) = y + R%
@ Scalarization approach using a price function 7: Y — R: G(Y) =n(Y) + R4

@ In general: if ) is a space of random variables, then G can be a monotone,
convex/quasi-convex set-valued function.

@ The systemic risk measure can be defined as the set-valued composition of F' and G:

R¥™(X)=GoF(X)= |J G).

YEF(X)
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Market risk measures

o d-asset market where trading at a time ¢ € {0,1,...,7T} is subject to transaction
costs given by a random convex solvency region K,

@ An investor to realize a position X € X = LY at time T who does trading until then
starting with zero initial capital
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Market risk measures

o d-asset market where trading at a time ¢ € {0,1,...,7T} is subject to transaction
costs given by a random convex solvency region K,

@ An investor to realize a position X € X = LY at time T who does trading until then
starting with zero initial capital

o Enforce liquidation into the first m < d assets. (¥ = L%,.)

@ At time T, her terminal position is in the set
F(X)={Y €Y |BY € X — Ly(Fo, Ko) — ... — Lg(Fr, K1)},

where By = (y1,...,Ym,0,...,0).
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Market risk measures

o d-asset market where trading at a time ¢ € {0,1,...,7T} is subject to transaction
costs given by a random convex solvency region K,

@ An investor to realize a position X € X = LY at time T who does trading until then
starting with zero initial capital

o Enforce liquidation into the first m < d assets. (¥ = L%,.)

@ At time T, her terminal position is in the set
F(X)={Y €Y |BY € X — Ly(Fo, Ko) — ... — Lg(Fr, K1)},

where By = (y1,...,Ym,0,...,0).

o Let Z =R"™. The risk of the terminal position is evaluated by a set-valued risk
measure G: Y — 2%,

@ The market risk of the investor is defined as the “least” achievable risk by trading in
the market (AHR '17):

R™(X)=GoF(X)= |J G().

YEF(X)
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Market risk measures

o d-asset market where trading at a time ¢ € {0,1,...,7T} is subject to transaction
costs given by a random convex solvency region K,

@ An investor to realize a position X € X = LY at time T who does trading until then
starting with zero initial capital

o Enforce liquidation into the first m < d assets. (¥ = L%,.)

@ At time T, her terminal position is in the set
F(X)={Y €Y |BY € X — Ly(Fo, Ko) — ... — Lg(Fr, K1)},

where By = (y1,...,Ym,0,...,0).

o Let Z =R"™. The risk of the terminal position is evaluated by a set-valued risk
measure G: Y — 2%,

@ The market risk of the investor is defined as the “least” achievable risk by trading in
the market (AHR '17):

R™(X)=GoF(X)= |J G().
YEF(X)

@ When G is convex and translative (usual risk measure properties), R™" can be seen
as a set-valued infimal convolution, which yields nice duality results.
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Set-valued compositions

o Questions of interest for a set-valued composition G o F:

When is it monotone?
When is it convex/quasi-convex?
What topological properties should it have?

What is the dual representation of it in terms of the dual representations of
F,G?

@ Our focus here: more general quasiconvex (not-necessarily translative) case.
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.

o Aset D C Y iscalled Yi-monotone if D+ Y, = D.

o PL(Y): set of all Y -monotone subsets of ), order-complete lattice w.r.t. D:

infD= | J D, supD= () D.

DeD DeD

o Similarly: Y_,P_())
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.

o Aset D C Y iscalled Yi-monotone if D+ Y, = D.
o PL(Y): set of all Y -monotone subsets of ), order-complete lattice w.r.t. D:

infD= | J D, supD= () D.
DeD DeD

e Similarly: Y_,P_(Y)
o Let F': X — 2¥ be a set-valued function with inverse F~1: ) — 2% defined by

FUY)={Xe€X|YecFX)}.
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.

o Aset D C Y iscalled Yi-monotone if D+ Y, = D.

o PL(Y): set of all Y -monotone subsets of ), order-complete lattice w.r.t. D:

infD= | J D, supD= () D.
DeD DeD

e Similarly: Y_,P_(Y)
o Let F': X — 2¥ be a set-valued function with inverse F~1: ) — 2% defined by

