
Andrew Lyasoff
www.andrewlyasoff.tech

Boston University | Questrom School of Business

Incomplete-Market Equilibria
with a Large Number of Heterogeneous Agents and BSDEs

Principle of Maximum for Games with a Large Number of Players
in Discrete Time, and Some Concrete Macroeconomic Models

USC | Department of Mathematics
Monday, September 23, 2019

© 2019 by Andrew Lyasoff

https://www.andrewlyasoff.tech


Andrew Lyasoff
www.andrewlyasoff.tech

Boston University | Questrom School of Business

Incomplete-Market Equilibria
with a Large Number of Heterogeneous Agents and BSDEs

Principle of Maximum for Games with a Large Number of Players
in Discrete Time, and Some Concrete Macroeconomic Models

USC | Department of Mathematics
Monday, September 23, 2019

© 2019 by Andrew Lyasoff

https://www.andrewlyasoff.tech


GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

A Textbook Example (Motivation)

Consider the following classical macroeconomic model: There is a “very large” population of households
(economic agents) that is homogeneous ex ante but becomes heterogeneous ex post. They all have
identical initial endowments, live forever, and share the same time-separable utility from consumption.
The private (idiosyncratic) employment shocks are statistically identical, independent, and follow a
finite-state-space Markov chain that admits a unique set of steady-state probabilities. These shocks
cannot be fully insured, which makes the market massively incomplete.
N.B. As all individual Markov chains are in steady-state and independent, and the number of
households is very large, the aggregate employment in the economy is constant.
The households can trade and invest in a risk-free asset and/or productive physical capital. The installed
aggregate physical capital and aggregate employment enter a production function, the derivatives of
which give the rental rates for capital and labor (i.e., dividends and paychecks). The aggregate production
function may be subjected to multiplicative aggregate stochastic shocks, modeled as a finite-states-space
Markov chain, which is independent from the employment shocks (Krusell and Smith 1998).
See (Bewley 1977, 1980, 1983, 1986) , (Aiyagari 1994, 1995), (Huggett 1993, 1997).
Initially invented for the purpose of studying monetary economics (e.g., Bewley’s model of fiat money
and Friedman’s rule), these models are the lead workhorse in macroeconomics – see (Heaton and Lucas
1995) and especially Ch. 18 in (Ljungvist and Sargent 2018).
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A Textbook Example (Motivation)

Consider one of the computed examples of a Huggett economy in (L&S, Ch. 18): Agents (households)
invest only in IOUs and choose their financial assets from a discrete grid. The solution method comes
down to varying the interest rate r until the corresponding aggregate asset holding a(r) equals 0.
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A more scrupulous reader would observe the gap between the two best choices for r and try to close it.
But refining the choice of r is of no help. What about refining the grid? The gap becomes unacceptable.

Despite what is generally believed
the classical textbook approach cannot locate the equilibrium value for r!
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A Textbook Example (Motivation)

Let us examine briefly the solution procedure from Ch. 18 in L&S. The employment hours (per period)
fluctuate inside  =

(

e−1.2, e−0.8, e−0.4, e0, e0.4, e0.8, e1.2
)

∈ ℝ7
++ with transition matrix s(�), s, � ∈  .

A generic (“atomistic”) household is faced with the (private) Bellman equation
V (at, st) = max

ct ,at+1

(

U (ct) + �
∑

�∈
st (�)V (at+1, �)

)

, t = 0, 1,… ,

ct + at+1 = (1 + r)at +wst , st ∈  , ct > 0 , at+1 ∈  ,
where at+1 is the amount invested in IOU during period t, and  ⊂ ℝ is a fixed finite grid.

Let g∶  ×  ↦  denote the optimal policy function, let a∗t+1 = g(at, st) ∈  be the optimal
investment in IOU, and let �t be the probability distribution of (a∗t , st) ∈  ×  . Then

�t+1(a, s) =
∑

�∈, �∈ , g(�,�)=a
�t(�, �)�(s) , a ∈  , s ∈  ,

and �∞ = lim
t→∞

�t is the long run steady-state distribution of the state of a single household.
�∞ is then re-interpreted as the long run cross-sectional distribution of households over × 

?

and the market clearing is a(r) ≝ ∑

a∈, s∈
g(a, s)�∞(a, s) = 0 .

The idea is to find the zero of the function r↝ a(r). ?
N.B. If the agents can sample their individual state (a, s) from the law �∞ – independently from one

another – then the cross-sectional distribution will indeed be �∞.
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A Textbook Example (Motivation)

N.B. No two households can solve their savings problems independently, since optimality requires:
�

)U (c1t )
Et
[

)U (c1t+1)
(

St+1 +Dt+1
)]

= St =
�

)U (c2t )
Et
[

)U (c2t+1)
(

St+1 +Dt+1
)]

.

N.B. The sum of any finite number of i.i.d. r.v. can be 0 only if every r.v. is 0. That this creates a
problem when it comes to market clearing has been known for some time – see the “exact law of large
numbers” (Duffie and Sun, 2012, 2019).
N.B. The classical (DP) approach can produce the equilibrium if there are only 2 employment states:

int
ere

str
ate

r

-0.4 -0.3 -0.2 -0.1 0.0 0.1
-0.0100

-0.0075

-0.0050

-0.0025

0.0000

2,000 grid-points

r ≈ −0.00121521

average assets a(r)

N.B. There is a continuous-time version: Achdou et al. (2014) Phil. Trans. R. Soc. A 372: 20130397
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Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.

The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.”

Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”

In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.

N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices.

The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.

“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I).

However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).

N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.

6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

“To Fix Ideas”

In the model proposed by Lasry and Lions (2006) the players influence each other in their private
decisions, but only through the aggregate empirical distribution of their private states.
The previous slides provide enough motivation to consider (in the context of GEI) the possibility that the
agents’ private choices are to be made in “an orchestra.” Such a situation may be thought of as
“implicitly coupled feedback forms of a multitude of closed loop controls,” but the use of “implicit” and
“coupled” complicates the notion of “Nash system” and “Nash equilibrium.”
In some models the “representative player” point of view may not be implementable; the private states
may not be asymptotically independent asN → ∞; it may not be possible to encode the cross-sectional
distribution of the private states into a single McKean-Vlasov equation.
N.B. In the context of general incomplete-market equilibria (GEI) the asset prices are endogenous, and
the private control problems are indeterminate until all agents agree on those prices. The agents act as
“price takers,” but the prices must be such that every agent can make an optimal choice (given their
respective state) and the markets clear.
“SolvingN player games for Nash equilibria is often difficult, even for one period deterministic games,
and the strategy behind the theory of mean field games is to search for simplifications in the limit
N → ∞ of large games.” (Carmona & Delarue, Vol. I). However, see (Dumas & L, 2012).
N.B. In what follows the number of agents will be assumed large, but there will be no passing to the
limit asN → ∞.6 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Contents

The Dual (Principle of Maximum) Approach to GEI
Background and Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley-Aiyagari-Huggett Models
Computation Strategy
Computed Examples with Private IOUs Only

