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(economic agents) that is homogeneous ex ante but becomes heterogeneous ex post. They all have
identical initial endowments, live forever, and share the same time-separable utility from consumption.

The private (idiosyncratic) employment shocks are statistically identical, independent, and follow a
finite-state-space Markov chain that admits a unique set of steady-state probabilities.
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Consider one of the computed examples of a Huggett economy in (L&S, Ch. 18): Agents (households)
invest only in IOUs and choose their financial assets from a discrete grid.
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A more scrupulous reader would observe the gap between the two best choices for r and try to close it.
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Despite what is generally believed
the classical textbook approach cannot locate the equilibrium value for 7!
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A Textbook Example (Motivation)

Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € RZ, with transition matrix P (), 5,0 € S.

A generic (“atomistic”) household is faced with the (private) Bellman equation

V(a,s,) = max(U(c,) +5 des P, @)V (a,,. a)) . t=0,1,...,

Crsar4+1
c,+a,, =0+rae+ws, s;€S5, ¢>0, a, €A,
where g, is the amount invested in IOU during period 7, and .A C R is a fixed finite grid.
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A Textbook Example (Motivation)

Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € RL with transition matrix P (), 5,0 € S.
A generic (“atomistic”) household is faced with the (private) Bellman equation

Va,s,) = max(U(c,) +/ 2665 P (0)V (a,,, a)) , t=0,1,...,

Crsar4+1
c,+a,, =0+rae+ws, s;,€S, ¢>0, a, €A,
where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.

Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
investment in IOU, and let 4, be the probability distribution of (a;,s,) € A X S.
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A Textbook Example (Motivation)

Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € RL with transition matrix P (), 5,0 € S.
A generic (“atomistic”) household is faced with the (private) Bellman equation

Va,s,) = max(U(c,) +/ 2665 P (0)V (a,,, a)) , t=0,1,...,

Crsar4+1
c,+a,, =0+rae+ws, s;,€S, ¢>0, a, €A,
where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.
Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
investment in IOU, and let 4, be the probability distribution of (a;, s,) € A X S. Then
Api(a,s) = ZaeA,aes,g(a,H)=a Mo, 0)P.(s), a€A,s€ES,

and A = lim 4, is the long run steady-state distribution of the state of a single household.
t

—00
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Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € Rz with transition matrix P (), 5,0 € S.

A generic (“atomistic”) household is faced with the (private) Bellman equation

Va,s,) = max(U(c,) +8Y, P 0V (g, a)> Ct=0.1... .

Crar+1
c,+a,, =0+rae+ws, s;,€S, ¢>0, a, €A,
where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.
Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
investment in IOU, and let 4, be the probability distribution of (a, s,) € A X S. Then
Ar(a,5) = ZaeA,aes,g(am:a (@, 0)P,(s), a€A,s€ES,

and A, = lim 4, is the long run steady-state distribution of the state of a single household.
t

—00

Ay 1s then re-interpreted as the long run cross-sectional distribution of households over A X S

and the market clearing is a(r) et Z A ses g(a,s)A(a,s)=0.
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A Textbook Example (Motivation)

Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € Rz with transition matrix P (), 5,0 € S.

A generic (“atomistic”) household is faced with the (private) Bellman equation

Va,s,) = max(U(c,) +8Y, P 0V (g, a)> Ct=0.1... .

Crar+1
c,+a,, =0+rae+ws, s;,€S, ¢>0, a, €A,
where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.
Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
investment in IOU, and let 4, be the probability distribution of (a, s,) € A X S. Then
Ar(a,5) = ZaeA,aes,g(am:a (@, 0)P,(s), a€A,s€ES,

and A, = lim 4, is the long run steady-state distribution of the state of a single household.
t

—00
Ay 1s then re-interpreted as the long run cross-sectional distribution of households over A X S

and the market clearing is a(r) et Z A ses g(a,s)A(a,s)=0.

The idea is to find the zero of the function r ~ a(r).
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where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.
Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
investment in IOU, and let 4, be the probability distribution of (a, s,) € A X S. Then
Ar(a,5) = ZaeA,aes,g(am:a (@, 0)P,(s), a€A,s€ES,

and A, = lim 4, is the long run steady-state distribution of the state of a single household.
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Ay 1s then re-interpreted as the long run cross-sectional distribution of households over A X S

and the market clearing is a(r) et Z A ses g(a,s)A(a,s)=0.
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The idea is to find the zero of the function r ~ a(r). !
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Dual Approach fo fluctuate inside S = ( o712, 708 o704 g0 04 08 1.2 ) € RL with transition matrix P (), 5,0 € S.
T — A generic (“atomistic”) household is faced with the (private) Bellman equation

Model Description pa— —_—

e Via,s,) = f}jﬁ(U(c’) +p 2665 P, (0)V (a1, 6)) , t=0,1,...,

The Private FOCs

Recursive Algorithm C;+a;+1 =(1+r)a1+wsz’ sr ES’ Ct >0’ at+1 E‘A’

Bewley Models where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.

Conmmcine: Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal

o investment in IOU, and let 4, be the probability distribution of (a*, s,) € A X S. Then

Finite FG

Generic PM Setup _

At (@)= X e M@ OIP(5), a€ A sES,

Decoupling Fields and A = lim 4, is the long run steady-state distribution of the state of a single household.

Discrete Time t—oo
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Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)

Dual Approach to fluctuate inside S = ( e712, 0708 o704 G0 04 08 ,12 ) [ Rz with transition matrix P (), 5,0 € S.

o A generic (“atomistic”) household is faced with the (private) Bellman equation

Background and
Moti

V(a.s) = max (V@+8Y, P @V @), 1=0.1,....
The Private FOCs

e A ¢+a,=0+nra+ws, s,€S, ¢>0, a, €A,

Sl e where g, is the amount invested in IOU during period 7, and A C R is a fixed finite grid.

Revisited

Conmmcine: Letg: A XS+ A denote the optimal policy function, let a;, | = g(a,, 5,) € A be the optimal
o investment in IOU, and let 4, be the probability distribution of (a*, s,) € A X S. Then

Finite MFG

Generic PM Setup —
hii(a,5) ZaeA,aes,g(am:a M@, o)P,(s), ac€A,s€S,

Decoupling Fields and A = lim 4, is the long run steady-state distribution of the state of a single household.
t

—00

Discrete Time

& A 18 then re-interpreted as the long run cross-sectional distribution of households over A X S !

Conclusion
o def z: —
and the market clearing is a(r) = el ses g(a,s)A(a,s) =0.

(?

The idea is to find the zero of the function r ~ a(r). !

N.B. If the agents can sample their individual state (a, s) from the law A — independently from one

ara another — then the cross-sectional distribution will indeed be A, .
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A Textbook Example (Motivation)

N.B. No two households can solve their savings problems independently, since optimality requires:

s
oU(¢))

—E, [aU(C,+1)( 1 T Dr+l)]

=St_

_b
oU(c?)

E, [0 (C,+])(Sr+l + Dt+l)]
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No two households can solve their savings problems independently, since optimality requires:

b e
0U( ) aU( 2 E [aU(CrH)( t+1 + DH—l)]'

The sum of any finite number of i.i.d. r.v. can be O only if every r.v. is 0.

—E, [aU(C,+])( 1 T Dr+l)] =5 =
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A Textbook Example (Motivation)

N.B. No two households can solve their savings problems independently, since optimality requires:

s i P 2
MEI [aU(cH] (St+l + Dr+l)] =S, = 6U(c,2) E, [aU(CH.])(SrH + Dr+l)] .
N.B. The sum of any finite number of i.i.d. r.v. can be 0 only if every r.v. is 0. That this creates a
problem when it comes to market clearing has been known for some time — see the “exact law of large

numbers” (Duffie and Sun, 2012, 2019).
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A Textbook Example (Motivation)

N.B. No two households can solve their savings problems independently, since optimality requires:

s
oU(¢))

—E, [aU(C,+])( 1 T Dr+l)] =5 =

b
oU(c?)

—E, [()U(CH_])( 1 T Dt+l)] :

N.B. The sum of any finite number of i.i.d. r.v. can be 0 only if every r.v. is 0. That this creates a
problem when it comes to market clearing has been known for some time — see the “exact law of large
numbers” (Duffie and Sun, 2012, 2019).

N.B. The classical (DP) approach can produce the equilibrium if there are only 2 employment states:

interest rate r

0.0025

-0.0050

0.0000

-0.0075

00100

r~-0.00121521

2,000 grid-points

04 03 02 0.1

average assets a(r)

0.0
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N.B. No two households can solve their savings problems independently, since optimality requires:
Dual Approach to ﬁ ﬁ
GEl ——E,[0U(c, )(Sis1 + D,yy)| =S, = E,[0U(c, )(Sis1 + Dyyy)
t 1 t+1 t+1 t t 1 t+1 t+1 N

Background and U (chH [ 1+ ] oU(c?) [ =+ ]

Motivation t t

B N.B. The sum of any finite number of i.i.d. r.v. can be 0 only if every r.v. is 0. That this creates a

The Private FOCs problem when it comes to market clearing has been known for some time — see the “exact law of large
e et numbers” (Duffie and Sun, 2012, 2019).
Bewley Models . iyer - .
Revisited N.B. The classical (DP) approach can produce the equilibrium if there are only 2 employment states:
Com ation

Examples

Finite MFG 00000 . °

Generic PM Setup r~ ~0.00121521 -’

Metaprogram oo .

Decoupling Fields 2

Discrete Time ;

Continuous Time 16) -0.0050 .

Conclusion -

-0.0075
2,000 grid-points
-0.0100 | ®
-0.4 03 02 -0.1 0.0 0.1

average assets a(r)

N.B. There is a continuous-time version: Achdou et al. (2014) Phil. Trans. R. Soc. A 372: 20130397
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“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
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“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices.
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“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
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“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.

“Solving N player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N — oo of large games.” (Carmona & Delarue, Vol. I).



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Model Descriptior
Equilibrium

The Private FOCs
Recursive Algorithm
Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram
Decoupling Fields
Discrete Time

Continuous Time

Conclusion

6/41

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.

“Solving N player games for Nash equilibria is often difficult, even for one period deterministic games,

and the strategy behind the theory of mean field games is to search for simplifications in the limit
N — oo of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
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In the model proposed by Lasry and Lions (2006) the players influence each other in their private

R A decisions, but only through the aggregate empirical distribution of their private states.

Mot The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
e agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and

“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

Equilibrium

Bewley Models

R(“H In some models the “representative player” point of view may not be implementable; the private states

Examples may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
Finite MFG distribution of the private states into a single McKean-Vlasov equation.

Generic PM Setup

Vet N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
e the private control problems are indeterminate until all agents agree on those prices. The agents act as
Contnuous Time “price takers,” but the prices must be such that every agent can make an optimal choice (given their
Conclusion respective state) and the markets clear.

“Solving N player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N — oo of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).

N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
6/41 limit as N — oo.