FUY)={Xe€X|YecFX)}.

o Fis called decreasing if X* < X? implies F(X"') C F(X?) for every X', X? € X.
— Higher return reduces risk.
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.

o Aset D C Y iscalled Yi-monotone if D+ Y, = D.

o PL(Y): set of all Y -monotone subsets of ), order-complete lattice w.r.t. D:
infD= | J D, supD= () D.
DeD DeD
e Similarly: Y_,P_(Y)

o Let F': X — 2¥ be a set-valued function with inverse F~1: ) — 2% defined by

FUY)={Xe€X|YecFX)}.

o Fis called decreasing if X* < X? implies F(X"') C F(X?) for every X', X? € X.
— Higher return reduces risk.

o Similar definition for F~1. — More positions become acceptable as capital
allocation increases.
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Set-valued functions: monotonicity properties

o Let (X, <), (), <) be preordered linear spaces with respective cones X,V of
positive elements.

o Aset D C Y iscalled Yi-monotone if D+ Y, = D.
o PL(Y): set of all Y -monotone subsets of ), order-complete lattice w.r.t. D:
infD= | J D, supD= () D.
DeD DeD
e Similarly: Y_,P_(Y)
o Let F': X — 2¥ be a set-valued function with inverse F~1: ) — 2% defined by

FUY)={Xe€X|YecFX)}.

o Fis called decreasing if X* < X? implies F(X"') C F(X?) for every X', X? € X.
— Higher return reduces risk.

o Similar definition for F~1. — More positions become acceptable as capital
allocation increases.

o F(X) € Pi(Y) for every X € X if and only if F~' is decreasing.
F is decreasing if and only if F~}(Y) € P (X) for every Y € ).
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Set-valued compositions: monotonicity properties

o Let (Z,<) be another preordered linear spaces with the cone Z; of positive
elements.

o Let F: X - P(Y),G: Y — P+(Z) be set-valued functions.

o [F decreasing, GG increasing
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Set-valued compositions: monotonicity properties

o Let (Z,<) be another preordered linear spaces with the cone Z; of positive
elements.

o Let F: X - P(Y),G: Y — P+(Z) be set-valued functions.
o [F decreasing, GG increasing
@ Set-valued composition of F' and G:

GoF(X)= |J ).

YeF(X)

o Inverse:
(GoF)  (2)=F"'oG 2)= |J F ')
YeG—1(2)
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Set-valued compositions: monotonicity properties

o Let (Z,<) be another preordered linear spaces with the cone Z; of positive
elements.

o Let F: X - P(Y),G: Y — P+(Z) be set-valued functions.
o [F decreasing, GG increasing
@ Set-valued composition of F' and G:

GoF(X)= |J ).

YeF(X)

o Inverse:
(GoF)  (2)=F"'oG 2)= |J F ')
YeG—1(2)

@ Since G has monotone values, G o F' has monotone-values.

@ Since F is decreasing, G o F' is decreasing.
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Set-valued functions: convexity properties

e Fis said to be quasiconvex if F(AX" + (1 —\)X?) D F(X') N F(X?) for every
X', X% € X and A €0,1].

e Fis quasiconvex if and only if F~*(Y) is convex for every Y € V.
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Set-valued functions: convexity properties

e Fis said to be quasiconvex if F(AX" + (1 —\)X?) D F(X') N F(X?) for every
X', X% € X and A €0,1].

e Fis quasiconvex if and only if F~*(Y) is convex for every Y € V.

e Fis said to be convex if F(AX" + (1 —\)X?) D AF(X") + (1 — \)F(X?) for every
X', X% € Xand X €]0,1].

e F'is convex if and only if gr F:= {(X,Y) | Y € F(X)} is convex if and only if
gr F~1 is convex if and only if F~' is convex.

o Convexity implies quasiconvexity as well as convex-valuedness.
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Set-valued compositions: convexity properties

o F: X — Py(Y) decreasing, G: Y — P+ (Z) increasing.
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Set-valued compositions: convexity properties

o F: X — Py(Y) decreasing, G: Y — P+ (Z) increasing.
@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.
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Set-valued compositions: convexity properties

o F: X — Py(Y) decreasing, G: Y — P+ (Z) increasing.
@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

@ Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
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Set-valued compositions: convexity properties

F: X — P4+ (Y) decreasing, G: Y — P (Z) increasing.
Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
- One remedy: Assume F' is convex.