Finite Mean Field Games and Control with Markovian Shocks
Generic PM Setup
Metaprogram

Decoupling Fields (an Illustration)
Discrete Time
Continuous Time

Some Final Thoughts
7 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Contents

The Dual (Principle of Maximum) Approach to GEI
Background and Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley-Aiyagari-Huggett Models
Computation Strategy
Computed Examples with Private IOUs Only

Finite Mean Field Games and Control with Markovian Shocks
Generic PM Setup
Metaprogram

Decoupling Fields (an Illustration)
Discrete Time
Continuous Time

Some Final Thoughts
7 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Contents

The Dual (Principle of Maximum) Approach to GEI
Background and Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley-Aiyagari-Huggett Models
Computation Strategy
Computed Examples with Private IOUs Only

Finite Mean Field Games and Control with Markovian Shocks
Generic PM Setup
Metaprogram

Decoupling Fields (an Illustration)
Discrete Time
Continuous Time

Some Final Thoughts
7 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Contents

The Dual (Principle of Maximum) Approach to GEI
Background and Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley-Aiyagari-Huggett Models
Computation Strategy
Computed Examples with Private IOUs Only

Finite Mean Field Games and Control with Markovian Shocks
Generic PM Setup
Metaprogram

Decoupling Fields (an Illustration)
Discrete Time
Continuous Time

Some Final Thoughts
7 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Contents

The Dual (Principle of Maximum) Approach to GEI
Background and Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley-Aiyagari-Huggett Models
Computation Strategy
Computed Examples with Private IOUs Only

Finite Mean Field Games and Control with Markovian Shocks
Generic PM Setup
Metaprogram

Decoupling Fields (an Illustration)
Discrete Time
Continuous Time

Some Final Thoughts
7 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

The Dual (Principle of Maximum) Approach to GEI

The key steps in the dual method proposed by (Dumas &L 2012) are:
(a) the use of consumption (instead of financial wealth) as a “state variable;”
(b) a special re-timing of the first order conditions (FOCs), such that at every step in the recursion one

solves for certain control variables attached to the current period and other control variables
attached to the next period.

The result is a computable program that overcomes the forward-backward conundrum.
This approach is essentially a reinterpretation (with a twist)

of the principle of maximum and the idea of decoupling fields.

The twist, however, is substantial and both concepts will have to be rebuilt from scratch.
We shall work mostly in discrete time, where the intuition is cleaner and the mathematical technicalities
are fewer.
What follows is an extension of (Dumas & L 2012) for the case infinitely many agents, with a bridge to
mean field games and control.
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 ≝ the collection of economic agents, with L = || assumed to be “very large.”
Time is discrete t ∈ ℕT ≝ {0, 1,… , T }, and the economic agents are ex-ante identical, with a common
utility ℝ++ ∋ c ↝ U (c) ∈ ℝ, which is as nice as needed.
The employment in every household follows – independently from all other households – a Markov chain
with a finite state space  ⊂ ℝ+ and transition matrix  = (s(�), s, � ∈ ), which admits a unique set
of steady-state probabilities 0 < �(s) < 1, s ∈  .
N.B. An employment state s ∈  corresponds to s∕L units of actual labor, and the aggregate amount of
installed labor during any one period isN ≝

∑

s∈
s
L
(�(s)L) =

∑

s∈
s�(s) .

Assume a constant-return-to-scale production function with stochastic TFP:
Ft+1(Kt, N) = �t+1K

�
t N

1−�

with Kt ≝ the aggregate capital stock installed at time t.
N.B. Installed capital depreciates at rate 0 < � < 1.
The TFP (�t) follows a MC with state space  ⊂ ℝ++, || <∞, and transition matrix
 = (x(�), x, � ∈ ) that admits a unique set of steady-state probabilities 0 <  (x) < 1, x ∈  .
N.B. The rental rates for labor and capital are:

wt+1 = �t+1(1 − �)(Kt∕N)� and �t+1 = �t+1�(Kt∕N)�−1 .
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During every period t ∈ ℕT , a household can:
(a) consume, (b) invest in a risk-free private IOU, and (c) invest in productive capital.

N.B. A consumption record c ∈ ℝ++ corresponds to an actual consumption level of c∕L.
Households that are in the same employment state

and choose the same consumption level (i.e., consumption record) are identical.
Let  ≝ the space of cumulative distribution functions over ℝ++.
The collective state of the population can be described as an element ϝ ∈   , i.e., as a family
of CDFs on the consumption space: ℝ++ ∋ c ↝ ϝs(c) ∈ [0, 1] , s ∈  .

N.B. The number of households in states (s, c) with c1 < c ≤ c2 is: �(s)
(

ϝs(c2) − ϝs(c1)
)

|| .
In every aggregate state x ∈  , the choice of a consumption record, c ∈ ℝ++, for an agent in employment
state s ∈  , together with the choice of a collective (consumption) state ϝ ∈   , completely determines
that agent’s exiting portfolio record and their next period consumption record, contingent upon the next
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The portfolio record {�t,x,s(c, ϝ), #t,x,s(c, ϝ)} corresponds to an actual investment in the bond of
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record ��,�t,x,s(c, ϝ) corresponds to an actual consumption level of ��,�t,x,s(c, ϝ)∕L.
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

At time t ∈ ℕT−1 an agent would enter the employment state s ∈  with wealth z∕L for
z ≝ �t−1rt−1 + #t−1�t +wts ,

which amount is treated as a given resource.
Given any x ∈  and any ϝ ∈   , the agent’s value, Vt,x,ϝ,s(z∕L), obtains from the optimization problem

maximize
c,�,#,Z(�,�)

(

U (c∕L) + �
∑

�∈

∑

�∈
Vt+1,�,ϝ̃,�

(

Z(�, �)∕L
)

x(�)s(�)
)

,

subject to:
Z(�, �) = �

(

1 + rt(x, ϝ)
)

+ #�t+1(x, ϝ, �) + �wt+1(x, ϝ, �) , for every � ∈  , � ∈  ,
and � + # + c = z .

N.B. The agent takes the present period ϝ ∈   and the next period ϝ̃ ∈   as given.
N.B. The aggregate (collectively decided) installed capital in state (x, ϝ) is Kt(x, ϝ) and

wt+1(x, ϝ, �) = �(1 − �)
(

Kt(x, ϝ)∕N
)� and �t+1(x, ϝ, �) = ��

(

Kt(x, ϝ)∕N
)�−1 .

N.B. The first set of constraints can be cast as:
Z(�, �) − �

(

1 + rt(x, ϝ)
)

− #�t+1(x, ϝ, �) − �wt+1(x, ϝ, �) + � + # + c = z , � ∈  , � ∈  .
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

The Lagrange multipliers (covariables) attached to the period (t + 1) constraints we put in the form
�
L
�(�, �)x(�)s(�) and the one attached to the period t constraint we put in the form '∕L.