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Model Descriptior
Equilibrium

The Private FOCs
Recursive Algorithm
Bewley Models
Revisited
Computation

Examples

Finite MFG
Generic PM Setup
Metaprogram
Decoupling Fields
Discrete Time

Continuous Time

Conclusion

6/41

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent as N — oo; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.

“Solving N player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N — oo of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).

N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limitas N — oo.
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The Dual (Principle of Maximum) Approach to GEI

The key steps in the dual method proposed by (Dumas &L 2012) are:

(a) the use of consumption (instead of financial wealth) as a “state variable;”

(b) a special re-timing of the first order conditions (FOCs), such that at every step in the recursion one
solves for certain control variables attached to the current period and other control variables
attached to the next period.
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The key steps in the dual method proposed by (Dumas &L 2012) are:

(a) the use of consumption (instead of financial wealth) as a “state variable;”

(b) a special re-timing of the first order conditions (FOCs), such that at every step in the recursion one
solves for certain control variables attached to the current period and other control variables
attached to the next period.

The result is a computable program that overcomes the forward-backward conundrum.

This approach is essentially a reinterpretation (with a twist)
of the principle of maximum and the idea of decoupling fields.

The twist, however, is substantial and both concepts will have to be rebuilt from scratch.

We shall work mostly in discrete time, where the intuition is cleaner and the mathematical technicalities
are fewer.
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The Dual (Principle of Maximum) Approach to GEI

The key steps in the dual method proposed by (Dumas &L 2012) are:

(a) the use of consumption (instead of financial wealth) as a “state variable;”

(b) a special re-timing of the first order conditions (FOCs), such that at every step in the recursion one
solves for certain control variables attached to the current period and other control variables
attached to the next period.

The result is a computable program that overcomes the forward-backward conundrum.

This approach is essentially a reinterpretation (with a twist)
of the principle of maximum and the idea of decoupling fields.

The twist, however, is substantial and both concepts will have to be rebuilt from scratch.

We shall work mostly in discrete time, where the intuition is cleaner and the mathematical technicalities
are fewer.

What follows is an extension of (Dumas & L 2012) for the case infinitely many agents, with a bridge to
mean field games and control.
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H ¥ the collection of economic agents, with L = || assumed to be “very large.”
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The Dual (Principle of Maximum) Approach to GEI

H ¥ the collection of economic agents, with L = || assumed to be “very large.”

Time is discrete t € N, & {0, 1, ..., T}, and the economic agents are ex-ante identical, with a common
utility R, 3 ¢ ~ U(c) € R, which is as nice as needed.
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Time is discrete t € N, & {0, 1, ..., T}, and the economic agents are ex-ante identical, with a common
utility R, 3 ¢ ~ U(c) € R, which is as nice as needed.

The employment in every household follows — independently from all other households — a Markov chain
with a finite state space S C R, and transition matrix P = (P(c), s, € S), which admits a unique set
of steady-state probabilities 0 < z(s) < 1, s € S.
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with a finite state space S C R, and transition matrix P = (P(c), s, € S), which admits a unique set
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The employment in every household follows — independently from all other households — a Markov chain
with a finite state space S C R, and transition matrix P = (P(c), s, € S), which admits a unique set
of steady-state probabilities 0 < z(s) < 1, s € S.

N.B. Anemployment state s € S corresponds to s/ L units of actual labor, and the aggregate amount of
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installed labor during any one period is N = ZSES L(n'(s)L) = Z:es sn(s).

Assume a constant-return-to-scale production function with stochastic TFP:

F. (K. N) = Et+1K,aN1_a

with K, £ the aggregate capital stock installed at time 7.
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H ¥ the collection of economic agents, with L = || assumed to be “very large.”
Time is discrete t € N, & {0, 1, ..., T}, and the economic agents are ex-ante identical, with a common
utility R, 3 ¢ ~ U(c) € R, which is as nice as needed.
The employment in every household follows — independently from all other households — a Markov chain
with a finite state space S C R, and transition matrix P = (P(c), s, € S), which admits a unique set
of steady-state probabilities 0 < z(s) < 1, s € S.

N.B. Anemployment state s € S corresponds to s/ L units of actual labor, and the aggregate amount of
: : iod i def 5 —

installed labor during any one period is N = ZSES L(n'(s)L) = Z:es sn(s).

Assume a constant-return-to-scale production function with stochastic TFP:

F,(K,N)= Et+1K,aN1_a
with K, £ the aggregate capital stock installed at time 7.

N.B. Installed capital depreciates atrate 0 < 6 < 1.

The TFP (Z,) follows a MC with state space X C R, , |X| < oo, and transition matrix
Q = (9,(8), x, & € X) that admits a unique set of steady-state probabilities 0 < y(x) < 1, x € X.

N.B. The rental rates for labor and capital are:

Wiy = E(1—a)(K,/N)* and  p,) = Ex+1a(Kz/N)a_l .
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The Dual (Principle of Maximum) Approach to GEI

During every period t € N, a household can:

(a) consume,

(b) invest in a risk-free private IOU,
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The Dual (Principle of Maximum) Approach to GEI

During every period t € N, a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.
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During every period t € N, a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.

Let F & the space of cumulative distribution functions over R, .
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During every period t € N, a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.

Let F % the space of cumulative distribution functions over R, , .

The collective state of the population can be described as an element € F¥, i.e., as a family
of CDFs on the consumption space: R,, 3¢ ~ f(c) €[0,1], s€ES.
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(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.

Let F % the space of cumulative distribution functions over R, , .

The collective state of the population can be described as an element € F¥, i.e., as a family
of CDFs on the consumption space: R,, 3¢ ~ f(c) €[0,1], s€ES.

N.B. The number of households in states (s, c) with ¢; < ¢ < ¢, is: n(s)(ps(cz) - ,fs(cl)) |H]| .
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The Dual (Principle of Maximum) Approach to GEI

During every period t € N, a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.

Let F & the space of cumulative distribution functions over R, .

The collective state of the population can be described as an element € F¥, i.e., as a family
of CDFs on the consumption space: R,, 3¢ ~ f(c) €[0,1], s€ES.

N.B. The number of households in states (s, c) with ¢; < ¢ < ¢, is: n(s)(ps(cz) - ,fs(cl)) |H| .

In every aggregate state x € X, the choice of a consumption record, ¢ € R, for an agent in employment
state s € S, together with the choice of a collective (consumption) state f € F°, completely determines
that agent’s exiting portfolio record and their next period consumption record, contingent upon the next
period realizations of the aggregate state £ € X and the employment state ¢ € S.
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The Dual (Principle of Maximum) Approach to GEI

During every period t € N, a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record ¢ € R, corresponds to an actual consumption level of ¢/ L.

Households that are in the same employment state
and choose the same consumption level (i.e., consumption record) are identical.

Let F & the space of cumulative distribution functions over R, .

The collective state of the population can be described as an element € F¥, i.e., as a family
of CDFs on the consumption space: R,, 3¢ ~ f(c) €[0,1], s€ES.

N.B. The number of households in states (s, c) with ¢; < ¢ < ¢, is: n(s)(ps(cz) - ,fs(cl)) |H| .

In every aggregate state x € X, the choice of a consumption record, ¢ € R, for an agent in employment
state s € S, together with the choice of a collective (consumption) state f € F°, completely determines
that agent’s exiting portfolio record and their next period consumption record, contingent upon the next
period realizations of the aggregate state £ € X and the employment state ¢ € S.

The portfolio record {6, , ((c, F), 9, ;(c, F)} corresponds to an actual investment in the bond of

0, . (c, F)/L and an actual investment in the capital stock of 9, , ((c, F)/ L. The next period consumption

record v

+.s(¢, F) corresponds to an actual consumption level of vﬁ;zs(c, /L.
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The Dual (Principle of Maximum) Approach to GEI

Definition of Equilibrium

Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:

R, XF$3(c.p) ~ O, (c.pHER, I, (c.p)ER, VI(c.p)ER,,:;

1,X,5
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Definition of Equilibrium
Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:

R XF$3(c,p) ~ 0,(c,PER, 8 (.HER, Vi(.PER,,;

(b) a collection of assignments (representing risk-free rates and installed productive capital)

XXFS2(x,p) ~ r(x,peER, K(xpeER, , forallteN,_;
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Definition of Equilibrium
Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:
R, X FS3(c,p) ~ 0,.c.DER, I, (c.F)ER, vfﬁs(c, FER, . ;
(b) a collection of assignments (representing risk-free rates and installed productive capital)

XXFS2(x,p) ~ r(x,peER, K(xpeER, , forallteN,_;

ALL CHOSEN SO THAT,
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XXFS2(x,p) ~ r(x,peER, K(xpeER, , forallteN,_;
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Computation
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The Dual (Principle of Maximum) Approach to GEI

Definition of Equilibrium

Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:

R, X FS> (c,p) ~= 9,’X_S(c,/:) ER), 19,’X’S(c, HER, vfﬁs(c, FER, . ;
(b) a collection of assignments (representing risk-free rates and installed productive capital)
XXFS>(x,f) ~ r(x,F)ER, K/(x,p)ER,, , forallte N_;

ALL CHOSEN SO THAT, given any t € N, x € X, and f € F°, having all agents act as rational price
takers, for the returns determined by r,(x, £) and K,(x, f), implies that:
(a) the cross-sectional distribution of agents over the consumption space at the end of period 7 is F;

(b) the exiting portfolio record for an agent who is in employment state s € S and has chosen (as a
rational price taker) the consumption record ¢ € R, is {0, (¢, F), 9, (¢, p)};

(c) the period (¢ + 1) consumption record for the same agent, contingent upon the realizations of £ € X
and o € S,is vi7 (¢, p);
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The Dual (Principle of Maximum) Approach to GEI

Definition of Equilibrium

Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:

R, X FS> (c,p) ~= 9,’X_S(c,/:) ER), 19,’X’S(c, HER, vfﬁs(c, FER, . ;
(b) a collection of assignments (representing risk-free rates and installed productive capital)
XXFS>(x,f) ~ r(x,F)ER, K/(x,p)ER,, , forallte N_;

ALL CHOSEN SO THAT, given any t € N, x € X, and f € F°, having all agents act as rational price
takers, for the returns determined by r,(x, £) and K,(x, f), implies that:
(a) the cross-sectional distribution of agents over the consumption space at the end of period 7 is F;

(b) the exiting portfolio record for an agent who is in employment state s € S and has chosen (as a
rational price taker) the consumption record ¢ € R, is {0, (¢, F), 9, (¢, p)};

(c) the period (¢ + 1) consumption record for the same agent, contingent upon the realizations of £ € X
and o € S,is vi7 (¢, p);

and (d) the markets clear:

D es ) /0 8,.5(c, )AF,(c) = 0 and D es ) /0 8, s(c. Pdry(e) = K (x, p).
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Definition of Equilibrium

Equilibrium in the economy described in the previous slides is every choice of: (a) a collection of
mappings, forallt e N,_,,x € X,ands € S:

R, X FS3(c,f) ~= 0,.c.DER, I, (c.F)ER, vf;:s(c, FER, . ;
(b) a collection of assignments (representing risk-free rates and installed productive capital)
XXFS>(x,f) ~ r(x,F)ER, K/(x,p)ER,, , forallte N_;

ALL CHOSEN SO THAT, given any t € N, x € X, and f € F°, having all agents act as rational price
takers, for the returns determined by r,(x, £) and K,(x, f), implies that:
(a) the cross-sectional distribution of agents over the consumption space at the end of period 7 is F;

(b) the exiting portfolio record for an agent who is in employment state s € S and has chosen (as a
rational price taker) the consumption record ¢ € R, is {0, (¢, F), 9, (¢, p)};

(c) the period (¢ + 1) consumption record for the same agent, contingent upon the realizations of £ € X
and o € S,is vi7 (¢, p);

and (d) the markets clear:

D es ) /0 8,.5(c, )AF,(c) = 0 and D es ) /0 8, s(c. PAF,(c) = K, (x, ).
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At time ¢ € N_, an agent would enter the employment state s € S with wealth z/ L for

Dual Approach to
GEI def
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Moti on

Model Descriptio which amount is treated as a given resource.