- Any weaker assumption?
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Set-valued compositions: convexity properties

F: X — P4+ (Y) decreasing, G: Y — P (Z) increasing.
@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

@ Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
- One remedy: Assume F' is convex.
- Any weaker assumption?

e Fis said to be naturally quasiconvex if, for every X' X% ¢ X, Y' € F(X"),
Y2 € F(X?) and ) € [0, 1], there exists o € [0, 1] such that
aY'+ (1 —a)Y? e FOX" + (1 - N)X?).
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Set-valued compositions: convexity properties

F: X — P4+ (Y) decreasing, G: Y — P (Z) increasing.
@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

@ Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
- One remedy: Assume F' is convex.
- Any weaker assumption?

e Fis said to be naturally quasiconvex if, for every X' X% ¢ X, Y' € F(X"),
Y2 € F(X?) and ) € [0, 1], there exists o € [0, 1] such that
aY'+ (1 —a)Y? e FOX" + (1 - N)X?).
- Introduced by Tanaka ('94) for vector-valued functions, generalized by Kuroiwa
('96) for set-valued functions.
- When < on Y is total (e.g. when )Y = R), natural quasiconvexity and
quasiconvexity are equivalent.
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Set-valued compositions: convexity properties

F: X — P4+ (Y) decreasing, G: Y — P (Z) increasing.
@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

@ Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
- One remedy: Assume F' is convex.
- Any weaker assumption?

e Fis said to be naturally quasiconvex if, for every X' X% ¢ X, Y' € F(X"),
Y2 € F(X?) and ) € [0, 1], there exists o € [0, 1] such that
aY'+ (1 —a)Y? e FOX" + (1 - N)X?).
- Introduced by Tanaka ('94) for vector-valued functions, generalized by Kuroiwa
('96) for set-valued functions.

- When < on Y is total (e.g. when )Y = R), natural quasiconvexity and
quasiconvexity are equivalent.— a genuinely set-valued concept
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Set-valued compositions: convexity properties

F: X — P4+ (Y) decreasing, G: Y — P (Z) increasing.

@ Good news: If F' and GG are convex, then G o F' is convex. @)

- One can directly start working on the duality of G o F' with suitable topological
assumptions.

@ Bad news: If F' and G are quasiconvex, then G o F' may fail to be quasiconvex. ®
- One remedy: Assume F' is convex.
- Any weaker assumption?

e Fis said to be naturally quasiconvex if, for every X' X% ¢ X, Y' € F(X"),
Y2 € F(X?) and ) € [0, 1], there exists o € [0, 1] such that
aY'+ (1 —a)Y? e FOX" + (1 - N)X?).
- Introduced by Tanaka ('94) for vector-valued functions, generalized by Kuroiwa
('96) for set-valued functions.

- When < on Y is total (e.g. when )Y = R), natural quasiconvexity and
quasiconvexity are equivalent.— a genuinely set-valued concept

- Apparently, this property is used in BFFM '18 as a “no-name” property.
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Set-valued compositions: convexity properties

o Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.
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Set-valued compositions: convexity properties

o Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.

o Good news: If F'is naturally quasiconvex and G is quasiconvex, then G o F' is
quasiconvex. ©
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Set-valued compositions: convexity properties

o Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.

o Good news: If F'is naturally quasiconvex and G is quasiconvex, then G o F' is
quasiconvex.

o Better news: If F' and G are naturally quasiconvex, then G o F' is naturally
quasiconvex.
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Set-valued compositions: convexity properties

o Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.

o Good news: If F'is naturally quasiconvex and G is quasiconvex, then G o F' is
quasiconvex. ©

o Better news: If F' and G are naturally quasiconvex, then G o F' is naturally
quasiconvex.