The Lagrangian function for the period t private optimization problem is:
(c, �,#,Z(�, �), �(�, �), � ∈  , � ∈ ) = U (c∕L) + �

∑

�∈ ,�∈
Vt+1,�,ϝ̃,�

(

Z(�, �)∕L
)

x(�)s(�)

+
�
L
∑

�∈ ,�∈
�(�, �)

(

z −Z(�, �) + �
(

1 + rt(x, ϝ)
)

+ #�t+1(x, ϝ, �) + �wt+1(x, ϝ, �)

− � − # − c
)

x(�)s(�) +
'
L
(

z − � − # − c
)

.

With � ≝ ' + �
∑

�∈ ,�∈
�(�, �)x(�)s(�) the FOCs can be cast as:

�(�, �) = V ′
t+1,�,ϝ̃,�

(

Z(�, �)∕L
)

, � = U ′(c∕L) ,

� =
(

1 + rt(x, ϝ)
)

�
∑

�∈ ,�∈
�(�, �)x(�)s(�) ,

� = �
∑

�∈ ,�∈
�(�, �)�t+1(x, ϝ, �)x(�)s(�) .

the envelope theorem ⇨ V ′
t,x,ϝ,s(z∕L) = ' + �

∑

�∈ ,�∈
�(�, �)x(�)s(�) = � = U ′(c∕L) .

N.B. consumption ⇦⇨ covariables
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

Since �(�, �) = V ′
t+1,�,ϝ̃,�

(

Z(�, �)∕L
)

= U ′(��,�t,x,s(c, ϝ)∕L
), the last two FOCs give the

kernel conditions :

1 =
(

1 + rt(x, ϝ)
)

�
∑

�∈ ,�∈

U ′(��,�t,x,s(c, ϝ)∕L
)

U ′(c∕L)
x(�)s(�) ,

1 = �
∑

�∈ ,�∈

U ′(��,�t,x,s(c, ϝ)∕L
)

U ′(c∕L)
�t+1(x, ϝ, �)x(�)s(�) .

Using power utility (from now on) ⇨
U ′(��,�t,x,s(c, ϝ)∕L

)

U ′(c∕L)
= U ′(��,�t,x,s(c, ϝ)∕c) .

This removes L = || from the picture, and removes the need for passing to the limit as L→ ∞, as long as L ≈ ∞.
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

At time t = T there is no future ⇨ �T ,x,s(c, ϝ) ≝ 0, #T ,x,s(c, ϝ) ≝ 0, ��,�T ,x,s(c, ϝ) ≝ 0.

Suppose that for some fixed 0 ≤ t < T the following demand functions are known
ℝ++ ×   ∋ (c, ϝ) ↝ �t+1,�,�(c, ϝ) ∈ ℝ , #t+1,�,�(c, ϝ) , for all � ∈  and � ∈  .

Given x ∈  , choose and fix ϝ ∈  , and make an ansatz choice for rt(x, ϝ) ∈ ℝ and Kt(x, ϝ) ∈ ℝ+.
For every fixed (s, c) ∈  × ℝ++, consider the following system of 2 + || × || equations,
parameterized by (ϝ̃� ∈   , � ∈ 

), for the (same exact number of) unknowns �t,x,s(c, ϝ), #t,x,s(c, ϝ), and
��,�t,x,s(c, ϝ), � ∈  , � ∈ :

1 = �
(

1 + rt(x, ϝ)
)
∑

�∈ ,�∈
U ′

(

��,�t,x,s(c, ϝ)∕c
)

x(�)s(�) ,

1 = ��
(

Kt(x, ϝ)∕N
)�−1 ∑

�∈ ,�∈
U ′

(

��,�t,x,s(c, ϝ)∕c
)

�x(�)s(�) ,

�t,x,s(c, ϝ)(1 + rt(x, ϝ)) + #t,x,s(c, ϝ)
(

��
Kt(x, ϝ)�−1

N�−1
− �

)

+ �(1 − �)
Kt(x, ϝ)�

N� �

= ��,�t,x,s(c, ϝ) + �t+1,�,�
(

��,�t,x,s(c, ϝ), ϝ̃
�
)

+ #t+1,�,�
(

��,�t,x,s(c, ϝ), ϝ̃
�
)

, � ∈  , � ∈  .

✽

Solving the system for all the choices of (s, c) ∈  × ℝ++ gives the functions:
(s, c) ↝ �t,x,s(c, ϝ), (s, c) ↝ #t,x,s(c, ϝ), and (s, c) ↝ ��,�t,x,s(c, ϝ), � ∈  , � ∈  .
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1 = �
(

1 + rt(x, ϝ)
)
∑

�∈ ,�∈
U ′

(

��,�t,x,s(c, ϝ)∕c
)

x(�)s(�) ,

1 = ��
(

Kt(x, ϝ)∕N
)�−1 ∑

�∈ ,�∈
U ′

(

��,�t,x,s(c, ϝ)∕c
)

�x(�)s(�) ,

�t,x,s(c, ϝ)(1 + rt(x, ϝ)) + #t,x,s(c, ϝ)
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��
Kt(x, ϝ)�−1

N�−1
− �
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Kt(x, ϝ)�

N� �
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�
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

Now test the identities (between functions on ℝ++)

ϝ̃��(c)
?
=
∑

s∈

�(s)s,�
�(�)

(dϝs)
(

��,�t,x,s(⋅, ϝ)
−1(]0, c])

) for all c ∈ ℝ++, � ∈  � ∈  . ⋆

If at least one of the identities in ⋆ fails, the choice of ϝ̃� ∈   , � ∈  is to be modified accordingly (e.g.,
the right side of ⋆ could be the next choice) and ✽ is to be solved again – until ⋆ is satisfied.
Once the identities in ⋆ have been attained, the solution

(s, c) ↝ �t,x,s(c, ϝ), (s, c) ↝ #t,x,s(c, ϝ), and (s, c) ↝ ��,�t,x,s(c, ϝ), � ∈  , � ∈  ,

gets accepted temporarily , and the following two market clearing conditions are to be tested:
∑

s∈
�(s)∫

∞

0
�t,x,s(c, ϝ)dϝs(c)

?
= 0 ,

∑

s∈
�(s)∫

∞

0
#t,x,s(c, ϝ)dϝs(c)

?
= Kt(x, ϝ) . ☼

If at least one of these conditions fails, then the ansatz choice of rt(x, ϝ) and Kt(x, ϝ) is to be modified and
the entire process is to be repeated until☼ holds.
The same procedure is then repeated with various choices for ϝ, so that the solution can be cast as
(s, c, ϝ) ↝ �t,x,s(c, ϝ), (s, c, ϝ) ↝ #t,x,s(c, ϝ), and (s, c, ϝ) ↝ ��,�t,x,s(c, ϝ), for all � ∈  and � ∈  .
Finally, the same procedure is repeated with all other choices for x ∈  .
After that the recursion can proceed to period (t − 1) – all the way to period t = 0.
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�(s)s,�
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��,�t,x,s(⋅, ϝ)
−1(]0, c])

) for all c ∈ ℝ++, � ∈  � ∈  . ⋆

If at least one of the identities in ⋆ fails, the choice of ϝ̃� ∈   , � ∈  is to be modified accordingly (e.g.,
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∞
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Conclusion

The Dual (Principle of Maximum) Approach to GEI

Since all agents are exactly identical before the time t = 0 aggregate shock x ∈  and all private shocks
si ∈  , i ∈ , are realized, the actual (physical) distribution of the households, ϝini ∈   , must be such
that ϝinis = ∫ �cs , for every s ∈  . Thus, ϝini depends on || unknown scalars cs ∈ ℝ++, s ∈  , which
can be fixed from the following system of exactly || equations:

�0,x,cs (cs, ϝ
ini) + #0,x,s(cs, ϝini) + cs = x(1 − �)

K−1
�

N� s , s ∈  .