Equilibrium

?“""“‘“Ff’“ Given any x € X and any F € F*, the agent’s value, V. «s.s(2/ L), obtains from the optimization problem
Bewley Models ..

L mpize(UE/ D+ Ty L Virsra 26/ L)QOP0).

B subject to:
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The Dual (Principle of Maximum) Approach to GEI

At time ¢ € N_, an agent would enter the employment state s € S with wealth z/ L for
z¥ O+ 9o+ wys,

which amount is treated as a given resource.

Given any x € X and any F € F*, the agent’s value, V. «s.s(2/ L), obtains from the optimization problem

maximize(U(c/L)+ 8 2, D\ Virzra(ZE0)/L)QEP)),

¢.0,9.Z(¢,0)
subject to:
Z(&,0) = 0(1+r,(x,F) + 9141 (%, F, &) + 0w, (X, F, E)
and 0+I9+c=z.

forevery € X, 0€ S,

N.B. The agent takes the present period £ € F° and the next period F € F* as given.

N.B. The aggregate (collectively decided) installed capital in state (x, r) is K,(x, ) and

Wi (6, F,8) = E1 = ) (K,(x, )/N)*  and oy (x, £, &) = Ea(K,(x, /N) .
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The Dual (Principle of Maximum) Approach to GEI

At time ¢ € N_, an agent would enter the employment state s € S with wealth z/ L for
z¥ O+ 9o+ wys,
which amount is treated as a given resource.

Given any x € X and any F € F*, the agent’s value, V. «s.s(2/ L), obtains from the optimization problem

c,0,9,Z(&,0)

maximize(U(c/L)+ 8 2, D\ Virzra(ZE0)/L)QEP)),
subject to:

ZE0)=0(14r,xp) +9p,(x.F.&) + ow, (x,F. &), forevery E€X,0€S,
and O0+39+c=z.

N.B. The agent takes the present period £ € F° and the next period F € F* as given.
N.B. The aggregate (collectively decided) installed capital in state (x, r) is K,(x, ) and
a a—1
Wi (5 FE) =61 - a)(K (. )/N)"  and  p,(x, 7 8) = Ea(K (x,/N)" .

N.B. The first set of constraints can be cast as:

Z(f,a)—B(l +r,(x,F)) -9, FE —ow, (X, F,+0+I9+c=z, E€X,0€ES.
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The Dual (Principle of Maximum) Approach to GEI

The Lagrange multipliers (covariables) attached to the period (z + 1) constraints we put in the form
%@(5, 0)Q.(£)P,(0) and the one attached to the period ¢ constraint we put in the form ¢/ L.
The Lagrangian function for the period ¢ private optimization problem is:

L(c,0,9, Z(£,0),D(,0),6 €X,0 €S)=U(c/L) + Zfe)ﬁ,aes Virreo(Z(E 0)/L)Q(&)P(0)
+ % dexﬁes @, 6)(z = ZE0)+ 0(1+7,(x, ) + 9p1 (X F, &) + 0w, (X, F, €)
—0-9-c)QP )+ 2 (z:-0-9c).

With ¢ E @+ Z:eX - D(&,0)Q,(&)Ps(c) the FOCs can be cast as:

P¢.0) =V, ., (ZE /L), ¢=U'(c/L),
¢= (148 Y ey oes PEDAUEP0).
$=P e res PE(EFOQEP (o).
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The Dual (Principle of Maximum) Approach to GEI

The Lagrange multipliers (covariables) attached to the period (z + 1) constraints we put in the form
Z@(.f, 0)Q.(£)P,(0) and the one attached to the period ¢ constraint we put in the form ¢/ L.

The Lagrangian function for the period ¢ private optimization problem is:
£(.0.9.2(6.0).9(.0).E €X.0 €)= UC/L+P Y, o Virrero(Z(E0)/L)QOP(0)
+ % dex,ges D, o‘)(z =Z¢. o)+ 9(1 + ri(x, F)) + 79pt+](xﬂ FE)+ow, 1 (x,F,&)
—0-9-c)QP )+ 2 (z:-0-9c).

With ¢ E @+ Z D(&,0)Q,(&)Ps(c) the FOCs can be cast as:

feX.ceS

P¢.0) =V, ., (ZE /L), ¢=U'(c/L),
¢= (148 Y ey oes PEDAUEP0).
$=P e res PE(EFOQEP (o).

the envelope theorem = [ Vrfx,m(z/L) =@+ ﬂz.gex,aes D(,0)Q,(OPs(0) = ¢ = U'(c/L). ]

N.B.  consumption <==> covariables
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Since @(£,0) =V, .. (Z( 0)/L) =U'(viy (e, F)/L), the last two FOCs give the

kernel conditions :

s P/
L= (1+r(x.p)p dex es %QX(E)PS(G),

U (v (e.p/L)
=4 Z.feX,aES U'(c/L)
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Moti

Model Descriptior

Eitrion R, XxFS2(c,f) ~ O1es(e ) ER, Iy .,(c,p), forall £€X and o €S.

RESIE A Given x € X, choose and fix fF € [, and make an ansatz choice for r,(x, F) € Rand K,(x,f) € R,.
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Model Descriptior

‘le‘m R, % FS> (c,p) ~ €,+1)5Y‘,(c, HER, 19,+,Y5‘6(c,,c), forall £€X and o €S.
RESIE A Given x € X, choose and fix fF € [, and make an ansatz choice for r,(x, F) € Rand K,(x,f) € R,.
Bewley Models

Revisited For every fixed (s,c) € S X R, _, consider the following system of 2 + |X| X | S| equations,

parameterized by (7° € F®, £ € X), for the (same exact number of) unknowns 6, . (¢, ), 9, (c. ), and
C(c.p),EEX, 0 E€S:

Finite MFG Vixs
[u\ljurl‘|;\\‘1w‘!l ields = ﬂ(l i, F)) ZieXﬁES UI(V’ 2% ’(C F)/C)Q (©)Py(0),
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Conclusion K (x, p)* 1 K (x, p)*
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Solving the system for all the choices of (s,c) € S X R, , gives the functions:
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Now test the identities (between functions on R__,)

? ()P, ,
E. ()= zses o) ——2 ) (V2. p70,c]) forallc€R,,, c€S £€X. *

If at least one of the identities in  fails, the choice of F € F¥, £ € X is to be modified accordingly (e.g.,
the right side of x could be the next choice) and % is to be solved again — until * is satisfied.

Once the identities in % have been attained, the solution
(s,0) ~ 0, (c.p)y (s,0)~ 9, (c.p), and (s,c)~v'(c.p), EEX, 6€S,

gets accepted temporarily , and the following two market clearing conditions are to be tested:

IR0 / 0, PAF =0, Y a(s) / 9ple. AR = K (o). 1
; 0 ; 0
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Now test the identities (between functions on R__,)

? ()P, ,
E. ()= zses o) ——2 ) (V2. p70,c]) forallc€R,,, c€S £€X. *

If at least one of the identities in  fails, the choice of F € F¥, £ € X is to be modified accordingly (e.g.,
the right side of x could be the next choice) and % is to be solved again — until * is satisfied.

Once the identities in % have been attained, the solution
(s,0) ~ 0, (c.p)y (s,0)~ 9, (c.p), and (s,c)~v'(c.p), EEX, 6€S,

gets accepted temporarily , and the following two market clearing conditions are to be tested:

IR0 / 0, PAF =0, Y a(s) / 9ple. AR = K (o). 1
; 0 ; 0

If at least one of these conditions fails, then the ansatz choice of r,(x, F) and K,(x, f) is to be modified and
the entire process is to be repeated until ¢ holds.
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Now test the identities (between functions on R__,)

~E ? ( ) 5,0

E. ()= zses o) ——2 ) (V2. p70,c]) forallc€R,,, c€S £€X. *
If at least one of the identities in  fails, the choice of F € F¥, £ € X is to be modified accordingly (e.g.,
the right side of x could be the next choice) and % is to be solved again — until * is satisfied.

Once the identities in % have been attained, the solution
(s,0) ~ 0, (c.p)y (s,0)~ 9, (c.p), and (s,c)~v'(c.p), EEX, 6€S,

gets accepted temporarily , and the following two market clearing conditions are to be tested:

IR0 / 0, PAF =0, Y a(s) / 9ple. AR = K (o). 1
; 0 ; 0

If at least one of these conditions fails, then the ansatz choice of r,(x, F) and K,(x, f) is to be modified and
the entire process is to be repeated until ¢ holds.
The same procedure is then repeated with various choices for £, so that the solution can be cast as

(s,e,p) ~ 0, . (c.p), (s,¢,p)~ 9, (c,F), and (s,c,F) ~ vffy\_(c,,C), forall e X and 0 € S.
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If at least one of the identities in  fails, the choice of F € F¥, £ € X is to be modified accordingly (e.g.,
the right side of x could be the next choice) and % is to be solved again — until * is satisfied.
Once the identities in % have been attained, the solution

(s,0) ~ 0, (c.p)y (s,0)~ 9, (c.p), and (s,c)~v'(c.p), EEX, 6€S,

gets accepted temporarily , and the following two market clearing conditions are to be tested:

IR0 / 0, PAF =0, Y a(s) / 9ple. AR = K (o). 1
; 0 ; 0

If at least one of these conditions fails, then the ansatz choice of r,(x, F) and K,(x, f) is to be modified and
the entire process is to be repeated until ¢ holds.

The same procedure is then repeated with various choices for £, so that the solution can be cast as
(s,eop) =0, (c.p), (s,e,p) =9, (c.p), and (s,c,F) ~ Vf;.”,,\.(c, F), forall {€X and c €S.