@ Any intuitive characterization of natural quasiconvexity?
@ Suppose Y is locally convex with topological dual Y*. Define the support function
of F(X)atY” € Y* by

orx)(Y7) = vt (Y",v).

If F(X) # 0, then op(x)(Y™*) = —oo for every Y* € Y*\(V4)7, where (V)T is
the positive dual cone of V.
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Set-valued compositions: convexity properties

o Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.

o Good news: If F'is naturally quasiconvex and G is quasiconvex, then G o F' is
quasiconvex. ©

o Better news: If F' and G are naturally quasiconvex, then G o F' is naturally
quasiconvex.

@ Any intuitive characterization of natural quasiconvexity?
@ Suppose Y is locally convex with topological dual Y*. Define the support function
of F(X)atY” € Y* by

orx)(Y7) = vt (Y",v).

If F(X) # 0, then op(x)(Y™*) = —oo for every Y* € Y*\(V4)7, where (V)T is
the positive dual cone of V.

o Characterization: Suppose that F' has closed and convex values. Then, F'is
naturally quasiconvex if and only if the function X — opx)(Y™) on X is
quasiconvex for every Y* € (V;)7.
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Set-valued functions/compositions: program

@ Question 1: Study the dual representation of ' when it is ...
@ quasiconvex: Drapeau, Hamel, Kupper '16
@ naturally quasiconvex: now!

@ convex: Hamel '09

o Question 2: Study the dual representation of G o F when ...
o F'is naturally quasiconvex and G is quasiconvex,

o Fis naturally quasiconvex and G is naturally quasiconvex,

e Fis convex and G is convex. (For scalar functions: Zalinescu '02;
Bot, Grad, Wanka ’09)
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Set-valued functions: quasiconvex case

e Fis said to be lower-level closed if F~1(Y) is a closed set for every Y € ).
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Set-valued functions: quasiconvex case

e Fis said to be lower-level closed if F~1(Y) is a closed set for every Y € ).

o Dual representation (DHK '16): Suppose F': X — P ()) is a decreasing quasiconvex
lower-level closed function. Then,

F(X)= (] {Y €Y (X" X)>a(Y;X")},
X*eXx*

where « is the penalty function defined by

a(Y;X7) = UF*I(Y)(X*) = Xeli“rlfl(y) (X", X).
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Set-valued functions: quasiconvex case

e Fis said to be lower-level closed if F~1(Y) is a closed set for every Y € ).

o Dual representation (DHK '16): Suppose F': X — P ()) is a decreasing quasiconvex
lower-level closed function. Then,

F(X)= (] {Y €Y (X" X)>a(Y;X")},
X*eXx*

where « is the penalty function defined by

aY; X*) =op-1vy(X7) = inf (X", X).
XeF-1(Y)
@ Special case: X = L with the weak™-topology, F' is a set-valued risk measure
(decreasing, quasiconvex), one can pass to vector probability measures
Q= (Qi,...,Qq) € Mg(P) and weight vectors w € R in the dual representation:

F(X)= N {y eI B [X] > a(v;Qu)},
QeM(P),weRS\{0}
where
a(Y;Quw)= inf w E?[X].
XeF-1(Y)
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Set-valued functions: naturally quasiconvex case

e Fis said to be upper demicontinuous if for every X% € X and open halfspace
H C Y with F(XO) C H, there exists a neighborhood V of X° such that
F(X)C H forevery X € V.
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Set-valued functions: naturally quasiconvex case

e Fis said to be upper demicontinuous if for every X% € X and open halfspace
H C Y with F(XO) C H, there exists a neighborhood V of X° such that
F(X)C H forevery X € V.

e If F'is upper demicontinuous, then the function X — op(x)(Y™) on X is lower
semicontinuous for every Y* € (V4)" (which implies that F' is lower-level closed).