(private borrowing/lending + investment + consumption = paycheck )
N.B. The economy must be endowed with some “primordial” aggregate capital K−1, which the agents
do not hold by birth, for otherwise the production function cannot produce any wages during the initial
period t = 0.
All initial portfolios �0,x,s(cs, ϝini) and #0,x,s(cs, ϝini), s ∈  , are now fully determined, and so are the
period t = 1 private consumption plans ��,�t,x,s(cs, ϝini), x ∈  , s, � ∈  , and collective consumption choice
F̃ � ∈   , � ∈  , from

F̃ �
�(c) =

∑

s∈

�(s)s,�
�(�)

(dϝinis )
(

��,�0,x,s(⋅, ϝ
ini)−1(]0, c])

)

, for all c ∈ ℝ++, � ∈  � ∈  .
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Conclusion

Bewley-Aiyagari-Huggett Models

N.B. With T = ∞ the collective state ϝx ∈   , attached to every aggregate state x ∈  , remains
constant and can be suppressed in the notation.
With U (c) = (c1−R − 1)∕R, the FOCs for household “c” in state (x, s) ∈  ×  are:

1 = �
∑

�∈ , �∈

( c
� �,�x,s (c)

)R
(

1 + r(x)
)

x(�)s(�) ,

1 = �
∑

�∈ , �∈

( c
� �,�x,s (c)

)R(
��
K(x)�−1

N�−1
− �

)

x(�)s(�) ,

�x,s(c)(1 + r(x)) + #x,s(c)
(

��
K(x)�−1

N�−1
− �

)

+ �(1 − �)
K(x)�

N� �

= � �,�x,s (c) + ��,� (�
�,�
x,s (c)) + #�,� (�

�,�
x,s (c)) , � ∈  , � ∈  .

N.B. Consumption is both a state variable and a “dual” variable. The connection between the next
period consumption and the present period consumption is essentially a connection between the next
period covariables and the present period covariables – whence the parallel with the principle of
maximum.
N.B. One is faced with infinitely many optimization problems that must be solved “in an orchestra,”
together with the market clearing

∑

s∈
�s ∫

∞

0
�x,s(c)dϝxs(c) = 0 and ∑

s∈
�s ∫

∞

0
#x,s(c)dϝxs(c) = K(x) , x ∈  .
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Bewley-Aiyagari-Huggett Models

Definition

Equilibrium in this economy is any choice of:
(1) aggregate physical capital K(x) ∈ ℝ+ and interest rate r(x) ∈ ℝ attached to every x ∈  ;
(2) portfolio mappings ℝ++ ∋ c ↝ �x,s(c) ∈ ℝ and ℝ++ ∋ c ↝ #x,s(c) ∈ ℝ , x ∈  , s ∈  ;
(3) next-period-consumption mappings ℝ++ ∋ c ↝ � �,�x,s (c) ∈ ℝ++ , x, � ∈  , s, � ∈  ;
(4) distribution functions ℝ++ ∋ c ↝ ϝxs(c) ∈ [0, 1] , x ∈  , s ∈  ;

⇨ all chosen so that the first order conditions and the market clearing conditions hold.

The key step in the program that follows next is in the following connection:
The collective consumption states, ϝx ∈   , x ∈  , solve:

ϝ��(c) =
∑

x∈ , s∈

 (x)x(�)
 (�)

�(s)s(�)
�(�)

ϝxs((� �,�x,s )
−1(c)) , c ∈ ]0, c̄ ] , � ∈  , � ∈  .

N.B. (a) The collective consumption states ϝx ∈   , x ∈  , obtain from the collective FOCs.
(b) Together with the collective kernel conditions, the last relation forces the individual savings problems
to be coordinated.
(c) This coordination is also a connection between the Lagrange multipliers attached to two consecutive
time periods – principle of maximum again.
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Bewley-Aiyagari-Huggett Models

Solving for the equilibrium comes down to computing the following functions (of private consumption)
�x,s(⋅), #x,s(⋅), � �,�x,s (⋅), and ϝxs(⋅), for x, � ∈  , s, � ∈  .

N.B. These objects will be computed as cubic splines.
The idea is to turn the FOCs and the market clearing into a recursive program to yield a “fixed point.”
We have the following system for every choice of s ∈  and x ∈  :
�x,s(c) (1 + r(x) + #x,s(c)

(

1 + ��
K(x)�−1

N�−1
− �

)

+ �(1 − �)
K(x)�

N� � = � �,�x,s (c) + �̃�,� (�
�,�
x,s (c)) + #̃�,� (�

�,�
x,s (c)) ,

� ∈  , � ∈  ,
1
�
=
∑

�∈ , �∈

( c
� �,�x,s (c)

)R
(

1 + r(x)
)

x(�)s(�) =
∑

�∈ , �∈

( c
� �,�x,s (c)

)R(
��
K(x)�−1

N�−1
− �

)

x(�)s(�) .

Legend: ◉ = parameter, ◉ = unknown, ◉ = given (from the previous step), ◉ = ansatz choice.
N.B. For any fixed c (and fixed s and x), this system contains || × || + 2 equations, for exactly the
same number of unknowns: �x,s(c), #x,s(c), � �,�x,s (c).
The cross-sectional distribution of households in state (x, s) ∈  ×  is also a fixed point from:

ϝ�� (c) =
∑

x∈ , s∈
 xx(�)
 (�)

�ss(�)
�(�)

ϝ̃xs((� �,�x,s )
−1(c)) .

Market clearing: ∑

s∈
�s ∫

∞

0
�x,s(c)dϝxs(c) = 0 and ∑

s∈
�s ∫

∞

0
#x,s(c)dϝxs(c) = K(x) .

