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Multivariate risk measures

Risk measures for random vectors

Multi-asset markets with frictions: Jouini, Meddeb, Touzi ’04; Hamel, Heyde, Rudloff ’11;

Cascos, Molchanov ’16

Networks of financial institutions: Chen, Iyengar, Moallemi ’13; Feinstein, Rudloff,

Weber ’17; Biagini, Fouque, Frittelli, Meyer-Brandis ’18

Scalar or set-valued functionals usually defined on a subspace of L0
d (d ∈ N)

Utility-based shortfall risk measures: A., Hamel, Rudloff ’17; Armenti, Crépey, Drapeau,

Papapantoleon ‘18

Market risk measures: Hamel, Rudloff, Yankova ‘13; A., Hamel, Rudloff ’17

Systemic risk measures

Time-consistent dynamic risk measures: Feinstein, Rudloff ’13; ’15

Observation: Compositions of set-valued functions show up in all these settings!
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Systemic risk

Interconnected financial system

Failures affecting multiple entities

e.g. chain of defaults

Important in the event of financial crisis

Systemic vs. institutional risk
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Systemic risk measures

Consider d financial institutions with a vector X ∈ L0
d of random shocks.

Look for capital allocations y ∈ Rd that are “inserted” to the system before the
shock is realized in such a way that the system becomes safe enough.

For each y ∈ Rd, let A(y) ⊆ L0
d be the set of all safe enough random system states.

Examples:

Acceptance sets that are insensitive to capital levels (CIM ’13):

A(y) =

{
X ∈ L0

d | Λ ◦X +

d∑
i=1

yi ∈ Aρ

}
,

where Λ: Rd → R is an aggregation function (increasing, concave) and
Aρ = {ρ ≤ 0} is the acceptance of a scalar convex risk measure ρ.

Acceptance sets that are sensitive to capital levels (FBW ’17, BFFM ’18, AR ’18):

A(y) =
{
X ∈ L0

d | Λ ◦ (X + y) ∈ Aρ
}
.
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Systemic risk measures

More examples:

Acceptance sets of shortfall risk measures (AHR ’17):

A(y) =
{
X ∈ L0

d | E [u ◦ (X + y)] ∈ C
}
,

where u : Rd → Rd is a vector-valued utility function and C ⊆ Rd is a set such
that C + Rd+ = C.

Nonlinear interaction with capital levels (BFFM ’18):

A(y) =
{
X ∈ L0

d | Γ ◦ (X, y) ∈ Aρ
}
,

where Γ: Rd × Rd → R is an aggregation function (e.g. related to
Eisenberg-Noe model).

Generalization for a lender of last resort: use random capital allocations Y ∈ L0
d with

a deterministic sum
∑d
i=1 Yi ∈ R to be allocated when the shock is realized. Take

A(Y ) =
{
X ∈ L0

d | Γ ◦ (X,Y ) ∈ Aρ
}
.

USC Quasiconvex compositions January 14, 2019



Systemic risk measures

More examples:

Acceptance sets of shortfall risk measures (AHR ’17):

A(y) =
{
X ∈ L0

d | E [u ◦ (X + y)] ∈ C
}
,

where u : Rd → Rd is a vector-valued utility function and C ⊆ Rd is a set such
that C + Rd+ = C.

Nonlinear interaction with capital levels (BFFM ’18):

A(y) =
{
X ∈ L0

d | Γ ◦ (X, y) ∈ Aρ
}
,

where Γ: Rd × Rd → R is an aggregation function (e.g. related to
Eisenberg-Noe model).

Generalization for a lender of last resort: use random capital allocations Y ∈ L0
d with

a deterministic sum
∑d
i=1 Yi ∈ R to be allocated when the shock is realized. Take

A(Y ) =
{
X ∈ L0

d | Γ ◦ (X,Y ) ∈ Aρ
}
.