o The converse holds if the infimum in the definition of o x)(Y™) is attained for
every X e X and Y* € (V)" (eg. if F(X) = F(X) + Xy for some
compact-valued F).
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Set-valued functions: naturally quasiconvex case

e Fis said to be upper demicontinuous if for every X% € X and open halfspace
H C Y with F(XO) C H, there exists a neighborhood V of X° such that
F(X)C H forevery X € V.

e If F'is upper demicontinuous, then the function X — op(x)(Y™) on X is lower
semicontinuous for every Y* € (V4)" (which implies that F' is lower-level closed).

o The converse holds if the infimum in the definition of o x)(Y™) is attained for
every X e X and Y* € (V)" (eg. if F(X) = F(X) + Xy for some
compact-valued F).

o Dual representation: Suppose F': X — P4 ()) is a decreasing naturally quasiconvex
upper demicontinuous function with closed convex values. Then,

F(X)= N {Y eV | (X", X) > B(X",Y", (Y, Y))},
X*ex*,y*e(yy)t

where [ is the natural penalty function defined by

BX*,Y",r) :)}relfx{u*,x) |r>opx)(Y)}.
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Set-valued functions: naturally quasiconvex case

o Special case: X = LP,Y =R?
F(X) = N {vyer! | w B [X] 2 B(Qw,c,c"y)},
QEM g (P)w,ceR4\(0}

where

B = inf {EX] |z it )
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Set-valued functions: naturally quasiconvex case

o Special case: X = LP,Y =R?

F(X) = N {vyer! | w B [X] 2 B(Qw,c,c"y)},
QEM4(P),w,c€RT\{0}

where

B = inf {EX] |z it )

o Special case: X = L3, Y = Ly

Fx)= () {veLd|wEYX] > BQS we B Y]},
QeMq(P),Se M, (P),
weR\{0},cERT\[0}

where

3 — TrQ > . TS ’
B(Q,S,w,c,T) Xleango {w E [X]‘T_Y/é%f(x)c E [Y]}
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Set-valued functions: convex case

o F'is said to be closed if its graph gr I is closed.
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Set-valued functions: convex case

o F'is said to be closed if its graph gr I is closed.

o Dual representation (H '09): Suppose F': X — P()) is a decreasing convex closed
function. Then,

F(X)= N (Y eV (YY) >~+(X",Y") — (X", X)},
X*ex*,y*e(Yy)t

where 7y is the support function of gr F' defined by

X*Y*)= inf X* X))+ (Y5 Y)).
Y(XT,YT) (X,%I)leng« , X) (YT, Y))
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Set-valued functions: convex case

o F'is said to be closed if its graph gr I is closed.

o Dual representation (H '09): Suppose F': X — P()) is a decreasing convex closed
function. Then,

F(X)= ﬂ {YeY | {YY) >~(X",Y") — (X", X)},
X*ex*,y*e(Yy)t
where 7y is the support function of gr F' defined by
YXTY) = b (X7, X) + (Y7, Y)).

(X,Y)egr F

o Special case: X = L, Y =R?
F(X) = N {ver! |y >5(Quw,0) - wEYX]},
QEMg(P);w,ceRT\{0}

where 7 is the conjugate function of the support function of the acceptance family
defined by

¥(Q,w, c) = inf (cTy + inf w'EY [X]) .
yER? XeF~1(y)
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Set-valued . quasiconvex case

@ Suppose F': X — P4()) is a decreasing naturally quasiconvex upper
demicontinuous with closed convex values. Let Sr be its natural penalty function.

@ Suppose G: Y — P, (Z2) is a increasing quasiconvex lower-level closed function. Let
ag be its penalty function.
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Set-valued compositions: quasiconvex case

@ Suppose F': X — P4()) is a decreasing naturally quasiconvex upper
demicontinuous with closed convex values. Let Sr be its natural penalty function.

@ Suppose G: Y — P, (Z2) is a increasing quasiconvex lower-level closed function. Let
ag be its penalty function.