20 / 41
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Bewley-Aiyagari-Huggett Models

N.B. There is an endogenous upper bound on consumption given by:
c̄ = inf{c ∈ ℝ++ ∶ � �,�x,s (c) ≤ c for every x, � ∈  and s, � ∈ } .

and this means that one can work on a finite consumption range c ∈ ]0, c̄], instead of c ∈ ℝ++.All functions will be stored as cubic splines defined on a sufficiently dense grid covering ]0, c̄].
The recursive meta-program for computing the equilibrium is the following:
Step 0: Make an ansatz choice for K(x) ∈ ℝ+ and r(x) ∈ ℝ, x ∈  (a total of 2|| scalar values). Make
an ansatz choice for the collection of portfolio functions �̃x,s(⋅), #̃x,s(⋅), x ∈  , s ∈  . Go to step 1.
Step 1: For all choices of x ∈  and s ∈  , and certain choices of c ∈ ℝ++, solve the system

�x,s(c)(1 + r(x)) + #x,s(c)
(

1 + ��
K(x)�−1

N�−1
− �

)

+ �(1 − �)
K(x)�

N� � = � �,�x,s (c) + �̃�,� (�
�,�
x,s (c)) + #̃�,� (�

�,�
x,s (c)) ,

� ∈  , � ∈  .

1
�
=
∑

�∈ , �∈
)U

( � �,�x,s (c)
c

)(

1 + r(x)
)

x(�)s(�) =
∑

�∈ , �∈
)U

( � �,�x,s (c)
c

)

(

1 + ��
K(x)�−1

N�−1
− �

)

x(�)s(�) ;

for the unknowns (|| × || + 2 in number) �x,s(c), #x,s(c), and � �,�x,s (c), � ∈  , s ∈  . Find the smallest
c ∈ ℝ++, denoted c̄, with the property c ≥ � �,�x,s (c) for all x, � ∈  and s, � ∈  . Construct a uniform
(equidistant) finite grid, denoted ]0,c̄ ], on the interval ]0, c̄ ] (note the exclusion of 0). Go to step 2.
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for the unknowns (|| × || + 2 in number) �x,s(c), #x,s(c), and � �,�x,s (c), � ∈  , s ∈  . Find the smallest
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Step 2: For every choice of x ∈  , s ∈  , and c ∈ ]0,c̄ ], solve

�x,s(c) (1 + r(x)) + #x,s(c)
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for the unknowns �x,s(c), #x,s(c), and � �,�x,s (c), � ∈  , s ∈  .
By interpolating the respective values, define the functions �x,s(⋅), #x,s(⋅), and � �,�x,s (⋅) as cubic splines overthe grid ]0,c̄ ].
Define uniform interpolation grids on the ranges of the functions � �,�x,s (⋅), compute the inverse values of
those grid-points and, finally, define the inverse functions (� �,�x,s )−1(⋅) as the cubic splines obtained by
interpolating the inverse values over the respective grids. Go to step 3.
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Step 3: If this is the first visit to step 3, make an ansatz choice for the collection of distribution functions
ϝ̃x ∈   , x ∈  (say, choose these functions to give the uniform distribution on ]0, c̄ ]). Otherwise, set
ϝ̃x, x ∈  , to be the most recently computed versions of the distribution functions ϝx. Go to step 4.
Step 4: For every � ∈  , � ∈  , and c ∈ ]0,c̄ ] compute

ϝ��(c) =
∑

x∈ , s∈

 xx(�)
 (�)

�ss(�)
�(�)

ϝ̃xs
(

(� �,�x,s )
−1(c)
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.

and produce an updated version of the distributions ϝ̃xs(⋅), x ∈  , s ∈  , as cubic splines over the grid
]0,c̄ ] in the obvious way.
Compute the error term

max�∈ , �∈ , c∈]0,c̄ ]
|ϝ��(c) − ϝ̃��(c)| .

If this error term exceeds the prescribed threshold, set ϝ̃x = ϝx, x ∈  , s ∈  , go back to the begging of
the step and repeat. Otherwise record the most recently updated version of the distribution functions ϝx,
x ∈  , and proceed to the step 5.
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Bewley-Aiyagari-Huggett Models

Step 5: Test the market clearing conditions with the latest ϝx, x ∈  ,
∑

s∈
�s ∫

c̄

0
�x,s(c)dϝxs(c) = 0 and ∑

s∈
�s ∫

c̄

0
#x,s(c)dϝxs(c) = K(x) ,

in every aggregate state x ∈  , with the most recently updated versions of the functions �x,s(⋅), #x,s(⋅),and ϝxs(⋅), x ∈  , s ∈  .
If at least one of these identities fails by more than the prescribed threshold, in at least one aggregate state
x ∈  , discard the spline objects �x,s(⋅), #x,s(⋅), x ∈  , s ∈  (still having �̃x,s(⋅), #̃x,s(⋅), x ∈  , s ∈ 
on record), modify the most recent choices for K(x) and r(x), x ∈  , accordingly, and go back to step 1.
Otherwise go to step 6.
Remark: The most recently updated versions of the portfolio functions and the associated
next-period-consumption functions do not get accepted until the market can be cleared with those new
versions by adjusting K(x) and r(x), x ∈  , accordingly.
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Step 6: If this is the first visit to step 6, set �̃x,s(⋅) = �x,s(⋅), #̃x,s(⋅) = #x,s(⋅), �̃ �,�x,s (⋅) = � �,�x,s (⋅) and go
back to step 1.
Otherwise, compute the error terms

maxx∈ , s∈ , c∈]0,c̄ ]
|�x,s(c) − �̃x,s(c)| , maxx∈ , s∈ , c∈]0,c̄ ]

|#x,s(c) − #̃x,s(c)| ,

and maxx,�∈ , s,�∈ , c∈]0,c̄ ]
|� �,�x,s (c) − �̃

�,�
x,s (c)| .

If at least one of these terms exceeds the prescribed threshold, set �̃x,s(⋅) = �x,s(⋅), #̃x,s(⋅) = #x,s(⋅),
�̃ �,�x,s (⋅) = � �,�x,s (⋅) and go back to step 1.
Otherwise stop. Declare that the equilibrium is given by the most recent choice for K(x) and r(x), x ∈  ,
the portfolio functions (constructed as cubic splines) �x,s(⋅) and #x,s(⋅), x ∈  , s ∈  , the most recently
computed next-period-consumption mappings (also constructed as cubic splines) ��,�x,s (⋅), x, � ∈  ,
s, � ∈  , and the most recently updated family of distribution functions ϝx,s(⋅), x ∈  , s ∈  (splines as
well).
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Step 6: If this is the first visit to step 6, set �̃x,s(⋅) = �x,s(⋅), #̃x,s(⋅) = #x,s(⋅), �̃ �,�x,s (⋅) = � �,�x,s (⋅) and go
back to step 1.

Otherwise, compute the error terms
maxx∈ , s∈ , c∈]0,c̄ ]

|�x,s(c) − �̃x,s(c)| , maxx∈ , s∈ , c∈]0,c̄ ]
|#x,s(c) − #̃x,s(c)| ,

and maxx,�∈ , s,�∈ , c∈]0,c̄ ]
|� �,�x,s (c) − �̃

�,�
x,s (c)| .