Finally, the same procedure is repeated with all other choices for x € X.
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Now test the identities (between functions on R__,)

? ()P, ,
E. ()= zses o) ——2 ) (V2. p70,c]) forallc€R,,, c€S £€X. *

If at least one of the identities in  fails, the choice of F € F¥, £ € X is to be modified accordingly (e.g.,
the right side of x could be the next choice) and % is to be solved again — until * is satisfied.
Once the identities in % have been attained, the solution

(s,0) ~ 0, (c.p)y (s,0)~ 9, (c.p), and (s,c)~v'(c.p), EEX, 6€S,

gets accepted temporarily , and the following two market clearing conditions are to be tested:

IR0 / 0, PAF =0, Y a(s) / 9ple. AR = K (o). 1
; 0 ; 0

If at least one of these conditions fails, then the ansatz choice of r,(x, F) and K,(x, f) is to be modified and
the entire process is to be repeated until ¢ holds.

The same procedure is then repeated with various choices for £, so that the solution can be cast as
(s,e,p) ~ 0, . (c.p), (s,¢,p)~ 9, (c,F), and (s,c,F) ~ vffy\_(c,,C), forall e X and 0 € S.
Finally, the same procedure is repeated with all other choices for x € X.

After that the recursion can proceed to period (f — 1) — all the way to period ¢ = 0.
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Since all agents are exactly identical before the time t = 0 aggregate shock x € X and all private shocks
s; €S, i € H, are realized, the actual (physical) distribution of the households, F™ € F S, must be such

that £ = / 8, . forevery s € S.
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The Dual (Principle of Maximum) Approach to GEI

Since all agents are exactly identical before the time t = 0 aggregate shock x € X and all private shocks
s; € S, i € H, are realized, the actual (physical) distribution of the households, £™ € F*, must be such

that £ = 8., forevery s € S. Thus, F™ depends on | S| unknown scalars ¢, € R, ,, s € S, which

can be fixed from the following system of exactly |S| equations:
K_*

00,0, (s F™) + 99 (o F™) + ¢, = x(1 — @) ~o S S€ S.

(private borrowing/lending + investment + consumption = paycheck )

N.B. The economy must be endowed with some “primordial” aggregate capital K_,, which the agents
do not hold by birth, for otherwise the production function cannot produce any wages during the initial
period ¢ = 0.

All initial portfolios 6, ,(c,, /™) and 9, ,(c,, F™), s € S, are now fully determined, and so are the
period ¢ = 1 private consumption plans vfzs(cs, FM), x € X, 5,6 € S, and collective consumption choice
Ff e FS, & € X, from

pe _ TPss + iniy(fo iniy~1
F* (c) = ers W(dﬂ )(v G, ™) (]O,C])) , forallceR, , c€S L€ X.

0,x,s
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N.B. With T = oo the collective state f* € F*, attached to every aggregate state x € X, remains
constant and can be suppressed in the notation.
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R N.B. With T = oo the collective state f* € F*, attached to every aggregate state x € X, remains
ael constant and can be suppressed in the notation.
Moo With U(c) = (c!"® — 1)/R, the FOCs for household “c” in state (x, s) € X X S are:

Sy _ c
1= Y e oes( - 5%)) (1+7(0)2,(©Py(0),

Recursive Algorithm

R K(x)a—l
Bewley Models ¢ —
R 1= Y s “@) (fa—om —6) 0P, 0).
. K(x )a i K(x)a
Finite MFG 0’( Y(c)(l + r(x)) + &x Y(c)(&a ) + é(l - 01)
S =Vl + Hfg(vf SO +9:,(vE0(e). E€X.o€ES.
[:j"“”'f']‘"“' e N.B. Consumption is both a state variable and a “dual” variable.
Conclusion
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Bewley-Aiyagari-Huggett Models

N.B. With T = oo the collective state f* € F*, attached to every aggregate state x € X, remains
constant and can be suppressed in the notation.

With U(c) = (c!"® — 1)/R, the FOCs for household “c” in state (x, s) € X X S are:

c
=0 T s (g ) 1 0N 0P @),

1= ZEEA’ u—eS( zi(c) >R(5“ K]E;C,,):_l - 6>Qx(§)px(o_),
( )a 1

K(x)“

0.,(c)1 +r(x))+19“(c)(§a )+.§(1 —a)

= v“(c) + ega(v“(c)) +9:,(vf0(), E€X,0€S.
N.B. Consumption is both a state variable and a “dual” variable. The connection between the next
period consumption and the present period consumption is essentially a connection between the next

period covariables and the present period covariables — whence the parallel with the principle of
maximum.
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N.B. With T = oo the collective state f* € F*, attached to every aggregate state x € X, remains
constant and can be suppressed in the notation.

With U(c) = (c'~® = 1)/R, the FOCs for household “c” in state (x, s) € X x S are:
l_ﬂzgex Ues( ; ) (1+7(0))Q(&Py(0).

viy (©)
c R K(x)”—]
1=p Z._eX (rES( &, D'(C) ) (5(1 Na-1 - 6>Qx('§)7);(0') B
a— ] a
0,1 +r(x))+l9m(c)(ga (l) >+5<1 _a)K(x)

= VIO + 0, (VT (@) + 9 ,(vET(e), EEX,0€ES.

N.B. Consumption is both a state variable and a “dual” variable. The connection between the next
period consumption and the present period consumption is essentially a connection between the next
period covariables and the present period covariables — whence the parallel with the principle of
maximum.

N.B. One is faced with infinitely many optimization problems
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ael constant and can be suppressed in the notation.
Background and

oivaio With U(c) = (¢!"® — 1)/R, the FOCs for household “c” in state (x, s) € X X S are:

Model Description

A vid(e

B 1=/ 2_€X m( o) (e —o)ouem.

0.1 + 70 + 0,0 (G )“l 1 5)+e1 -0 o,

SR =vio(e)+ efg<vf”<c>> +9:,05%(), £€X,o€ES.
SEETTLGES N.B. Consumption is both a state variable and a “dual” variable. The connection between the next

Discrete Time

Continuous Time

period consumption and the present period consumption is essentially a connection between the next
period covariables and the present period covariables — whence the parallel with the principle of

maximum.
N.B. One is faced with infinitely many optimization problems that must be solved “in an orchestra,”
together with the market clearing

I /O 0.,dF =0 and o, /0 9, ,()dF ()= K(x), x€X.

Conclusion
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(3) next-period-consumption mappings R, 3¢ ~ vﬁ’s"(c) ER,,, x,(€X,s0€S;
(4) distribution functions R,, 3¢~ (c) €[0,1], x€X,sES;
=> all chosen so that the first order conditions and the market clearing conditions hold.
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Revisited

e => all chosen so that the first order conditions and the market clearing conditions hold.

Examples

IL"HII\:H The key step in the program that follows next is in the following connection:
[,m,‘,l,@,g . The collective consumption states, f* € F S x € X, solve:
Discrete Time
v (x)Q, (&) n(s)P(0)
Continuous Time & — X S X &0yl 3
st Fo)= EXGXJES 4] o) | AT, e elhel, ced, o €S,
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Recursive Algorithm

Crlledi (4) distribution functions R,, 3¢ ~ F(c)€[0,1], xe€X,s€eS;

Revisited

e => all chosen so that the first order conditions and the market clearing conditions hold.

Examples

e The key step in the program that follows next is in the following connection:

Generic PM Setup

Metaprogram

The collective consumption states, f* € F S x € X, solve:

Decoupling Fields

£ ooy = w(0)Q,(§) 7(5)P,(0)
F J(C) ZXGX,SES W(é) 71'((.7)

Conclusion

FAVEY (), celoe], éeX. ceS.

N.B. (a) The collective consumption states F* € F°, x € X, obtain from the collective FOCs.
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Definition
Equilibrium in this economy is any choice of:
(1) aggregate physical capital K(x) € R, and interest rate r(x) € R attached to every x € X;
(2) portfolio mappings R,, D¢~ 0, (c)€ER and R,, 2c~9 (c)ER, x€X,s€S;
(3) next-period-consumption mappings R, 3¢ ~ vﬁ’s"(c) ER,,, x,(€X,s0€S;
(4) distribution functions R,, 3¢~ (c) €[0,1], x€X,sES;
=> all chosen so that the first order conditions and the market clearing conditions hold.

The key step in the program that follows next is in the following connection:

The collective consumption states, f* € F S x € X, solve:
R S X R
R 49 (o)

Fxs((\/jf)_l(c)) , c€]0,¢c], é€eX,0€S.

N.B. (a) The collective consumption states F* € F°, x € X, obtain from the collective FOCs.
(b) Together with the collective kernel conditions, the last relation forces the individual savings problems
to be coordinated.
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Bewley-Aiyagari-Huggett Models

Definition
Equilibrium in this economy is any choice of:
(1) aggregate physical capital K(x) € R, and interest rate r(x) € R attached to every x € X;
(2) portfolio mappings R,, D¢~ 0, (c)€ER and R,, 2c~9 (c)ER, x€X,s€S;
(3) next-period-consumption mappings R, 3¢ ~ vﬁ’s"(c) ER,,, x,(€X,s0€S;
(4) distribution functions R,, 3¢~ (c) €[0,1], x€X,sES;
=> all chosen so that the first order conditions and the market clearing conditions hold.

The key step in the program that follows next is in the following connection:

The collective consumption states, f* € F S x € X, solve:

Y(x)Q, (&) n(s)P(0)
Fo(e) = erx,ses w(&) 7(0)

Fxs((\/jf)_l(c)) , c€]0,¢c], é€eX,0€S.

N.B. (a) The collective consumption states F* € F°, x € X, obtain from the collective FOCs.

(b) Together with the collective kernel conditions, the last relation forces the individual savings problems
to be coordinated.

(c) This coordination is also a connection between the Lagrange multipliers attached to two consecutive
time periods — principle of maximum again.
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,,(), 9, (), vEP(), and F* (), forx,é€X,s5,6€S.
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,,(), 9, (), vEP(), and F* (), forx,é€X,s5,6€S.
N.B. These objects will be computed as cubic splines.
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,(), 9, ,(), vEI(), and F* (), forx,E€X,5,0€S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.”

We have the following system for every choice of s € S and x € X:
a—1

O, () (L4 7r(x)+ 9, ( )(1 +§o¢W —5) +el—a)———o = VETO) + 0, (VTN + 8, ,(v0 (),
EeX,0€S,
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,(), 9, ,(), vEI(), and F* (), forx,E€X,5,0€S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.”

We have the following system for every choice of s € S and x € X:

a—1 a
0, ()L +7r(x)+ 9, ( )(1 +§o¢W —5) +el—a)———o = VETO) + 0, (VTN + 8, ,(v0 (),
EeX,0€S,
1 R R a—1
1- zéghes(_ﬁ( )) (1+100)QuOP(0) = ZEGKUES(V&U( )) (te—om —3)2@P ().



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Background and

Model Description
Equilibrium
The Private FOCs
Recursive Algorithm
Bewley Models
Revisited
Computation
Examples
Finite MFG
Generic PM Setup

Metaprogram

Decoupling Fields
Discrete Time

Continuous Time

Conclusion

20/41

Bewley-Aiyagari-Huggett Models

Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,(), 9, ,(), vEI(), and F* (), forx,E€X,5,0€S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.”