USC Quasiconvex compositions January 14, 2019



Systemic risk measures

More examples:

Acceptance sets of shortfall risk measures (AHR ’17):

A(y) =
{
X ∈ L0

d | E [u ◦ (X + y)] ∈ C
}
,

where u : Rd → Rd is a vector-valued utility function and C ⊆ Rd is a set such
that C + Rd+ = C.

Nonlinear interaction with capital levels (BFFM ’18):

A(y) =
{
X ∈ L0

d | Γ ◦ (X, y) ∈ Aρ
}
,

where Γ: Rd × Rd → R is an aggregation function (e.g. related to
Eisenberg-Noe model).

Generalization for a lender of last resort: use random capital allocations Y ∈ L0
d with

a deterministic sum
∑d
i=1 Yi ∈ R to be allocated when the shock is realized. Take

A(Y ) =
{
X ∈ L0

d | Γ ◦ (X,Y ) ∈ Aρ
}
.

USC Quasiconvex compositions January 14, 2019



Systemic risk measures

Let X = L0
d and Y the linear space of all capital allocations (e.g. Rd or a subspace

of L0
d).

The acceptance family (A(Y ))Y ∈Y can be seen as a set-valued function
A : Y → 2X . Define F : X → 2Y by

F (X) = A−1(X) = {Y ∈ Y | X ∈ A(Y )} .

A and F are set-valued inverses of each other: A = F−1, F = A−1.

How to define a systemic risk measure?

Fully set-valued approach assuming Y = Rd (FRW ’17): The systemic risk
measure is defined as Rsys = F .

→ too linear and high-dimensional

Scalarization approach using a “price” functional π : Y → R (BFFM ’18): The
systemic risk measure is defined by

ρsys(X) = inf
Y ∈Y
{π(Y ) | X ∈ A(Y )} = inf

Y ∈Y
{π(Y ) | Y ∈ F (X)} .

→ too scalar, allocation part is killed
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Systemic risk measures

Let Z be a linear space of “prices” for capital allocations. (Typically, Z = Rm with
1 ≤ m ≤ d.)

Let G : Y → 2Z be a set-valued function that can be used to “price” capital
allocations.

Fully set-valued approach assuming Y = Rd: G(y) = y + Rd+
Scalarization approach using a price function π : Y → R: G(Y ) = π(Y ) + R+

In general: if Y is a space of random variables, then G can be a monotone,
convex/quasi-convex set-valued function.

The systemic risk measure can be defined as the set-valued composition of F and G:

Rsys(X) = G ◦ F (X) =
⋃

Y ∈F (X)

G(Y ).
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Market risk measures

d-asset market where trading at a time t ∈ {0, 1, . . . , T} is subject to transaction
costs given by a random convex solvency region Kt

An investor to realize a position X ∈ X = L0
d at time T who does trading until then

starting with zero initial capital

Enforce liquidation into the first m ≤ d assets. (Y = L0
m.)

At time T , her terminal position is in the set

F (X) =
{
Y ∈ Y | BY ∈ X − L0

d(F0,K0)− . . .− L0
d(FT ,KT )

}
,

where By = (y1, . . . , ym, 0, . . . , 0).

Let Z = Rm. The risk of the terminal position is evaluated by a set-valued risk
measure G : Y → 2Z .

The market risk of the investor is defined as the “least” achievable risk by trading in
the market (AHR ’17):

Rmar(X) = G ◦ F (X) =
⋃

Y ∈F (X)

G(Y ).

When G is convex and translative (usual risk measure properties), Rmar can be seen
as a set-valued infimal convolution, which yields nice duality results.
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Set-valued compositions

Questions of interest for a set-valued composition G ◦ F :

When is it monotone?

When is it convex/quasi-convex?

What topological properties should it have?

What is the dual representation of it in terms of the dual representations of
F,G?

Our focus here: more general quasiconvex (not-necessarily translative) case.
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Set-valued functions: monotonicity properties

Let (X ,≤), (Y,≤) be preordered linear spaces with respective cones X+,Y+ of
positive elements.

A set D ⊆ Y is called Y+-monotone if D + Y+ = D.

