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First motivation : Volatility is ROUGH

Figure – The log volatility of the S&P over about 10 years.
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Our goal

Understanding volatility

It is shown in Gatheral et al. that log-volatility time series behave in
fact like a fractional Brownian motion, with Hurst parameter of order
0.1.

More precisely, basically all the statistical stylized facts of volatility are
retrieved when modeling it by a rough fractional Brownian motion.

Such models also enable us to reproduce very well the behavior of the
implied volatility surface, in particular the at-the-money skew
(without jumps).

Similar results on more than 6000 assets (Bennedsen et al.).

Why such behavior ?

We wish to explain the macroscopic dynamic of volatility from
microstructural features of the asset.
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Bund contract, 18 months, one data every hour

We want to understand :
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Bund, one hour, one data every second

Based on :
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Building the model

Necessary conditions for a good microscopic price model

We want :

A tick-by-tick model.

A model reproducing the stylized facts of modern electronic markets
in the context of high frequency trading.

A model helping us to understand the rough dynamic of volatility
from the high frequency behavior of market participants.
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Building the model

Stylized facts 1-2

Markets are highly endogenous, meaning that most of the orders have
no real economic motivations but are rather sent by algorithms in
reaction to other orders, see Bouchaud et al., Filimonov and Sornette.

Mechanisms preventing statistical arbitrages take place on high
frequency markets, meaning that at the high frequency scale, building
strategies that are on average profitable is hardly possible.
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Building the model

Stylized facts 3-4

There is some asymmetry in the liquidity on the bid and ask sides of
the order book. In particular, a market maker is likely to raise the
price by less following a buy order than to lower the price following
the same size sell order, see Brennan et al., Brunnermeier and
Pedersen, Hendershott and Seasholes.

A large proportion of transactions is due to large orders, called
metaorders, which are not executed at once but split in time.
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Building the model

Hawkes processes

Our tick-by-tick price model is based on Hawkes processes in
dimension two.

A two-dimensional Hawkes process is a bivariate point process
(N+

t ,N
−
t )t≥0 taking values in (R+)2 and with intensity (λ+t , λ

−
t ) of

the form :(
λ+t
λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.
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Building the model

The microscopic price model

Our model is simply given by

Pt = N+
t − N−t .

N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t] and N−t to the number of downward jumps. Hence,
the instantaneous probability to get an upward (downward) jump
depends on the location in time of the past upward and downward
jumps.

By construction, the price process lives on a discrete grid.

Statistical properties of this model have been studied in details.
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Encoding the stylized facts about market microstructure

The right parametrization of the model

Recall that(
λ+t
λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.

High degree of endogeneity of the market→ L1 norm of the largest
eigenvalue of the kernel matrix close to one.

No arbitrage→ ϕ1 + ϕ3 = ϕ2 + ϕ4.

Liquidity asymmetry→ ϕ3 = βϕ2, with β > 1.

Metaorders splitting→ ϕ1(x), ϕ2(x) ∼
x→∞

K/x1+α, α ≈ 0.6.
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The scaling limit of the price model

Limit theorem

After suitable scaling in time and space, the long term limit of our price
model satisfies the following rough Heston dynamics :

Pt =

∫ t

0

√
VsdWs −

1

2

∫ t

0
Vsds,

Vt = V0 +
1

Γ(α)

∫ t

0
(t − s)α−1λ(θ − Vs)ds +

λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

with

d〈W ,B〉t =
1− β√

2(1 + β2)
dt.
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The scaling limit of the price model

Comments on the theorem

The Hurst parameter H = α− 1/2.

Hence stylized facts of modern market microstructure naturally give
rise to fractional dynamics and leverage effect.

One of the only cases of scaling limit of a non ad hoc “micro model”
where leverage effect appears in the limit. Compare with Nelson’s
limit of GARCH models for example.

Uniqueness of the limiting solution is a difficult result. The proof
requires the use of recent results in SPDEs theory by Mytnik and
Salisbury.

Obtaining a non-zero starting value for the volatility is a tricky point.
To do so, we in fact consider a time-dependent µ.
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Light-Tailed case

Scaling Limits of nearly unstable Hawkes∫∞
0 sφ(s)ds<∞.

Intensity takes the form

λt = µ+

∫ t

0
φ(t − s)dNs .

Stable : fixed L1 norm, get a deterministic asymptotic limit

Nearly unstable : ||φ||1 → 1, corresponds to high market endogeneity

Under suitable rescaling, limiting intensity :

Xt =

∫ t

0
(µ− Xs)

λ

m
ds +

√
λ

m

∫ t

0

√
X sdBs .
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Fat-Tailed case

Scaling Limits of nearly unstable Hawkes

f α,λ = λxα−1Eα,α(−λxα).

Fα,λ(t) =
∫ t
0 f α,λ(s)ds.

φ(x) of the form x−(1+α), α ∈ (0, 1).

Limiting intensity : fractional CIR :

Xt = Fα,λt +

∫ t

0
f α,λ(t − s)

√
X sdBs .

Link between persistence properties and irregularity of limiting process
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Further aspects of volatility

Zumbach effect (Zumbach et al.) : description

Feedback of price returns on volatility.