If at least one of these terms exceeds the prescribed threshold, set �̃x,s(⋅) = �x,s(⋅), #̃x,s(⋅) = #x,s(⋅),
�̃ �,�x,s (⋅) = � �,�x,s (⋅) and go back to step 1.
Otherwise stop. Declare that the equilibrium is given by the most recent choice for K(x) and r(x), x ∈  ,
the portfolio functions (constructed as cubic splines) �x,s(⋅) and #x,s(⋅), x ∈  , s ∈  , the most recently
computed next-period-consumption mappings (also constructed as cubic splines) ��,�x,s (⋅), x, � ∈  ,
s, � ∈  , and the most recently updated family of distribution functions ϝx,s(⋅), x ∈  , s ∈  (splines as
well).
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The meta-program was implemented in the Julia programming language in the special case of no
aggregate risk and no productive physical capital (only private IOUs).
The output (from the Julia program) is illustrated next in the context of the classical example of Huggett
economy from (L&S, Ch. 18) – the same example in which the classical DP approach fails – and also
in the context of examples in which both the DP and the dual methods work.
The illustrations in the next few slides show that the proposed recursive program can find the equilibrium
in situation where the classical approach fails.

In the 7-states example from (L&S, Ch. 18) the program achieves convergence of ≈ 9.04753562e-5 with
235 iterations, for ≈ 4.5 hours on a single processor (i7-8650U, OS: Fedora 30).
The computed equilibrium rate is r ≈ 3.701851%, and the market is cleared with -1.76078736e-6. The
endogenous upper bound on consumption is 0.91571955, which corresponds to asset holdings in the
range [−1.627487, 17.937506].
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The distribution of households in states s ∈  over the range of consumption, obtained with the proposed
dual approach.
N.B. The actual distribution of agents is amassed over a substantially smaller range than the
endogenous domain.
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Left panel: the asset holdings (portfolios) as functions of consumption in all 7 classes of employment.
Right panel: the transfer of consumption from employment state 3 to all 7 employment states.
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The output from the proposed new approach (the solid lines) shown against the output from the
conventional dynamic programming approach in the 7-states example.
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The distribution of households over the consumption range in the 2-states example.
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Finite Mean Field Games and Control with Markovian Shocks

The private (idiosyncratic) state of any one particle follows a Markov chain with a (common for all
particles) finite state space  and a (common for all particles) transition probability matrix s(�),
s, � ∈  , which admits a unique set of steady-state probabilities 0 < �(s) < 1, s ∈  .
All private Markov chains are independent from one another and are independent from everything else.
The aggregate (shared by all particles) state, also follows a MC with a finite state space  and a transition
probability matrix x(�), x, � ∈  , with unique steady-state probabilities 0 <  (x) < 1, x ∈  .
All Markov chains are in steady state.
The position of every particle fluctuates in ℝ and, letting P denote the family of all probability measures
on ℝ, the collective distribution of all particles in period t ∈ ℕT , and in a given aggregate state x ∈  ,
can be described as an elementM ∈ P  , such that �(s)Ms(A) gives the total mass of particles that are
in (private) state s and are located at some position z ∈ A. The total mass of all particles is

∑

s∈
�(s)Ms(ℝ) = 1.

N.B. The collective distributionM ∈ P  depends on the aggregate state x and we may writeMx.
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Finite Mean Field Games and Control with Markovian Shocks

Given a collective distributionM ∈ P  and an aggregate state x ∈  in period t ∈ ℕT , the Bellman
equation for a particle in idiosyncratic state s ∈  that happens to be in location z ∈ ℝ is:

Vt,x,s(z,M) = max
�,Z(�,�), �∈ ,�∈

(

ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)
)

subject to:
Z(�, �) − g�,�t,x,s(�, z,M) = z , � ∈  , � ∈  ,

where the family (ℳ� ∈ P  , � ∈ ), is treated as a parameter. The Lagrangian is:

(

�,Z(�, �), �t+1,�,� ,� ∈  , � ∈ 
)

= ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)

+
∑

�∈ ,�∈
� ×

(

z −Z(�, �) + g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) ,

and the FOCs are ((≝ )space,  ≝ )control):
Z(�, �) = z + g�,�t,x,s(�, z,M) , �t+1,�,� = (Vt+1,�,�

(

Z(�, �),ℳ�) , for every � ∈  and � ∈  ,

and ft,x,s(�, z,M) +
∑

�∈ ,�∈
� ×g�,�t,x,s(�, z,M)�t+1,�,� s(�)x(�) = 0 .

By the envelope theorem:
�t,x,s ≡ (Vt,x,s(z,M) = (ft,x,s(�, z,M) +

∑

�∈ ,�∈
� ×

(

1 + (g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) .

35 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Finite Mean Field Games and Control with Markovian Shocks

Given a collective distributionM ∈ P  and an aggregate state x ∈  in period t ∈ ℕT , the Bellman
equation for a particle in idiosyncratic state s ∈  that happens to be in location z ∈ ℝ is:

Vt,x,s(z,M) = max
�,Z(�,�), �∈ ,�∈

(

ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)
)

subject to:
Z(�, �) − g�,�t,x,s(�, z,M) = z , � ∈  , � ∈  ,

where the family (ℳ� ∈ P  , � ∈ ), is treated as a parameter. The Lagrangian is:

(

�,Z(�, �), �t+1,�,� ,� ∈  , � ∈ 
)

= ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)

+
∑

�∈ ,�∈
� ×

(

z −Z(�, �) + g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) ,

and the FOCs are ((≝ )space,  ≝ )control):
Z(�, �) = z + g�,�t,x,s(�, z,M) , �t+1,�,� = (Vt+1,�,�

(

Z(�, �),ℳ�) , for every � ∈  and � ∈  ,

and ft,x,s(�, z,M) +
∑

�∈ ,�∈
� ×g�,�t,x,s(�, z,M)�t+1,�,� s(�)x(�) = 0 .

By the envelope theorem:
�t,x,s ≡ (Vt,x,s(z,M) = (ft,x,s(�, z,M) +

∑

�∈ ,�∈
� ×

(

1 + (g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) .

35 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Finite Mean Field Games and Control with Markovian Shocks

Given a collective distributionM ∈ P  and an aggregate state x ∈  in period t ∈ ℕT , the Bellman
equation for a particle in idiosyncratic state s ∈  that happens to be in location z ∈ ℝ is:

Vt,x,s(z,M) = max
�,Z(�,�), �∈ ,�∈

(

ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)
)

subject to:
Z(�, �) − g�,�t,x,s(�, z,M) = z , � ∈  , � ∈  ,

where the family (ℳ� ∈ P  , � ∈ ), is treated as a parameter.

The Lagrangian is:

(

�,Z(�, �), �t+1,�,� ,� ∈  , � ∈ 
)

= ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)

+
∑

�∈ ,�∈
� ×

(

z −Z(�, �) + g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) ,

and the FOCs are ((≝ )space,  ≝ )control):
Z(�, �) = z + g�,�t,x,s(�, z,M) , �t+1,�,� = (Vt+1,�,�

(

Z(�, �),ℳ�) , for every � ∈  and � ∈  ,

and ft,x,s(�, z,M) +
∑

�∈ ,�∈
� ×g�,�t,x,s(�, z,M)�t+1,�,� s(�)x(�) = 0 .