P+(Y): set of all Y+-monotone subsets of Y, order-complete lattice w.r.t. ⊇:

inf D =
⋃
D∈D

D, supD =
⋂
D∈D

D.

Similarly: Y−,P−(Y)

Let F : X → 2Y be a set-valued function with inverse F−1 : Y → 2X defined by

F−1(Y ) := {X ∈ X | Y ∈ F (X)} .

F is called decreasing if X1 ≤ X2 implies F (X1) ⊆ F (X2) for every X1, X2 ∈ X .
→ Higher return reduces risk.

Similar definition for F−1. → More positions become acceptable as capital
allocation increases.

F (X) ∈ P+(Y) for every X ∈ X if and only if F−1 is decreasing.
F is decreasing if and only if F−1(Y ) ∈ P+(X ) for every Y ∈ Y.
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F is called decreasing if X1 ≤ X2 implies F (X1) ⊆ F (X2) for every X1, X2 ∈ X .
→ Higher return reduces risk.
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Set-valued compositions: monotonicity properties

Let (Z,≤) be another preordered linear spaces with the cone Z+ of positive
elements.

Let F : X → P+(Y), G : Y → P+(Z) be set-valued functions.

F decreasing, G increasing

Set-valued composition of F and G:

G ◦ F (X) =
⋃

Y ∈F (X)

G(Y ).

Inverse:
(G ◦ F )−1(Z) = F−1 ◦G−1(Z) =

⋃
Y ∈G−1(Z)

F−1(Y ).

Since G has monotone values, G ◦ F has monotone-values.

Since F is decreasing, G ◦ F is decreasing.
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Set-valued functions: convexity properties

F is said to be quasiconvex if F (λX1 + (1− λ)X2) ⊇ F (X1) ∩ F (X2) for every
X1, X2 ∈ X and λ ∈ [0, 1].

F is quasiconvex if and only if F−1(Y ) is convex for every Y ∈ Y.

F is said to be convex if F (λX1 + (1− λ)X2) ⊇ λF (X1) + (1− λ)F (X2) for every
X1, X2 ∈ X and λ ∈ [0, 1].

F is convex if and only if grF := {(X,Y ) | Y ∈ F (X)} is convex if and only if
grF−1 is convex if and only if F−1 is convex.

Convexity implies quasiconvexity as well as convex-valuedness.
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Set-valued compositions: convexity properties

F : X → P+(Y) decreasing, G : Y → P+(Z) increasing.

Good news: If F and G are convex, then G ◦ F is convex.

- One can directly start working on the duality of G ◦ F with suitable topological
assumptions.

Bad news: If F and G are quasiconvex, then G ◦ F may fail to be quasiconvex.

- One remedy: Assume F is convex.

- Any weaker assumption?

F is said to be naturally quasiconvex if, for every X1, X2 ∈ X , Y 1 ∈ F (X1),
Y 2 ∈ F (X2) and λ ∈ [0, 1], there exists α ∈ [0, 1] such that
αY 1 + (1− α)Y 2 ∈ F (λX1 + (1− λ)X2).

- Introduced by Tanaka (‘94) for vector-valued functions, generalized by Kuroiwa
(’96) for set-valued functions.

- When ≤ on Y is total (e.g. when Y = R), natural quasiconvexity and
quasiconvexity are equivalent.→ a genuinely set-valued concept

- Apparently, this property is used in BFFM ’18 as a “no-name” property.
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Set-valued compositions: convexity properties

Convexity implies natural quasiconvexity. Natural quasiconvexity implies
quasiconvexity.

Good news: If F is naturally quasiconvex and G is quasiconvex, then G ◦ F is
quasiconvex.

Better news: If F and G are naturally quasiconvex, then G ◦ F is naturally
quasiconvex.

Any intuitive characterization of natural quasiconvexity?

Suppose Y is locally convex with topological dual Y∗. Define the support function
of F (X) at Y ∗ ∈ Y∗ by

σF (X)(Y
∗) := inf

Y ∈F (X)
〈Y ∗, Y 〉 .