@ Dual representation: Under some continuity condition for F, G, up to some
“closures,” it holds

GoF(X)= () {Z€Z|(X",X) > acer(ZX")},
Xre(xy)t
where
acor(Z;X") = sup  Br(X",Y", —ac(Z;-Y7)).
Y*e(Yy)t

In other words,

GoF(X)= (] {Ze€Z|(X"X)>Br(X",Y" —ac(Z;-Y"))}.
X*e(xp)t,
et
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Set-valued compositions: naturally quasiconvex case

@ Suppose F': X = P+(Y),G: Y — P4 (Z) are naturally quasiconvex upper
demicontinuous lower-level closed functions with closed convex values. Suppose F' is
decreasing and G is increasing. Let Sr, g be their respective natural penalty
functions.
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Set-valued compositions: naturally quasiconvex case

@ Suppose F': X = P+(Y),G: Y — P4 (Z) are naturally quasiconvex upper
demicontinuous lower-level closed functions with closed convex values. Suppose F' is
decreasing and G is increasing. Let Sr, g be their respective natural penalty
functions.

@ Dual representation: Under some continuity condition for F, G, up to some
“closures,” it holds

GoF(X)= ﬂ {Z € Z (X", X) > Baor (X", Z",(Z",Z))},
X*e(xpt,
z*e(z2)T
where
BGOF(X*7Z*7T): sup ,BF(X*,Y*,—ﬂG(—Y*,Z*,T))-
Y*e(Y4)t
In other words,
GoF(X)= (| {Ze€Z[(X"X)>Br(X",Y",—Ba(-Y",Z"(Z",Z)))}.
X*e(xp)t,
Y*E(y+)+,
z*e(z4)t
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Set-valued compositions: convex case

@ Suppose F: X — P(Y),G: Y — P+(Z) be convex closed functions. Suppose F
is decreasing and G is increasing. Let vr,yg be their respective support functions

of their graphs.
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Set-valued compositions: convex case

@ Suppose F: X — P(Y),G: Y — P+(Z) be convex closed functions. Suppose F
is decreasing and G is increasing. Let vr,yg be their respective support functions
of their graphs.

@ Dual representation: Under some continuity condition for I, G, up to some
“closures,” it holds

GoF(X) = ﬂ {ZeZ|(Z",Z) > vaor (X", Z") — (X", X)},
X e(xp)t,
z*e(z24)t
where
’YGOF(X*aZ*) = sup (’VF(X*aY*)+’YG(7Y*aZ*))'
Y*e(Yy)t
In other words,
GoF(X) = ﬂ {Ze€Z|(Z",Z) > vr( X", Y") +yc(=Y", Z") — (X*, X)}.
X*e(xpt,
Y*e(yp)t,
z*e(24)t
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convex scalarizations of set-valued convex risk measures

e X=LF, Y=R¢ Z=R
o F: LY — Py(RY) decreasing convex closed translative with support function 4 and
acceptance set A = F~*(0):

Fx)= ) Ex]+{yer' vy a@Qu)},
QEM4(P),weRI\{0}

where
~ — f T Q )
F(Q,w) = Hé w E*[X]
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Example 1: convex scalarizations of set-valued convex risk measures

e X=LF, Y=R¢ Z=R
o F: LY — Py(RY) decreasing convex closed translative with support function 4 and
acceptance set A = F~*(0):
Fx)= ) Ex]+{yer' vy a@Qu)},
QEMg(P),weRI\{0}

where
- . TQ
F(Q,w) = )%Iéf;‘w E*[X].

o m:R? — R increasing convex scalarization function with convex conjugate 7*:

* T
7 (w) = sup (w y— W(y)) .
yeRd
@ Scalarized risk measure (e.g. as a systemic risk measure, convex but not translative
in general):

p"(X) =inf{r(y) |y € F(X)} = inf {7(y) | X +y € A}
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Example 1: convex scalarizations of set-valued convex risk measures

e X=LF, Y=R¢ Z=R
o F: LY — Py(RY) decreasing convex closed translative with support function 4 and
acceptance set A = F~*(0):

Fx)= ) Ex]+{yer' vy a@Qu)},
QEMg(P),weRG\{0}
where
y = inf w'E?[X].
7(Quw) = inf w E”[X]
o m:R? — R increasing convex scalarization function with convex conjugate 7*:

" (w) = s;si (wTy - W(y)) :

@ Scalarized risk measure (e.g. as a systemic risk measure, convex but not translative
in general):

p"(X) =inf{r(y) |y € F(X)} = inf {7(y) | X +y € A}

@ Dual representation:

prX)= s (0B -X] +5(Quw)—n" (w))
QEM,4(P),weRI\{0}
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convex scalarizations of set-valued convex risk measures

@ Special case: I sensitive systemic risk measure:
F(X)={yeR | Ao (X +y) € A,},
where A: R? — R is the aggregation function (determined by the network model)

and A, is the acceptance set of a scalar convex risk measure p with penalty function
a.

o g(z) =sup,cpa (Aly) — z"y): convex conjugate of y — —A(—y)
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Example 1: convex scalarizations of set-valued convex risk measures

@ Special case: I sensitive systemic risk measure:
F(X)={yeR | Ao (X +y) € A,},

where A: R? — R is the aggregation function (determined by the network model)
and A, is the acceptance set of a scalar convex risk measure p with penalty function
a.

o g(z) =sup,cpa (Aly) — z"y): convex conjugate of y — —A(—y)

@ Scalarized systemic risk measure:

p"(X) =inf{m(y) | Ao (X +Y) € A}
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Example 1: convex scalarizations of set-valued convex risk measures

Special case: F' sensitive systemic risk measure:
F(X)={yeR | Ao (X +y) € A,},

where A: R? — R is the aggregation function (determined by the network model)
and A, is the acceptance set of a scalar convex risk measure p with penalty function
a.

9(z) = sup,cpa (A(y) — z"y): convex conjugate of y — —A(—y)

Scalarized systemic risk measure:
pT(X) = inf {m(y) | Ao (X +Y) € A}

Dual representation:

p"(X)= sup <wTIEQ [—X] — AE° {g o <E . @)] - )\oz(S)—ﬁ*(w)) ,
QeEMy(P), A dS
SEME (),
weR4\{0},
A>0
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systemic risk measure with random capital allocations

o random shocks X = L, capital allocations Y = {Y cLF YL, Ve R}

price of allocation Y: w(Y) = 2?21 Y;
aggregation function A: R* — R with g(z) = sup,cga (A(y) — 2"y), the convex
conjugate of y — —A(—y)
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Example 2: systemic risk measure with random capital allocations

o random shocks X = L, capital allocations Y = {Y cLF YL, Ve R}
price of allocation Y: w(Y) = 2?21 Y;
aggregation function A: R* — R with g(z) = sup,cga (A(y) — 2"y), the convex
conjugate of y — —A(—y)

@ quasiconvex scalar risk measure p: ) — (—o0, +00] with acceptance set family
(B(2))zer

@ Scalarized systemic risk measure:

psys(X)_inf{ZYi|Ao(X+Y)€B (ZY)}

=1 i=1
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Example 2: systemic risk measure with random capital allocations

random shocks X = LY, capital allocations ) = {Y cLF YL, Ve R}

price of allocation Y: w(Y) = 2?21 Y;

aggregation function A: R* — R with g(z) = sup,cga (A(y) — 2"y), the convex
conjugate of y — —A(—y)

quasiconvex scalar risk measure p: Y — (—00, +00] with acceptance set family
(B(2))-er

Scalarized systemic risk measure:

pY(X) = 1nf{ZY|Ao(X+Y (Zm>}

=1 i=1

Dual representation:

dQ .
(X)) = su w IEQ )\ES{ <g—1 )}+1nf 2t +2a(S; 2 ,
(%) @GMRM( 3 248y V] it (2 4 2a(5:2)
SEME (P),
we(0,1],
A>0

where « is the penalty function of p given by

a(S; z) = inf {IES 11U € B(z )}
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@ More concrete examples of systemic risk

@ Time-consistent dynamic set-valued naturally quasiconvex risk measures:

Ry(X)=Rso-Ri(X)= |J Rs(-Y)
YeER:(X)

forevery 0 <s<t<T.

@ Dual characterization of time-consistency?
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