By the envelope theorem:
�t,x,s ≡ (Vt,x,s(z,M) = (ft,x,s(�, z,M) +

∑

�∈ ,�∈
� ×

(

1 + (g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) .

35 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Finite Mean Field Games and Control with Markovian Shocks

Given a collective distributionM ∈ P  and an aggregate state x ∈  in period t ∈ ℕT , the Bellman
equation for a particle in idiosyncratic state s ∈  that happens to be in location z ∈ ℝ is:

Vt,x,s(z,M) = max
�,Z(�,�), �∈ ,�∈

(

ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)
)

subject to:
Z(�, �) − g�,�t,x,s(�, z,M) = z , � ∈  , � ∈  ,

where the family (ℳ� ∈ P  , � ∈ ), is treated as a parameter. The Lagrangian is:

(

�,Z(�, �), �t+1,�,� ,� ∈  , � ∈ 
)

= ft,x,s(�, z,M) +
∑

�∈ ,�∈
� Vt+1,�,�

(

Z(�, �),ℳ�)s(�)x(�)

+
∑

�∈ ,�∈
� ×

(

z −Z(�, �) + g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) ,

and the FOCs are ((≝ )space,  ≝ )control):
Z(�, �) = z + g�,�t,x,s(�, z,M) , �t+1,�,� = (Vt+1,�,�

(

Z(�, �),ℳ�) , for every � ∈  and � ∈  ,

and ft,x,s(�, z,M) +
∑

�∈ ,�∈
� ×g�,�t,x,s(�, z,M)�t+1,�,� s(�)x(�) = 0 .

By the envelope theorem:
�t,x,s ≡ (Vt,x,s(z,M) = (ft,x,s(�, z,M) +

∑

�∈ ,�∈
� ×

(

1 + (g�,�t,x,s(�, z,M)
)

�t+1,�,� s(�)x(�) .

35 / 41



GEI and BSDEs
© 2019

by Andrew Lyasoff

Dual Approach to
GEI
Background and
Motivation
Model Description
Equilibrium
The Private FOCs
Recursive Algorithm

Bewley Models
Revisited
Computation
Examples

Finite MFG
Generic PM Setup
Metaprogram

Decoupling Fields
Discrete Time
Continuous Time

Conclusion

Finite Mean Field Games and Control with Markovian Shocks

Given a collective distributionM ∈ P  and an aggregate state x ∈  in period t ∈ ℕT , the Bellman
equation for a particle in idiosyncratic state s ∈  that happens to be in location z ∈ ℝ is:

Vt,x,s(z,M) = max
�,Z(�,�), �∈ ,�∈

(

ft,x,s(�, z,M) +
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(
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Z(�, �) − g�,�t,x,s(�, z,M) = z , � ∈  , � ∈  ,

where the family (ℳ� ∈ P  , � ∈ ), is treated as a parameter. The Lagrangian is:

(
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)
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and the FOCs are ((≝ )space,  ≝ )control):
Z(�, �) = z + g�,�t,x,s(�, z,M) , �t+1,�,� = (Vt+1,�,�
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Finite Mean Field Games and Control with Markovian Shocks

Let �T+1,x,s(z,M) ≝ 0 and let �T ,x,s(z,M) be the solution, �, of the equation
fT ,x,s(�, z,M) = 0 , for x ∈  , s ∈  , z ∈ ℝ, and M ∈ P  .

Let 0 ≤ t < T and suppose that the following functions are known (given, computed):
ℝ × P  ∋ (z,M) ↝ �t+1,x,s(z,M) , �t+2,x,s(z,M) , for all x ∈  and s ∈  .

Construct the mappings:
ℝ ∋ z ↝ T �,�

t+1,x,s,M (z) ≝ z + g�,�t+1,x,s
(

�t+1,x,s(z,M), z,M
)

, x, � ∈  , s, � ∈  , M ∈ P  ,

and then the mappings P  ∋M ↝ ⅁�
t+1,x(M) ∈ P  , x, � ∈  , so that

⅁�
t+1,x(M)� ≝

∑

s∈

�(s)s(�)
�(�)

×Ms◦
(

T �,�
t+1,x,s,M

)−1 , for every � ∈  .

Finally, for every x ∈  and s ∈  , define the mappings
ℝ × P  ∋ (z,M) ↝ �t+1,x,s(z,M)

= (ft+1,x,s
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�t+1,x,s(z,M), z,M
)
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(
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)
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(

T �,�
t+1,x,s,M (z),⅁�

t+1,x(M)
)

s(�)x(�) .
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Conclusion

Finite Mean Field Games and Control with Markovian Shocks

For a fixed aggregate state x ∈  and fixed cross-sectional distributionM ∈ P  (attached to x),
consider a particle that happens to be in state s ∈  and in location z ∈ ℝ. The particle computes its
control �t,x,s(z,M) by solving for � from the equation

ft,x,s(�, z,M) +
∑

�∈ ,�∈
� ×g�,�t,x,s(�, z,M)�t+1,�,�

(

z + g�,�t,x,s(�, z,M),ℳ�)s(�)x(�) = 0 ,

in which ℳ� ∈ P  , � ∈  , are treated as parameters.
By solving for various choices of z ∈ ℝ and s ∈  , construct the mappings (x andM are fixed)

ℝ ∋ z ↝ T �,�
t,x,s,M (z) ≝ z + g�,�t,x,s

(

�t,x,s(z,M), z,M
)

, � ∈  , s, � ∈  ,

and test the identities
ℳ�

�
?
=
∑

s∈

�(s)s(�)
�(�)

×Ms◦
(

T �,�
t,x,s,M

)−1 , for every � ∈  and every � ∈  . ✓

If at least one of these identities fails, modify the familyℳ� ∈ P  , � ∈  , accordingly (e.g., use the
right sides as the next guess) and repeat – until all identities in ✓ hold.
After all relations in ✓ are attained, the solutions z↝ �t,x,s(z,M), s ∈  , get accepted, and the entire
procedure is repeated with other choices for x ∈  andM ∈ P  – until the functions

ℝ × P  ∋ (z,M) ↝ �t,x,s(z,M) , x ∈  , s ∈  ,

become known. The recursion can now proceed to period (t − 1) – all the way to t = 0.
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Decoupling Fields (an Illustration)

Without mean field interactions , a generic stochastic optimal control problem can be stated as:
maximize
�t ,…,�T

(

ft,!t (Xt, �t) + Et
[

∑T

s=t+1
fs,!s (Xs, �s)

])

, 0 ≤ t ≤ T ,

subject to Xs+1 = Xs + gs,!s+1 (Xs, �s) , s = t,… , T , (*)
�t ≝ the choice of control, !t ≝ the realized uncertain state (MC with t.p.m. !t (!t+1)).

Let VT+1,!t+1 ≡ 0 and let
Vt,!t (x) = max�t

(

ft,!t (x, �t) + Et
[

Vt+1,!t+1
(

x + gt,!t+1 (x, �t)
)]

)

, x ∈ ℝ , t = 0, 1,… T .