If F (X) 6= ∅, then σF (X)(Y
∗) = −∞ for every Y ∗ ∈ Y∗\(Y+)+, where (Y+)+ is

the positive dual cone of Y+.

Characterization: Suppose that F has closed and convex values. Then, F is
naturally quasiconvex if and only if the function X 7→ σF (X)(Y

∗) on X is
quasiconvex for every Y ∗ ∈ (Y+)+.
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Set-valued functions/compositions: program

Question 1: Study the dual representation of F when it is . . .

quasiconvex: Drapeau, Hamel, Kupper ’16

naturally quasiconvex: now!

convex: Hamel ’09

Question 2: Study the dual representation of G ◦ F when . . .

F is naturally quasiconvex and G is quasiconvex,

F is naturally quasiconvex and G is naturally quasiconvex,

F is convex and G is convex. (For scalar functions: Zalinescu ’02;

Boţ, Grad, Wanka ’09)
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Set-valued functions: quasiconvex case

F is said to be lower-level closed if F−1(Y ) is a closed set for every Y ∈ Y.

Dual representation (DHK ’16): Suppose F : X → P+(Y) is a decreasing quasiconvex
lower-level closed function. Then,

F (X) =
⋂

X∗∈X∗
{Y ∈ Y | 〈X∗, X〉 ≥ α(Y ;X∗)} ,

where α is the penalty function defined by

α(Y ;X∗) = σF−1(Y )(X
∗) = inf

X∈F−1(Y )
〈X∗, X〉 .

Special case: X = L∞d with the weak∗-topology, F is a set-valued risk measure
(decreasing, quasiconvex), one can pass to vector probability measures
Q = (Q1, . . . ,Qd) ∈Md(P) and weight vectors w ∈ Rd+ in the dual representation:

F (X) =
⋂

Q∈Md(P),w∈Rd
+\{0}

{
Y ∈ Y | wTEQ [X] ≥ α̃(Y ;Q, w)

}
,

where
α̃(Y ;Q, w) = inf

X∈F−1(Y )
wTEQ [X] .
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Set-valued functions: naturally quasiconvex case

F is said to be upper demicontinuous if for every X0 ∈ X and open halfspace
H ⊆ Y with F (X0) ⊆ H, there exists a neighborhood V of X0 such that
F (X) ⊆ H for every X ∈ V .

If F is upper demicontinuous, then the function X 7→ σF (X)(Y
∗) on X is lower

semicontinuous for every Y ∗ ∈ (Y+)+ (which implies that F is lower-level closed).

The converse holds if the infimum in the definition of σF (X)(Y
∗) is attained for

every X ∈ X and Y ∗ ∈ (Y+)+ (e.g. if F (X) = F̃ (X) + X+ for some
compact-valued F̃ ).

Dual representation: Suppose F : X → P+(Y) is a decreasing naturally quasiconvex
upper demicontinuous function with closed convex values. Then,

F (X) =
⋂

X∗∈X∗,Y ∗∈(Y+)+

{Y ∈ Y | 〈X∗, X〉 ≥ β(X∗, Y ∗, 〈Y ∗, Y 〉)} ,

where β is the natural penalty function defined by

β(X∗, Y ∗, r) = inf
X∈X

{
〈X∗, X〉 | r ≥ σF (X)(Y

∗)
}
.
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Set-valued functions: naturally quasiconvex case

Special case: X = L∞d ,Y = Rd

F (X) =
⋂

Q∈Md(P),w,c∈Rd
+\{0}

{
y ∈ Rd | wTEQ [X] ≥ β̃(Q, w, c, cTy)

}
,

where

β̃(Q, w, c, r) = inf
X∈L∞

d

{
wTEQ [X] | r ≥ inf

y′∈F (X)
cTy′

}
.