We have the following system for every choice of s € S and x € X:
a—1

0, ()L +r(x)+9, ( )(1 oo —5> +el -0 = VESO) 4 0y (VET )+ 0, (vE0 ()

EeX,0€S,
R R a—1
i ZEGA’ D'ES( fn( )) (1+7())QuOP(0) = zfe?{,ae&'(‘/g“.a( )) (é‘a Ne-1 6>QX(§)P5(G)‘
Legend: = parameter, @ = unknown, @ = given (from the previous step), @ = ansatz choice.
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,4() 9,,(), vjfc), and f*,(-), forx,é€X,s,6 € S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.
We have the following system for every choice of s € S and x € X:

a—1 a
0, ()1 +r(x)+8, ( )(1 +§aW —5) +él—a)— o = VIS 0 ET () + 8z (5T,

EeEX,0ES,
R R a—1
B ZEGX HGS( vE( )) (147()Qu(®Py(0) = z.fex,aes<vg.g( )) (5“ Na—l 5>Qx(§)7’s(6).
Legend: = parameter, @ = unknown, @ = given (from the previous step), ® = ansatz choice.

N.B. For any fixed - (and fixed s and x), this system contains |X| X |S| + 2 equations, for exactly the

same number of unknowns: 6, (), J, ("), vf_f( ).
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,(), 9, ,(), vEI(), and F* (), forx,E€X,5,0€S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.

We have the following system for every choice of s € S and x € X:

a—1 a
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5= Zeeres (- B =) (1+0)e@R@ = Ty oo T )) (te—m - 8)2 0P 0).
Legend:  © = parameter, @ = unknown, @ = given (from the previous step), ® = ansatz choice.

N.B. For any fixed - (and fixed s and x), this system contains |X| X |S| + 2 equations, for exactly the
same number of unknowns: 6, (), J, ("), vf_f( ).
The cross-sectional distribution of households in state (x, s) € X X S is also a fixed point from:

£ XQX SPS ~X O\—
Fol0= Bcrnes ot e PG,
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Solving for the equilibrium comes down to computing the following functions (of private consumption)
0,(), 9, ,(), vEI(), and F* (), forx,E€X,5,0€S.
N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.”

We have the following system for every choice of s € S and x € X:
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N.B. For any fixed - (and fixed s and x), this system contains |X| X |S| + 2 equations, for exactly the
same number of unknowns: 6, (), J, ("), vf_f( ).
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N.B. There is an endogenous upper bound on consumption given by:
c=inf{c € R, 1 vi(c) < cforevery x, € Xand 5,0 € S}.
and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
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GEI c=inf{c € R, 1 vi(c) < cforevery x, € Xand 5,0 € S}.

Background and

Morivation and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
[ e All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, ¢].
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N.B. There is an endogenous upper bound on consumption given by:
c=inf{c € R, 1 vi(c) < cforevery x, € Xand 5,0 € S}.

and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, ¢].

The recursive meta-program for computing the equilibrium is the following:

Step 0: Make an ansatz choice for € R, and € R, x € X (atotal of 2|X| scalar values). Make
an ansatz choice for the collection of portfolio functions ém(~), §m(~), x€X,s €S.Gotostep 1.

Step 1: For all choices of x € X and s € S, and certain choices of ¢ € R, ,, solve the system

K (x)*! K : P . :
0.0+ )+ 0,01+ 8o = 5) 4 8 =) 0 = VEP )+ O (7O + 0,070,
EeX,oc€S.
0 vey ()
- - 5)QOP(0);

K(x)"
Nea-

| viy ()
E = dex,oes ()U( )(1 + r(x))Qx(rf)Ps(a) = ZCEX,{:GS 0U( )< +éa

for the unknowns (|X| X |S| + 2 in number) 6, (1), 9, (), and vZ7( ), € X, s € S.
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N.B. There is an endogenous upper bound on consumption given by:

¢=inf{c €R,, : vj;f(c) < cforevery x,£ € X and 5,6 € S}.
and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, ¢].

The recursive meta-program for computing the equilibrium is the following:

Step 0: Make an ansatz choice for € R, and € R, x € X (atotal of 2|X| scalar values). Make
an ansatz choice for the collection of portfolio functions ém(~), §m(~), x€X,s €S.Gotostep 1.

Step 1: For all choices of x € X and s € S, and certain choices of ¢ € R, ,, solve the system

K™ Kx)*

0.1+ r(0) + 0,1+ &a i

vff( )+ é.f,a(‘/ff( )+ 1()516(\/5‘;7( ),
teX,0€S.

>+§(1—a)

1 Vel () Vel () K(x)"’
E = dex,oes aU( )(1 + r(x))Qx(‘S)pS(”) = ZCEX,{:GS 0U( )( +éa Ne-l E)Q ©)Ps(0);

for the unknowns (|X| X |S| + 2 in number) 6, (), 9, (), and v:f’( ), £ € X, s € S. Find the smallest
€ R, ,, denoted ¢, with the property = > vjf( )forall x,é € X and 5,06 € S.
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N.B. There is an endogenous upper bound on consumption given by:

¢=inf{c €R,, : vj;f(c) < cforevery x,£ € X and 5,6 € S}.
and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, ¢].

The recursive meta-program for computing the equilibrium is the following:

Step 0: Make an ansatz choice for € R, and € R, x € X (atotal of 2|X| scalar values). Make
an ansatz choice for the collection of portfolio functions ém(~), 1§m(~), x€X,s €S.Gotostep 1.

Step 1: For all choices of x € X and s € S, and certain choices of ¢ € R, ,, solve the system

K™ Kx)*

0.1+ r(0) + 0,1+ &a i

vff( )+ é.f,a(‘/ff( )+ 15)516(\/5"5( ),
teX,0€S.

>+§(1—a)

1 Vel () Vel () K(x)"
E = dex,oes aU( )(1 + r(x))Qx(‘s)PS(”) = ZCEX,{:GS 0U( )( +éa Ne-l 6)Q ©)Ps(0);

for the unknowns (|X| X |S| + 2 in number) 6, (), 9, (), and v“”( ), £ € X, s € S. Find the smallest
€ R, ,, denoted ¢, with the property = > vff( ) forall x,& € X and 5,0 € S. Construct a uniform
(equidistant) finite grid, denoted Gy ;, on the interval ]0, ¢ ] (note the exclusion of 0).
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N.B. There is an endogenous upper bound on consumption given by:

¢=inf{c €R,, : vj;f(c) < cforevery x,£ € X and 5,6 € S}.
and this means that one can work on a finite consumption range ¢ € 10, ¢], instead of c € R .
All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, ¢].

The recursive meta-program for computing the equilibrium is the following:

Step 0: Make an ansatz choice for € R, and € R, x € X (atotal of 2|X| scalar values). Make
an ansatz choice for the collection of portfolio functions ém(~), 1§m(~), x€X,s €S.Gotostep 1.

Step 1: For all choices of x € X and s € S, and certain choices of ¢ € R, ,, solve the system

K™ Kx)*

0.1+ r(0) + 0,1+ &a i

vff( )+ é.f,a(‘/ff( )+ 15)516(\/5"5( ),
teX,0€S.

>+§(1—a)

1 Vel () Vel () K(x)"
E = dex,oes aU( )(1 + r(x))Qx(‘s)PS(”) = ZCEX,{:GS 0U( )( +éa Ne-l 6)Q ©)Ps(0);

for the unknowns (|X| X |S| + 2 in number) 6, (), 9, (), and v“”( ), £ € X, s € S. Find the smallest
€ R, ,, denoted ¢, with the property = > vff( ) forall x,& € X and 5,0 € S. Construct a uniform
(equidistant) finite grid, denoted Gy ;, on the interval ]0, ¢ ] (note the exclusion of 0). Go to step 2.
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Step 2: For every choiceof x € X, s € S, and = € Gz) solve
K(x)*

(:
N«

x)%~1

01+ )+ 8,014 G

— o =vET ()0, (VIO + B s (VI (),

—5)+§(1—a)
EeX,0€S;
Vel ()

vES ()

K(x a—1
5= Licroes U )(1+ ta e —8) QP o),

for the unknowns 0 (), 9, (), and vf‘f( ),Ee X, s€S.

)(1 + I'L\")Qx(g)px(o-) = 256(\?,065 aU(
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Step 2: For every choiceof x € X, s € S, and = € Gz) solve

K(x)*1
—_— L = VET() 4 B VET () + B (),

EeX,0€S;

0., () (L+r()) + 9, ( )(1 +a )+§(1 —a)

K(x)*1

vy ( ))(1+€aNT 5)Q,&P:(0),

vi‘g(

1 X,5
B = Z:ex,aes oU (

for the unknowns 0 (), 9, (), and vf‘f( ),Ee X, s€S.

)
J(1+ 7)) Q, (&P (o) = 256(\’,065 ou(

By interpolating the respective values, define the functions 6, (-), 9, ((-), and v f_f(-) as cubic splines over
the grid Gy 4
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Step 2: For every choiceof x € X, s € S, and = € Gz) solve

a—1 a

O, ()L +r00))+ 9, ( )<1+‘5”W —5)+§(1—a) a0 = Ve O+ (VT () + 0, (7 (),
EeX,0€S;

vES () vEZ ()

1 a—1
E = Zéex,oes 0U( )(1 + )Qx(é:)p»‘(o') = 25ex,oes aU( )(l * ‘faw - 5)QX(§)PS(O')5

for the unknowns 0 (), 9, (), and v”"( ),Ee X, s€S.

By interpolating the respective values, define the functions 6, ((-), 9, ((-), and vf_’:(-) as cubic splines over
the grid Gy ;-

Define uniform interpolation grids on the ranges of the functions vf‘f(~), compute the inverse values of

those grid-points and, finally, define the inverse functions (vff)‘] (+) as the cubic splines obtained by
interpolating the inverse values over the respective grids.
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Step 2: For every choiceof x € X, s € S, and = € Gz) solve

a—1 a

O, ()L +r00))+ 9, ( )<1+‘5”W —5)+§(1—a) a0 = Ve O+ (VT () + 0, (7 (),
EeX,0€S;

vES () vEZ ()

1 a—1
E = Zéex,oes 0U( )(1 + )Qx(é:)p»‘(o') = 25ex,oes aU( )(l * ‘faw - 5)QX(§)PS(O')5

for the unknowns 0 (), 9, (), and v”"( ),Ee X, s€S.

By interpolating the respective values, define the functions 6, ((-), 9, ((-), and vf_’:(-) as cubic splines over
the grid Gy ;-

Define uniform interpolation grids on the ranges of the functions vf‘f(~), compute the inverse values of

those grid-points and, finally, define the inverse functions (vff)‘] (+) as the cubic splines obtained by
interpolating the inverse values over the respective grids. Go to step 3.
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Step 3: If this is the first visit to step 3, make an ansatz choice for the collection of distribution functions

=y S xeXx (say, choose these functions to give the uniform distribution on ]0, ¢ ]).
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If this error term exceeds the prescribed threshold, set * = f*, x € X, s € S, go back to the begging of

the step and repeat.
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" v, Q. () 7, P (o)

o Fo(0)= erx,ses wE  x(o) o).
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Metaprogram and produce an updated version of the distributions F*,(-), x € X, s € S, as cubic splines over the grid
Decoupling Fields Gy in the obvious way.