Let �s+1,!s+1 × !s (!s+1) ≝ the Lagrange multiplier attached to (*).
Then �t+1,!t+1 = (Vt+1,!t+1 (Xt+1) and one must solve (simultaneously for all t and all !t)

ft,!t (Xt, �t) + Et
[

�t+1,!t+1 ×gt,!t+1 (Xt, �t)
]

= 0 , Xt+1 = Xt + gt,!t+1 (Xt, �t) ,

FOCs

and �t,!t ≡ (Vt,!t (Xt) = (ft,!t (Xt, �t) + Et
[

�t+1,!t+1 ×
(

1 + (gt,!t+1 (Xt, �t)
)

]

. (envelope thm)

N.B. Solving the optimization problem boils down to connecting �t,!t with �t+1,!t+1 , and, at the same
time, connecting Xt+1 with Xt. This process is backward-forward and, thus, non-programmable.
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Decoupling Fields (an Illustration)

A strictly recursive, and, thus, programmable procedure is outlined next. The idea is to construct the
functions (defined on the range of Xt) �t,!t (⋅) and �t,!t (⋅) sequentially for t = T , T − 1,… , 0.
At time t = T set �T+1,!T+1 (⋅) ≡ �T+2,!T+2 (⋅) ≡ 0 and solve for �T ≡ �T ,!T (x) from fT ,!T (x, �T ) = 0.
Assuming that �t+1,!t+1 (⋅) and �t+2,!t+2 (⋅) are known functions, solve for �t ≡ �t,!t (x) from the equation

ft,!t (x, �t) + Et
[

�t+1,!t+1 (x)gt,!t+1 (x, �t)
]

= 0 ,
in which �t+1,!t+1 (x) ≝ (ft+1,!t+1 (X

x
t+1, �t+1,!t+1 (X

x
t+1))

+Et+1
[

�t+2,!t+2 (X
x
t+1)

(

1 + (gt+1,!t+2 (X
x
t+1, �t+1,!t+1 (X

x
t+1))

)

]

and Xx
t+1 ≝ x + gt,!t+1 (x, �t) .

This gives the function x↝ �t,!t (x), and therefore also the function x↝ �t+1,!t+1 (x) for 0 ≤ t < T .

After �t,!t (⋅) and �t,!t (⋅), 0 ≤ t ≤ T , !t ∈ 
, have been computed, assuming that X0 = x, is given, the
optimal path (Xt) can be constructed recursively, by stepping only forward, as

X0 = x and Xt+1 = Xt + gt,!t+1 (x, �t,!t (Xt)) , for t = 1,… , T − 1 .

N.B. Choosing {!t ∶ 0 ≤ t ≤ T } to be i.i.d., ft,!t ≡ ft and gt,!t ≡ gt simplifies the picture:
�t,!t (⋅) = �t(⋅) , �t,!t (⋅) = �t(⋅) (since Vt,!t (Xt) = Vt(Xt) in this case).
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Assuming that �t+1,!t+1 (⋅) and �t+2,!t+2 (⋅) are known functions, solve for �t ≡ �t,!t (x) from the equation

ft,!t (x, �t) + Et
[

�t+1,!t+1 (x)gt,!t+1 (x, �t)
]

= 0 ,
in which �t+1,!t+1 (x) ≝ (ft+1,!t+1 (X

x
t+1, �t+1,!t+1 (X

x
t+1))

+Et+1
[

�t+2,!t+2 (X
x
t+1)

(

1 + (gt+1,!t+2 (X
x
t+1, �t+1,!t+1 (X

x
t+1))

)

]

and Xx
t+1 ≝ x + gt,!t+1 (x, �t) .

This gives the function x↝ �t,!t (x), and therefore also the function x↝ �t+1,!t+1 (x) for 0 ≤ t < T .

After �t,!t (⋅) and �t,!t (⋅), 0 ≤ t ≤ T , !t ∈ 
, have been computed, assuming that X0 = x, is given, the
optimal path (Xt) can be constructed recursively, by stepping only forward, as

X0 = x and Xt+1 = Xt + gt,!t+1 (x, �t,!t (Xt)) , for t = 1,… , T − 1 .

N.B. Choosing {!t ∶ 0 ≤ t ≤ T } to be i.i.d., ft,!t ≡ ft and gt,!t ≡ gt simplifies the picture:
�t,!t (⋅) = �t(⋅) , �t,!t (⋅) = �t(⋅) (since Vt,!t (Xt) = Vt(Xt) in this case).
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The continuous-time analog of the strictly backward program is the well known decoupling field .
A generic stochastic optimal control problem in continuous time can be stated as

maximize
(�s , t≤ s≤ T )

Et
[

∫

T

t
f (Xs, �s, s)ds + G(XT , �T )

]

subject to Xs = Xt + ∫

s

t
�(Xu, �u)dWu + ∫

s

t
b(Xu, �u)du , t ≤ s ≤ T .

As the shocks are i.i.d. the dual process and the control can be sought in the forms �(Xt, t) and �(Xt, t).The goal is to construct the (deterministic) objects �(⋅, ⋅) and �(⋅, ⋅) (in “HJB style.”).

At time t = T solve for �T ≡ �(x, T ) from G(x, �T ) = 0 and set �(x, T ) = (G(x, �T (x, T )).
Then solve for (x, t) ↝ �(x, t) and (x, t) ↝ �(x, t) from the “implicit” (and non-linear) backward PDE

−)�(x, t) = (f (x, �t, t) + (�(x, t) ×
(

b(x,�t, t) + �(x, �t, t)(�(x, �t, t)
)

+ 1
2
(2�(x, t) �(x, �t, t)2 +�(x, t)(b(x, �t, t)

where �t ≡ �(x, t) ≡ �
(

x,�(x, t), (�(x, t), t
) is determined implicitly from

f (x, �t, t) +�(x, t)b(x, �t, t) + (�(x, t)�(x, �t, t)�(x, �t, t) = 0 .

N.B. These relations provide a “connection between �(x, t) and �(x, t + dt).”
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Some Final Thoughts

Incomplete market models with a large number of heterogeneous agents do not quite fit the mean field
framework: in every period the exiting cross-sectional distribution is different from the entering one. So
to speak, all agents re-position themselves – collectively – while they make their choices (collectively).
The technology developed for solving large GEI may be useful in the context of mean field games and
control as well.
With an appropriate technology at hand, market incompleteness does not lead to unresolved degrees of
freedom.
The difference between complete and incomplete markets is a mere technicality: in either case the pricing
kernel of each agents is determined uniquely and yields the same exact prices for all marketable stochastic
payoffs. Market completeness merely says that all agents share one and the same pricing kernel.
But this is how things look in papers, lectures, and presentations. In the real world of actual computing,
nonlinear systems with more than a few variables cannot be solved routinely – not yet.
The stipulation that real world markets function as a massive super-computer that yields equilibrium
prices instantly and efficiently may have to be revisited.
The stipulation that the expected utility theory models reasonably well the way market participants
respond to and settle (dis)agreements about uncertain outcomes may have to be revisited as well.
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