Price trends induce an increase of volatility.

In the literature (notably works by J.P. Bouchaud and co-authors), a
way to reinterpret the Zumbach effect is to consider that the
predictive power of past squared returns on future volatility is
stronger than that of past volatility on future squared returns.

To check this on data, one typically shows that the covariance
between past squared price returns and future realized volatility (over
a given duration) is larger than that between past realized volatility
and future squared price returns.

We refer to this version of Zumbach effect as weak Zumbach effect.
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Further aspects of volatility

Weak and strong Zumbach effect

It is shown in Gatheral et al. that the rough Heston model reproduces
the weak form of Zumbach effect.

However, it is not obtained through feedback effect, which is the
motivating phenomenon in the original paper by Zumbach. It is only
due to the dependence between price and volatility induced by the
correlation of the Brownian motions driving their dynamics.

In particular in the rough Heston model, the conditional law of the
volatility depends on the past dynamic of the price only through the
past volatility.

We speak about strong Zumbach effect when the conditional law of
future volatility depends not only on past volatility trajectory but also
on past returns.
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A convenient microscopic model encoding Zumbach effect

Quadratic Hawkes processes

Inspired by Blanc et al., we model high frequency prices using
quadratic Hawkes processes.

Jump sizes of the price Pt are i.i.d taking values −1 and 1 with
probability 1/2 and jump times are those of a point process Nt with
intensity

λt = µ+

∫ t

0
φ(t − s)dNs + Z 2

t , with Zt =

∫ t

0
k(t − s)dPs .

The component Zt is a moving average of past returns.

If the price has been essentially trending in the past, Zt is large
leading to high intensity. On the contrary if it has been oscillating, Zt

is close to zero and there is no feedback from the returns on the
volatility. Hence Zt is a (strong) Zumbach term.

Stability condition for such model : ‖φ‖1 + ‖k‖22 < 1.
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Scaling limits

Purely quadratic case

When φ = 0 is equal to zero, choosing appropriate scaling parameters,
we obtain the following limiting model : dP̂t =

√
VtdBt with

Vt = µ+ Z 2
t , Zt =

√
γ

∫ t

0
k(t − s)dP̂s .

In contrast to the purely linear case, we do not need any sort of near
instability so that a stochastic volatility model arises at the scaling
limit.

Not surprising since quadratic Hawkes models share many similarities
with GARCH and QARCH models

GARCH-like processes lead to stochastic volatility at the scaling limit
without any degeneracy in their parameters

The strong Zumbach effect is naturally encoded since the volatility is
a functional of past price returns through Z .

We can rigorously show that conditional on the history of the market
from time 0 to t0, the law of the volatility for t ≥ t0 does depend on
past returns and not only through past volatility.
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Scaling limits

Purely quadratic case (2)

The quadratic feedback of price returns on volatility implies that Vt is
of super-Heston type (essentially log-normal here).

This can be seen for example when µ = 0 :

Zt =
√
γ

∫ t

0
k(t − s)|Zs |dBs .

Taking for example k = f H+1/2,λ for H ∈ (0, 1/2) and λ > 0 with
f α,λ the Mittag-Leffler function, volatility has Hölder regularity H − ε.

Roughness is generated by the behavior in 0 of k .

From a natural microscopic dynamic, we obtain a super-Heston rough
volatility model with strong Zumbach effect at the macroscopic limit.

Quite similar result is obtained when φ 6= 0 (additional drift term in
the dynamic) provided we do not enter the near instability regime.
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Scaling limits

Nearly unstable regime

We know that we can generate roughness from the linear part only in
the near instability regime.

In this regime, assuming φ(x) behaves as x−(1+α) as x goes to

infinity, we prove that at the limit : dP̂t =
√
VtdB

(1)
t with

Vt =
1

Γ(α)

∫ t

0
(t − s)α−1λ

(
θ0(s) + Z 2

s − Vs

)
ds

+
1

Γ(α)

∫ t

0
(t − s)α−1λη

√
VsdB

(2)
s

Zt =

∫ t

0
k(t − s)

√
VsdB

(1)
s .
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Scaling limits

Nearly unstable regime (2)

As in the linear case, the near instability condition leads to appearance
of a second Brownian motion driving a rough Heston type term.

We see that the strong Zumbach effect is still reproduced thanks to
the Z 2

t term which is here convoluted with a power-law kernel.

Roughness comes from the tail of φ.
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Scaling limits

Nearly unstable regime (3)

When k is regular, we have (up to a finite variation term)

Vt =

∫ t

0
f α,λ(t−s)

1√
λµ∗

√
VsdB

(1)
s +

∫ t

0
Fα,λ(t−s)k(0)Zs

√
VsdB

(2)
s .

Thus as in the stable case the quadratic feedback term in the
volatility dynamic induces a super-Heston type rough volatility model.
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Conclusions

From Hawkes processes to rough volatility

Rough volatility is a universal phenomenon.

Hawkes processes are very suitable models for the dynamics of high
frequency prices.

Under very natural specifications, they give rise to rough volatility at
the macroscopic scale.

In fact one can even show that rough volatility is implied by a
no-statistical arbitrage type condition only.
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