Discrete Time

Contnuos e Compute the error term

Conclusion
MaXeex ses, ce6y;) IF,(e) = F ()] .

If this error term exceeds the prescribed threshold, set * = f*, x € X, s € S, go back to the begging of

the step and repeat. Otherwise record the most recently updated version of the distribution functions 7,

x € &, and proceed to the step 5.
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Step 5: Test the market clearing conditions with the latest /*, x € X,

ers ﬂSA 0'\"5( )des( )=0 and ZSGS ”SA 19)(‘,5( )deg( )= 5

in every aggregate state x € X, with the most recently updated versions of the functions 0, (), 9, (),
and F*,(-),x EX,s € S.
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Step 5: Test the market clearing conditions with the latest /*, x € X,

ersﬂs/o 0..()drF*,()=0 and Zses”s/o 9. (VAF () = ,

in every aggregate state x € X, with the most recently updated versions of the functions 0, (), 9, (),
and F*,(-),x EX,s € S.

If at least one of these identities fails by more than the prescribed threshold, in at least one aggregate state
x € &, discard the spline objects 0, (-), I, ((-), x € X, s € S (still having ém(-), J. ()hxeX,seS
on record), modify the most recent choices for and , X € &, accordingly, and go back to step 1.
Otherwise go to step 6.

Remark: The most recently updated versions of the portfolio functions and the associated
next-period-consumption functions do not get accepted until the market can be cleared with those new

versions by adjusting and , X € X, accordingly.
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Step 6: If this is the first visit to step 6, set 8, ,(-) = 0, ,(-), 9, () =9, (), V37(-) = v 7(-) and go
back to step 1.
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Step 6: If this is the first visit to step 6, set 8, ,(-) = 0, ,(-), 9, () =9, (), V37(-) = v 7(-) and go

back to step 1.

Otherwise, compute the error terms

maxxeX,:eS, EGIO,E] |9x.s( )_ Bx,s( )I ’ maxxeX,seS, EG]O,E] |'9¥3( )_ l9):,:( )l ’

and

X &l
maxx,geé\’,:,nes, €G)o¢) |V\g,f( ) - V);,:( )| .
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Bewley-Aiyagari-Huggett Models

Step 6: If this is the first visit to step 6, set 8, ,(-) = 0, ,(-), 9, () =9, (), V37(-) = v 7(-) and go
back to step 1.

Otherwise, compute the error terms
maxxeX,:eS, EGIO,E] |9x.s( )_ gx,s( )I ’ maxxeX,seS, EG]O,E] |'9¥.5( )_ l9):,:( )l ’
¢, ~ &,
and maxx,.feé\’,:,n'es, EG]O,E] |Vf,f( ) - VJ;,;;( )| .

If at least one of these terms exceeds the prescribed threshold, set 8 (-) = 0, ("), 1§X’S(-) =9,.,0),
Of:;’(-) = v>7(-) and go back to step 1.
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Step 6: If this is the first visit to step 6, set 6, () = 6, (1), 9,,() =9,,(), ¥57() = v 7(-) and go
back to step 1.
Otherwise, compute the error terms
maxxeX,:ES. EGIO,E] |9‘(Y( )_ éx,s( )I ’ maxxeX,seS, EG]O,E] |19x.5( )_ 9):,:( )l ’
and maxx,.{eé\’,x,nes. EG]O,E] |Vx§,f( )_ ‘75::( )| .
If at least one of these terms exceeds the prescribed threshold, set 8 (-) = 0, ("), 1§m(-) =9,.,0),
\75:;’(-) = v>7(-) and go back to step 1.

Otherwise stop. Declare that the equilibrium is given by the most recent choice for and ,XE X,
the portfolio functions (constructed as cubic splines) 6, () and 9, (-), x € X, s € S, the most recently
computed next-period-consumption mappings (also constructed as cubic splines) v:f (), x, £ €X,

5,0 € S, and the most recently updated family of distribution functions r, (-), x € X, s € S (splines as
well).
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The meta-program was implemented in the Julia programming language in the special case of no
aggregate risk and no productive physical capital (only private IOUs).

The output (from the Julia program) is illustrated next in the context of the classical example of Huggett
economy from (L&S, Ch. 18) — the same example in which the classical DP approach fails — and also
in the context of examples in which both the DP and the dual methods work.
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Bewley-Aiyagari-Huggett Models

The meta-program was implemented in the Julia programming language in the special case of no
aggregate risk and no productive physical capital (only private IOUs).

The output (from the Julia program) is illustrated next in the context of the classical example of Huggett
economy from (L&S, Ch. 18) — the same example in which the classical DP approach fails — and also
in the context of examples in which both the DP and the dual methods work.

The illustrations in the next few slides show that the proposed recursive program can find the equilibrium
in situation where the classical approach fails.
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Bewley-Aiyagari-Huggett Models

The meta-program was implemented in the Julia programming language in the special case of no
aggregate risk and no productive physical capital (only private IOUs).

The output (from the Julia program) is illustrated next in the context of the classical example of Huggett
economy from (L&S, Ch. 18) — the same example in which the classical DP approach fails — and also
in the context of examples in which both the DP and the dual methods work.

The illustrations in the next few slides show that the proposed recursive program can find the equilibrium
in situation where the classical approach fails.

In the 7-states example from (L&S, Ch. 18) the program achieves convergence of ~9.04753562¢-5 with
235 iterations, for ~ 4.5 hours on a single processor (i7-8650U, OS: Fedora 30).
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Bewley-Aiyagari-Huggett Models

The meta-program was implemented in the Julia programming language in the special case of no
aggregate risk and no productive physical capital (only private IOUs).

The output (from the Julia program) is illustrated next in the context of the classical example of Huggett
economy from (L&S, Ch. 18) — the same example in which the classical DP approach fails — and also
in the context of examples in which both the DP and the dual methods work.

The illustrations in the next few slides show that the proposed recursive program can find the equilibrium
in situation where the classical approach fails.

In the 7-states example from (L&S, Ch. 18) the program achieves convergence of ~9.04753562¢-5 with
235 iterations, for ~ 4.5 hours on a single processor (i7-8650U, OS: Fedora 30).

The computed equilibrium rate is r ~3.701851%, and the market is cleared with -1.76078736e-6. The
endogenous upper bound on consumption is 0.91571955, which corresponds to asset holdings in the
range [—1.627487,17.937506].
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Bewley-Aiyagari-Huggett Models
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The distribution of households in states s € S over the range of consumption, obtained with the proposed
dual approach.

N.B. The actual distribution of agents is amassed over a substantially smaller range than the
endogenous domain.
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dual approach.

N.B. The actual distribution of agents is amassed over a substantially smaller range than the
endogenous domain.
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Bewley-Aiyagari-Huggett Models
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Left panel: the asset holdings (portfolios) as functions of consumption in all 7 classes of employment.

Right panel: the transfer of consumption from employment state 3 to all 7 employment states.
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Bewley-Aiyagari-Huggett Models
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The output from the proposed new approach (the solid lines) shown against the output from the
conventional dynamic programming approach in the 7-states example.
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Finite Mean Field Games and Control with Markovian Shocks

The private (idiosyncratic) state of any one particle follows a Markov chain with a (common for all
particles) finite state space S and a (common for all particles) transition probability matrix P (o),
5,0 € S, which admits a unique set of steady-state probabilities 0 < z(s) < 1, s € S.

All private Markov chains are independent from one another and are independent from everything else.

The aggregate (shared by all particles) state, also follows a MC with a finite state space X and a transition
probability matrix Q. (§), x,& € X, with unique steady-state probabilities 0 < y(x) < 1, x € X.

All Markov chains are in steady state.

The position of every particle fluctuates in R and, letting & denote the family of all probability measures
on R, the collective distribution of all particles in period t € NV, and in a given aggregate state x € X,
can be described as an element M € 9, such that 7(s)M ,(A) gives the total mass of particles that are
in (private) state s and are located at some position z € A. The total mass of all particles is

Zses ()M (R) = 1.



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Background and
Moti

Model Descriptior
Equilibrium

The Private FOCs
Recursive Algorithm
Bewley Models
Revisited
Computation

Examples

Finite MFG
Generic PM Setup
Metaprogram
Decoupling Fields
Discrete Time

Continuous Time

Conclusion

34/41

Finite Mean Field Games and Control with Markovian Shocks

The private (idiosyncratic) state of any one particle follows a Markov chain with a (common for all
particles) finite state space S and a (common for all particles) transition probability matrix P (o),
5,0 € S, which admits a unique set of steady-state probabilities 0 < z(s) < 1, s € S.

All private Markov chains are independent from one another and are independent from everything else.

The aggregate (shared by all particles) state, also follows a MC with a finite state space X and a transition
probability matrix Q. (§), x,& € X, with unique steady-state probabilities 0 < y(x) < 1, x € X.

All Markov chains are in steady state.

The position of every particle fluctuates in R and, letting & denote the family of all probability measures
on R, the collective distribution of all particles in period t € NV, and in a given aggregate state x € X,
can be described as an element M € 9, such that 7(s)M ,(A) gives the total mass of particles that are
in (private) state s and are located at some position z € A. The total mass of all particles is

Zses ()M (R) = 1.

N.B. The collective distribution M € 9° depends on the aggregate state x and we may write M*.
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Let @r,, ,,(z, M) ¥ 0 and let aT x.s(Z, M) be the solution, a, of the equation
Dfr (@z,M)=0, forxe€X, s€S, zeR and M € PS.

Let 0 <t < T and suppose that the following functions are known (given, computed):
Rx P> (z,M) ~  a,,(zM),®., (z,M), foral x€X and s€S.

Construct the mappings:

R>z ~ G:if“M(z)difz+gt+l“( o2 M), z, M) x,E€EX,s5,0€S, M eP’,

and then the mappings %#° > M ~ OfH (M) e P°, x,& € X, so0that

: ) #(5)P,(0) s
O 1 (M), £l Z:es o) X M.v°(9:+1,x,y,M) , foreveryoc € S.
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Let @r,, ,,(z, M) ¥ 0 and let aT x.s(Z, M) be the solution, a, of the equation
Dfr (@z,M)=0, forxe€X, s€S, zeR and M € PS.

Let 0 <t < T and suppose that the following functions are known (given, computed):
Rx P> (z,M) ~  a,,(zM),®., (z,M), foral x€X and s€S.

Construct the mappings:

R>z ~ G:if“M(z)difz+gt+l“( o2 M), z, M) x,E€EX,s5,0€S, M eP’,

and then the mappings %#° > M ~ OfH (M) e P°, x,& € X, so0that
o z(s)Py(o) o -1
DfH (M), = Z:es o) X MSO(P/:iLm!M) , foreveryoc €S.