Special case: X = L∞d ,Y = L∞m

F (X) =
⋂

Q∈Md(P),S∈Mm(P),
w∈Rd

+\{0},c∈R
m
+\{0}

{
Y ∈ L∞m | wTEQ [X] ≥ β̃(Q, S, w, c, cTES [Y ])

}
,

where

β̃(Q, S, w, c, r) = inf
X∈L∞

d

{
wTEQ [X] | r ≥ inf

Y ′∈F (X)
cTES [Y ′]} .
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Set-valued functions: convex case

F is said to be closed if its graph grF is closed.

Dual representation (H ’09): Suppose F : X → P+(Y) is a decreasing convex closed
function. Then,

F (X) =
⋂

X∗∈X∗,Y ∗∈(Y+)+

{Y ∈ Y | 〈Y ∗, Y 〉 ≥ γ(X∗, Y ∗)− 〈X∗, X〉} ,

where γ is the support function of grF defined by

γ(X∗, Y ∗) = inf
(X,Y )∈grF

(〈X∗, X〉+ 〈Y ∗, Y 〉) .

Special case: X = L∞d ,Y = Rd

F (X) =
⋂

Q∈Md(P);w,c∈Rd
+\{0}

{
y ∈ Rd | cTy ≥ γ̃(Q, w, c)− wTEQ [X]

}
,

where γ̃ is the conjugate function of the support function of the acceptance family
defined by

γ̃(Q, w, c) = inf
y∈Rd

(
cTy + inf

X∈F−1(y)
wTEQ [X]

)
.
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Set-valued compositions: quasiconvex case

Suppose F : X → P+(Y) is a decreasing naturally quasiconvex upper
demicontinuous with closed convex values. Let βF be its natural penalty function.

Suppose G : Y → P+(Z) is a increasing quasiconvex lower-level closed function. Let
αG be its penalty function.

Dual representation: Under some continuity condition for F,G, up to some
“closures,” it holds

G ◦ F (X) =
⋂

X∗∈(X+)+

{Z ∈ Z | 〈X∗, X〉 ≥ αG◦F (Z;X∗)} ,

where
αG◦F (Z;X∗) = sup

Y ∗∈(Y+)+
βF (X∗, Y ∗,−αG(Z;−Y ∗)).

In other words,

G ◦ F (X) =
⋂

X∗∈(X+)+,

Y ∗∈(Y+)+

{Z ∈ Z | 〈X∗, X〉 ≥ βF (X∗, Y ∗,−αG(Z;−Y ∗))} .
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Set-valued compositions: convex case

Suppose F : X → P+(Y), G : Y → P+(Z) be convex closed functions. Suppose F
is decreasing and G is increasing. Let γF , γG be their respective support functions
of their graphs.

Dual representation: Under some continuity condition for F,G, up to some
“closures,” it holds

G ◦ F (X) =
⋂

X∗∈(X+)+,

Z∗∈(Z+)+

{Z ∈ Z | 〈Z∗, Z〉 ≥ γG◦F (X∗, Z∗)− 〈X∗, X〉} ,

where
γG◦F (X∗, Z∗) = sup

Y ∗∈(Y+)+
(γF (X∗, Y ∗) + γG(−Y ∗, Z∗)) .

In other words,

G◦F (X) =
⋂

X∗∈(X+)+,

Y ∗∈(Y+)+,

Z∗∈(Z+)+

{Z ∈ Z | 〈Z∗, Z〉 ≥ γF (X∗, Y ∗) + γG(−Y ∗, Z∗)− 〈X∗, X〉} .

USC Quasiconvex compositions January 14, 2019



Set-valued compositions: convex case

Suppose F : X → P+(Y), G : Y → P+(Z) be convex closed functions. Suppose F
is decreasing and G is increasing. Let γF , γG be their respective support functions
of their graphs.

Dual representation: Under some continuity condition for F,G, up to some
“closures,” it holds

G ◦ F (X) =
⋂

X∗∈(X+)+,

Z∗∈(Z+)+

{Z ∈ Z | 〈Z∗, Z〉 ≥ γG◦F (X∗, Z∗)− 〈X∗, X〉} ,

where
γG◦F (X∗, Z∗) = sup

Y ∗∈(Y+)+
(γF (X∗, Y ∗) + γG(−Y ∗, Z∗)) .