Finally, for every x € & and s € S, define the mappings
RXP°3(z,M) ~ &, (2,M)
= Vot (s G M2 M) Y o (14T (@12 M), 2 M) )

(eX 0ES

X ¢Y+2€0( t+1 X8, M(Z) OH—I x(M)) P(0)Q,(£).
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Finite Mean Field Games and Control with Markovian Shocks

For a fixed aggregate state x € X and fixed cross-sectional distribution M € % (attached to x),
consider a particle that happens to be in state s € S and in location z € R. The particle computes its

control , , (z, M) by solving for « from the equation
Df, . (a,z, M)+ 2 p X Dgigs(a, z, M) ¢t+l,§,o'(z + gf’;s(a, z, M), /%‘5) P(0)9,(&) =0,

feX cES
in which ¢ € P, ¢ € &, are treated as parameters.

By solving for various choices of z € R and s € S, construct the mappings (x and M are fixed)

Rz ~ Zii,M(z)défz+gf'y;zs(a,’xﬁs(z,M),z,M), EeX, s,cES,
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Finite Mean Field Games and Control with Markovian Shocks

For a fixed aggregate state x € X and fixed cross-sectional distribution M € % (attached to x),
consider a particle that happens to be in state s € S and in location z € R. The particle computes its

control , , (z, M) by solving for « from the equation
Df, . (a,z, M)+ 2 p X Dgigs(a, z, M) ¢t+l,§,o'(z + gf’;s(a, z, M), /%‘5) P(0)9,(&) =0,

feX cES
in which ¢ € P, ¢ € &, are treated as parameters.

By solving for various choices of z € R and s € S, construct the mappings (x and M are fixed)

Rz ~ Zii,M(z)défz+gf'y;zs(a,’xﬁs(z,M),z,M), EeX, s,cES,

and test the identities

9

: 7(s)Py(0) fo -l
ME, = ZSGS o X MSo(P/‘,’Xi’M) , forevery £€ X andevery 6€S.
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[ e Df,, (a,z, M)+ 2 p X Dg*° (a,z, M) ¢t+l,§,o'(z + gf’;s(a, z, M), /%‘5) P(0)Q,. (&) =0,

Equilibrium [
The Private FOCs £eX,ceS

Recursive Algorithm
i in which ¢ € P, ¢ € &, are treated as parameters.
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e By solving for various choices of z € R and s € S, construct the mappings (x and M are fixed)

g ef &,
Rz ~ Zii,M(z)d:fz+gt;5(a,’xﬁs(z,M),z,M), EeX, s,cES,

Examples
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If at least one of these identities fails, modify the family .Z° € 9%, & € X, accordingly (e.g., use the
right sides as the next guess) and repeat — until all identities in v hold.

Conclusion
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Finite Mean Field Games and Control with Markovian Shocks

For a fixed aggregate state x € X and fixed cross-sectional distribution M € % (attached to x),
consider a particle that happens to be in state s € S and in location z € R. The particle computes its
control , , (z, M) by solving for « from the equation

Df, . (a,z, M)+ 2 pXDgt (a2, M) D, (2 + g7 (@, 2, M), M*) P(0)Q,(&) =
teX . ceS

in which ¢ € P, ¢ € &, are treated as parameters.
By solving for various choices of z € R and s € S, construct the mappings (x and M are fixed)
R>z ~ ?56 (Z)d_‘%fZ+gtxs(atx5(Z’M)’z’M)’ feX,s,aeS,
and test the identities
9 7(s)P. (o) -1
& = s o‘§ o
M G—ZYGS ) X Mo ( ) , forevery £ € X andevery c € S. v

1,x,8,M
If at least one of these identities fails, modify the family .Z° € 9%, & € X, accordingly (e.g., use the
right sides as the next guess) and repeat — until all identities in v hold.

After all relations in v are attained, the solutions z ~ «, . ((z, M), s € S, get accepted, and the entire
procedure is repeated with other choices for x € X and M € 9° — until the functions

RxP°>(z,M) ~ a,(zM), x€X, s€S,

become known.
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Finite Mean Field Games and Control with Markovian Shocks

For a fixed aggregate state x € X and fixed cross-sectional distribution M € % (attached to x),
consider a particle that happens to be in state s € S and in location z € R. The particle computes its
control , , (z, M) by solving for « from the equation

Df, . (a,z, M)+ 2 pXDgt (a2, M) D, (2 + g7 (@, 2, M), M*) P(0)Q,(&) =
teX . ceS

in which ¢ € P, ¢ € &, are treated as parameters.
By solving for various choices of z € R and s € S, construct the mappings (x and M are fixed)
R>z ~ ?56 (Z)d_‘%fZ+gtxs(atx5(Z’M)’z’M)’ feX,s,aeS,
and test the identities
9 7(s)P. (o) -1
& = s o‘§ o
M G—ZYGS ) X Mo ( ) , forevery £ € X andevery c € S. v

1,x,8,M
If at least one of these identities fails, modify the family .Z° € 9%, & € X, accordingly (e.g., use the
right sides as the next guess) and repeat — until all identities in v hold.

After all relations in v are attained, the solutions z ~ «, . ((z, M), s € S, get accepted, and the entire
procedure is repeated with other choices for x € X and M € 9° — until the functions

RxP°>(z,M) ~ a,(zM), x€X, s€S,

become known. The recursion can now proceed to period (r — 1) — all the way to # = 0.
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:

fnXoa)]), 0<i<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

s=t+1

. . T
max1m12e<f,w (X, a)+E, [Z
ap,...,ar o

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).
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Without mean field interactions , a generic stochastic optimal control problem can be stated as:

fnXoa)]), 0<i<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

s=t+1

. . T
max1m12e(f,w (X, a)+E, [Z
ap,...,ar o

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

I/l,(u,(x) = maxa,<ft,w,(x’ at)+ Et [I/)‘+l,w,+1(x+gt,w,+](x’ a;))]) k] X € R, t= 0, 1, T
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:

T
maximize( f,, (X,.a) +E, [z foo (X, as)] ), 0<i<T,
gy jand s=t+1 7 5%
subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

V, , (x) = max,, (f,’wl (x,a,) +E, [V,HMH (x+ 81y, (s )] ) , xe€R, t=0,1,...T.

Let® ., XP, (@) & the Lagrange multiplier attached to (*).



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Background and
Moti on

Model Descriptior
Equilibrium
The Private FOCs

Recursive Algorithm

Bewley Models

Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields

Discrete Time

Continuous Time

Conclusion

38/41

Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
T
mi{g@%ize( Ko@) +E| D funKoa)] ), 0<r<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

I/l,(u,(x) = maxa,<ft,w,(x’ at)+ Et [I/)‘+l,w,+1(x+gt,w,+](x’ a;))]) k] X € R, t= 0, 1, T

Let® . XP, (@) & the Lagrange multiplier attached to (*).
Then @, . =VV, (X,,1) and one must solve (simultaneously for all 7 and all w,)

sz,m,(Xnar) +E [(pr+l,w,+, X Dgr,a;,+] (X at)] =0, X=X+ gt,w,_H(Xt’ a),
(X)=Vf,y (Xpa)+E, [as,ﬂ,ww1 x (1+7g,, (X, a,))] .

+Lw

and &, =VV,

tw;
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
T
mg@ﬁze( Ko@) +E| D funKoa)] ), 0<r<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

I/l,(u,(x) = maxa, (ft,w, (X, at) + Et [I/H—l,w,H (X + gt,w,ﬂ(x’ al))] ) k] X € R, t= 0, 1, T .

Let @ X P, (wgy1) & the Lagrange multiplier attached to (*).

s+lLogy
Then®,,,, =VV, (X,;) and one must solve (simultaneously for all # and all ,)

Dfr.,w,(Xr’ ar) +E [(Dm-l,m,“ X Dgr,w,+, (er (X,)] =0, Xr+l = Xr + 8w, (Xn az) ’ FOCs

+lwy

and @, STV, (X) = V1, (X ) +E [P, X (14 Ve, (X))

tw;
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
T
mg@ﬁze( Ko@) +E| D funKoa)] ), 0<r<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

I/l,(u,(x) = maxa, (ft,w, (X, at) + Et [I/H—l,w,H (X + gt,w,ﬂ(x’ al))] ) k] X € R, t= 0, 1, T .

Let @ X P, (wgy1) & the Lagrange multiplier attached to (*).

s+lwgy

Then @, ., =VV.a,, (X)) and one must solve (simultaneously for all 7 and all w,)
sz,m,(Xnar) +E [(pr+l,w,+, X Dgr,m,+] (X at)] =0, X=X+ gt,w,_H(Xt’ a),

and @, =VV,, (X)=Vf, (X, a)+E, [QHW x (14Vg,, (X, a,))] . (envelope thm)

t,w;
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
. T
maximize( f,,, (X a) + B[ X, fuo,(Xow)] ). 0<r<T,

subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

Vz,w,(x) = max, (f,’wl (x,a,)+E, [V,HM+1 (x + 8o, (x, a,))] ) , xX€R, t=0,1,...T.

Let @ X P, (wgy1) & the Lagrange multiplier attached to (*).

s+lLogy
Then @, ., =VV.a,, (X)) and one must solve (simultaneously for all 7 and all w,)

sz,m,(Xnar) +E [(I)r+l,m,+, X Dgr,a;,+, (X at)] =0, X=X+ gt,m,_H(Xt’ a),

and @, STV, (X) = V1, (X ) +E [P, X (14 Ve, (X))

N.B. Solving the optimization problem boils down to connecting @, , with @, ,and, at the same
time, connecting X, with X,.



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI

Background and
Moti on

Model Descriptior

Equilibrium

The Private FOCs

Recursive Algorithm
Bewley Models
Revisited
Computation
Examples
Finite MFG
Generic PM Setup
Metaprogram
Decoupling Fields
Discrete Time

Continuous Time

Conclusion

38/41

Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
T
mg@ﬁze( Ko@) +E| D funKoa)] ), 0<r<T,
subjectto X, =X, +g,, X,a), s=t..T, *)

a, & the choice of control, @, £ the realized uncertain state (MC with t.p.m. P, (@41)).

Let Vi1, =0 and let

I/l,(u,(x) = maxa,<ft,w,(x’ at)+ Et [I/)‘+l,w,+1(x+gt,w,+](x’ a;))]) k] X € R, t= 0, 1, T

Let @ X P, (wgy1) & the Lagrange multiplier attached to (*).

s+lLogy
Then @, ., =VV.a,, (X)) and one must solve (simultaneously for all 7 and all w,)

Dfr.,w,(Xr’ ar) +E [(DH-J,«U,H X Dgr,w,+, (er (X,)] =0, Xr+1 = XI + 8w, (Xt’ a,) ’

and @, STV, (X) = V1, (X ) +E [P, X (14 Ve, (X))

tw;

N.B. Solving the optimization problem boils down to connecting @, , with @, ,and, at the same
time, connecting X,,, with X,. This process is backward-forward and, thus, non-programmable.
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Decoupling Fields (an Illustration)

A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the

functions (defined on the range of X,) &

(XN

(-) and a, () sequentially fort =T,T — 1, ...,0.
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Decoupling Fields (an Illustration)

A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of X,) @, , (-) and 0, () sequentially fort =T,T — 1, ...,0.

o,

Attime t =T set @r,, () = Pry,, () = 0and solve for ay = ar,, (x) from Dfy, (x,ar) =0.
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Decoupling Fields (an Illustration)

A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of X,) @, , (-) and a, () sequentially fort =T,T — 1, ...,0.

o,

Attime t =T set @r,, () = Pry,, () = 0and solve for ay = ar,, (x) from Dfy, (x,ar) =0.

Assuming that &, ,, (-) and @ (+) are known functions, solve for a, = g, (x) from the equation

142,047

Dfr‘w,(x’ (X,) +E, [qurl,w”_l (x) Dgr_le (x, a,)] =0,

. . def
in which D110 ) E Vit K T, K1)

+Et+1 |:¢t+2,a),+2 (X:H) ( I+ VgH'l SWpg2 (th+l ’ af+|v“)r+l (XTX'H )))]

X def
and X7 Sx+g, (xa).
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Decoupling Fields (an Illustration)

A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of X,) P, and 0, () sequentially fort =T,T — 1, ...,0.

Attime t =T set @r,, () = Pry,, () = 0and solve for ay = ar,, (x) from Dfy, (x,ar) =0.

Assuming that &, ,, () and @, , () are known functions, solve for a; = «, ,, (x) from the equation
Df,, (x, &) +E[®,,,, () Dg,. (x.a)] =0,
in which D1y, (X) ] Vit Krars Gt X))
FEi [¢t+2,w,+z (X:H)(l F V8t K Tt o, (X )))]
and X}, €x+g,, (xa).

t+1
This gives the function x ~ a, ,, (x), and therefore also the function x ~ @, (x) for 0 <# <T.
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A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of X,) P, and 0, () sequentially fort =T,T — 1, ...,0.

Attime t =T set @r,, () = Pry,, () = 0and solve for ay = ar,, (x) from Dfy, (x,ar) =0.

Assuming that &, ,, () and @, , () are known functions, solve for a; = «, ,, (x) from the equation
Df, o, (x,a) +E, [Cbprl’wr+l (x)Dg,,,, (x, a,)] =0,
in which D1y, (X) ] Vit Krars Gt X))
FEi [¢t+2,w,+z (X:H)(l F V8t K Tt o, (X )))]

X def
and X7 Sx+g, (xa).

This gives the function x ~ a, ,, (x), and therefore also the function x ~ @, (x) for 0 <# <T.

After @, () and &, ,, (1), 0 <1 < T, w, € 2, have been computed, assuming that X, = x, is given, the
optimal path (X,) can be constructed recursively, by stepping only forward, as
Xo=x and X, =X, +g,, (xa,X)), forr=1..T-1.
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A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of X,) P, and 0, () sequentially fort =T,T — 1, ...,0.

Attime t =T set @r,, () = Pry,, () = 0and solve for ay = ar,, (x) from Dfy, (x,ar) =0.

Assuming that &, ,, () and @, , () are known functions, solve for a; = «, ,, (x) from the equation

Df 0, (. 0) +E [, () D, (x.@)] =0,
in which Dy )V EV o (X (X))
+Ex+1 [¢z+2,w,+2 (X,XH)(I + Vgt+1,a>,+2 (er+1’ a’+|vwr+1 (th+l)))]

X def
and X7 Sx+g, (xa).

This gives the function x ~ a, ,, (x), and therefore also the function x ~ @, (x) for 0 <# <T.

After @, () and &, ,, (1), 0 <1 < T, w, € 2, have been computed, assuming that X, = x, is given, the
optimal path (X,) can be constructed recursively, by stepping only forward, as
Xo=x and X, =X, +g,, (xa,X)), forr=1..T-1.

N.B. Choosing {®,: 0 <t <T}tobeiid., f,, = f, and g, = g simplifies the picture:
a,, () =a(), D,0=0,0) (since Vi, (X)) = V(X)) in this case).
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The continuous-time analog of the strictly backward program is the well known decoupling field .
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Decoupling Fields (an Illustration)

The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

(g, t<s<T)

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t t
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Decoupling Fields (an Illustration)

The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

(g, t<s<T)

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t

t

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

As the shocks are i.i.d. the dual process and the control can be sought in the forms @(X,, t) and a(X,, 7).



GEI and BSDEs

©2019
by Andrew Lyasoff

Dual Approach to
GEI
Background and
Moti on

Model Descriptior

Equilibrium

Bewley Models

Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram
Decoupling Fields
Discrete Time

Continuous Time

Conclusion

40/41

Decoupling Fields (an Illustration)

The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

(a5,1<s<T)

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t

t

As the shocks are i.i.d. the dual process and the control can be sought in the forms @(X,, t) and a(X,, 7).
The goal is to construct the (deterministic) objects @(-,-) and a(-, -) (in “HIB style.”).
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Decoupling Fields (an Illustration)

The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

(a5,1<s<T)

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t

t

As the shocks are i.i.d. the dual process and the control can be sought in the forms @(X,, t) and a(X,, 7).
The goal is to construct the (deterministic) objects @(-,-) and a(-, -) (in “HIB style.”).

Attime t = T solve for a; = a(x,T) from DG(x, a;) = 0 and set @(x,T) = VG(x, ap(x,T)).
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The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

(a5,1<s<T)

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t

t

As the shocks are i.i.d. the dual process and the control can be sought in the forms @(X,, t) and a(X,, 7).
The goal is to construct the (deterministic) objects @(-,-) and a(-, -) (in “HIB style.”).

Attime t = T solve for a; = a(x,T) from DG(x, a;) = 0 and set @(x,T) = VG(x, ap(x,T)).
Then solve for (x,1) ~ @(x,t) and (x,?) ~ a(x,?) from the “implicit” (and non-linear) backward PDE

—0®D(x,1) = Vf(x,a,1) + V®(x,1) X (b(x,a,,1) + o(x,a,,1) Vo(x, ,, 1))
+ %V@(x, Ho(x, a, 1) + D(x, 1) Vb(x, a,,1)

where a, = a(x,1) = a(x, @(x, 1), Vd(x,1),1) is determined implicitly from
Df(x,a,,t) + D(x,1)Db(x, a,,t) + V@(x, t)o(x, a,, ) Do(x,a,, 1) =0 .
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The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

(a5,1<s<T)

T
maximize E, [ / f(X,.a, 5)ds + G(X, aT)]
t

subject to XS=X,+/ a(Xu,au)dVVu+/ b(X,,a)du, t<s<T.
t

t

As the shocks are i.i.d. the dual process and the control can be sought in the forms @(X,, t) and a(X,, 7).
The goal is to construct the (deterministic) objects @(-,-) and a(-, -) (in “HIB style.”).

Attime t = T solve for a; = a(x,T) from DG(x, a;) = 0 and set @(x,T) = VG(x, ap(x,T)).
Then solve for (x,1) ~ @(x,t) and (x,?) ~ a(x,?) from the “implicit” (and non-linear) backward PDE

—0®D(x,1) = Vf(x,a,1) + V®(x,1) X (b(x,a,,1) + o(x,a,,1) Vo(x, ,, 1))
+ %V@(x, Ho(x, a, 1) + D(x, 1) Vb(x, a,,1)
where a, = a(x,1) = a(x, @(x, 1), Vd(x,1),1) is determined implicitly from

Df(x,a,,t) + D(x,1)Db(x, a,,t) + V@(x, t)o(x, a,, ) Do(x,a,, 1) =0 .

N.B. These relations provide a “connection between @(x, t) and @(x, ¢ + dt).”
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Some Final Thoughts

Incomplete market models with a large number of heterogeneous agents do not quite fit the mean field
framework: in every period the exiting cross-sectional distribution is different from the entering one. So
to speak, all agents re-position themselves — collectively — while they make their choices (collectively).
The technology developed for solving large GEI may be useful in the context of mean field games and
control as well.

With an appropriate technology at hand, market incompleteness does not lead to unresolved degrees of
freedom.

The difference between complete and incomplete markets is a mere technicality: in either case the pricing
kernel of each agents is determined uniquely and yields the same exact prices for all marketable stochastic
payoffs. Market completeness merely says that all agents share one and the same pricing kernel.

But this is how things look in papers, lectures, and presentations.
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Some Final Thoughts

Incomplete market models with a large number of heterogeneous agents do not quite fit the mean field
framework: in every period the exiting cross-sectional distribution is different from the entering one. So
to speak, all agents re-position themselves — collectively — while they make their choices (collectively).

The technology developed for solving large GEI may be useful in the context of mean field games and
control as well.

With an appropriate technology at hand, market incompleteness does not lead to unresolved degrees of
freedom.

The difference between complete and incomplete markets is a mere technicality: in either case the pricing
kernel of each agents is determined uniquely and yields the same exact prices for all marketable stochastic
payoffs. Market completeness merely says that all agents share one and the same pricing kernel.

But this is how things look in papers, lectures, and presentations. In the real world of actual computing,
nonlinear systems with more than a few variables cannot be solved routinely — not yet.

The stipulation that real world markets function as a massive super-computer that yields equilibrium
prices instantly and efficiently may have to be revisited.
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Some Final Thoughts

Incomplete market models with a large number of heterogeneous agents do not quite fit the mean field
framework: in every period the exiting cross-sectional distribution is different from the entering one. So
to speak, all agents re-position themselves — collectively — while they make their choices (collectively).

The technology developed for solving large GEI may be useful in the context of mean field games and
control as well.

With an appropriate technology at hand, market incompleteness does not lead to unresolved degrees of
freedom.

The difference between complete and incomplete markets is a mere technicality: in either case the pricing
kernel of each agents is determined uniquely and yields the same exact prices for all marketable stochastic
payoffs. Market completeness merely says that all agents share one and the same pricing kernel.

But this is how things look in papers, lectures, and presentations. In the real world of actual computing,
nonlinear systems with more than a few variables cannot be solved routinely — not yet.

The stipulation that real world markets function as a massive super-computer that yields equilibrium
prices instantly and efficiently may have to be revisited.

The stipulation that the expected utility theory models reasonably well the way market participants
respond to and settle (dis)agreements about uncertain outcomes may have to be revisited as well.



	The Dual (Principle of Maximum) Approach to GEI
	Background and Motivation
	Model Description
	Equilibrium
	The Private FOCs
	Recursive Algorithm

	Bewley-Aiyagari-Huggett Models
	Computation Strategy
	Computed Examples with Private IOUs Only

	Finite Mean Field Games and Control with Markovian Shocks
	Generic PM Setup
	Metaprogram

	Decoupling Fields (an Illustration)
	Discrete Time
	Continuous Time

	Some Final Thoughts