In other words,

G◦F (X) =
⋂

X∗∈(X+)+,

Y ∗∈(Y+)+,

Z∗∈(Z+)+

{Z ∈ Z | 〈Z∗, Z〉 ≥ γF (X∗, Y ∗) + γG(−Y ∗, Z∗)− 〈X∗, X〉} .

USC Quasiconvex compositions January 14, 2019



Example 1: convex scalarizations of set-valued convex risk measures

X = L∞d , Y = Rd, Z = R
F : L∞d → P+(Rd) decreasing convex closed translative with support function γ̃ and
acceptance set A = F−1(0):

F (X) =
⋂

Q∈Md(P),w∈Rd
+\{0}

EQ [−X] +
{
y ∈ Rd | wTy ≥ γ̃(Q, w)

}
,

where
γ̃(Q, w) = inf

X∈A
wTEQ [X] .

π : Rd → R increasing convex scalarization function with convex conjugate π∗:

π∗(w) = sup
y∈Rd

(
wTy − π(y)

)
.

Scalarized risk measure (e.g. as a systemic risk measure, convex but not translative
in general):

ρπ(X) = inf {π(y) | y ∈ F (X)} = inf {π(y) | X + y ∈ A}

Dual representation:

ρπ(X) = sup
Q∈Md(P),w∈Rd

+\{0}

(
wTEQ [−X] + γ̃(Q, w)−π∗(w)

)
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Example 1: convex scalarizations of set-valued convex risk measures

Special case: F sensitive systemic risk measure:

F (X) =
{
y ∈ Rd | Λ ◦ (X + y) ∈ Aρ

}
,

where Λ: Rd → R is the aggregation function (determined by the network model)
and Aρ is the acceptance set of a scalar convex risk measure ρ with penalty function
α.

g(z) = supy∈Rd

(
Λ(y)− zTy

)
: convex conjugate of y 7→ −Λ(−y)

Scalarized systemic risk measure:

ρπ(X) = inf {π(y) | Λ ◦ (X + Y ) ∈ Aρ}

Dual representation:

ρπ(X) = sup
Q∈Md(P),
S∈Me(P),
w∈Rd

+\{0},
λ>0

(
wTEQ [−X]− λES

[
g ◦
(
w

λ
· dQ
dS

)]
− λα(S)−π∗(w)

)
,
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Example 2: systemic risk measure with random capital allocations

random shocks X = L∞d , capital allocations Y =
{
Y ∈ L∞d |

∑d
i=1 Yi ∈ R

}
price of allocation Y : π(Y ) =

∑d
i=1 Yi

aggregation function Λ: Rd → R with g(z) = supy∈Rd

(
Λ(y)− zTy

)
, the convex

conjugate of y 7→ −Λ(−y)

quasiconvex scalar risk measure ρ : Y → (−∞,+∞] with acceptance set family
(B(z))z∈R
Scalarized systemic risk measure:

ρsys(X) = inf

{
d∑
i=1

Yi | Λ ◦ (X + Y ) ∈ B

(
d∑
i=1

Yi

)}
Dual representation:

ρsys(X) = sup
Q∈M1(P),
S∈Me(P),
w∈[0,1],
λ>0

(
w

d∑
i=1

EQ [−Xi]−λES
[
g◦
(
w

λ

dQ
dS

1d

)]
+ inf
z∈R

(
z+ + λα(S; z)

))
,

where α is the penalty function of ρ given by

α(S; z) = inf
{
ES [U ] | U ∈ B(z)

}
.
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To Do

More concrete examples of systemic risk

Time-consistent dynamic set-valued naturally quasiconvex risk measures:

Rs(X)=Rs ◦ −Rt(X) =
⋃

Y ∈Rt(X)

Rs(−Y )

for every 0 ≤ s ≤ t ≤ T .

Dual characterization of time-consistency?
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Thank you!
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