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Networks of interacting stochastic processes

Given a finite connected graph G = (V, E), write
d, = degree of vertex v, and u ~ v if (u,v) € E.

Each node v € V has a particle whose stochastic evolution depends only
on its own state and that of nearest neighbors
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Each node v € V has a particle whose stochastic evolution depends only
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@ State space S
@ Continuous transition function F

@ Independent noises &,(t), ve V, t=0,1,...



Networks of interacting stochastic processes

Given a finite connected graph G = (V, E), write
d, = degree of vertex v, and u ~ v if (u,v) € E.

Each node v € V has a particle whose stochastic evolution depends only
on its own state and that of nearest neighbors

For example, as a discrete-time Markov chain:
X(t+1) = F(Xu), (Xu()umrs & (E +1)).

@ State space S
@ Continuous transition function F

e Independent noises &,(t), ve V, t=0,1,...

Arise in: probabilistic cellular automaton, synchronous Markov chain,
simultaneous updating

Examples: Voter model, contact process, exclusion processes



Example: Contact process

State space S = {0, 1} = {off /healthy, on/infected}. Parameters
p,q € [0,1].
Transition rule: At time t, if particle v is at...

e state X, (t) =1, it switches to X,(t+1) =0 w.p. g,

e state X,(t) =0, it switches to X,(t+1) =1 w.p.

p
X D Xu(t).

ur~v



Networks of interacting diffusions

Given a finite connected graph G = (V| E), write
d, = degree of vertex v, and u ~ v if (u,v) € E.

Or as a diffusion:
Zb (t))dt + dW, (),
where (W, ),cy are independent Brownian motions.

For concreteness, assume b is Lipschitz throughout, and initial states
(Xv(0))yev are i.i.d. and square-integrable.



Networks of interacting stochastic processes

Key questions

Given a sequence of graphs G, = (V,, E;) with |V,| — oo, how can we
describe the limiting behavior of...

@ the dynamics of a “typical” or fixed particle X,(t), t € [0, T]?
@ the empirical distribution of particles ﬁ Zvevn Ox,(t)?



Networks of interacting stochastic processes

Key questions

Given a sequence of graphs G, = (V,, E;) with |V,| — oo, how can we
describe the limiting behavior of...

@ the dynamics of a “typical” or fixed particle X,(t), t € [0, T]?
@ the empirical distribution of particles ﬁ Zvevn Ox,(t)?

Mean field as a special case

If G, is the complete graph on n vertices, we are in the mean field
(McKean-Vlasov) setting.



The mean field case (McKean-Vlasov 1966)

Particles i = 1, ..., n interact according to

A L ) .
dX; = - > b(X{, X{)dt + dW,
k=1

where W1, ...  W" are independent Brownian, (X&,..., X) i.id.
0 0



The mean field case (McKean-Vlasov 1966)

Particles i = 1, ..., n interact according to

A L ) .
dX; = - > b(X{, X{)dt + dW,
k=1

where W1, ...  W" are independent Brownian, (X&,..., X) i.id.
0 0

This can be reformulated as
X = BOCL e+ W = L3 6
k=1
where
Bx.m) = [ blc.y)mdy).

Also referred to as weakly interacting diffusions.



The mean field case, law of large numbers

Theorem (Sznitman '91, etc.)

(/£ )eejo, 1) converges in probability to the unique solution (iuit)tejo, ) Of
the McKean-Vlasov equation

dXt = B(Xt, ,U,t) dt + th, M = LaW(Xt)

Moreover, the particles become asymptotically independent (propagation
of chaos). Precisely, for fixed k,

(XY, .. XK = p®k, as n — oo.



Mean field limits for sequences of dense graphs

Key questions

Given a sequence of graphs G, = (V,, E,) with |V,| — oo, how can we
describe the limiting behavior of...

@ a “typical” or fixed particle X,(t)?

o the empirical distribution of particles ﬁ > vev, 0x,(t)7



Mean field limits for sequences of dense graphs

Key questions

Given a sequence of graphs G, = (V,, E,) with |V,| — oo, how can we
describe the limiting behavior of...

@ a “typical” or fixed particle X,(t)?
o the empirical distribution of particles ﬁ > vev, 0x,(t)7

Theorem (Bhamidi-Budhiraja-W. '16)

Suppose G, = G(n, pn) is Erdés-Rényi, with np, — oco. Then everything
behaves like in the mean field case.

See also: Delattre-Giacomin-Lugon '16, Coppini-Dietert-Giacomin '18.

Theorem (Budhiraja-Mukherjee-W. '17)

Suppose G, = G(n, py) is Erd6s-Rényi, with np, — oo. For the
supermarket model (i.e. the power-of-d load balancing scheme), everything
behaves like in the mean field case.



Beyond mean field limits

Key questions

Given a sequence of graphs G, = (V,, E,) with |V,| — oo, how can we
describe the limiting behavior of...

@ a “typical” or fixed particle X,(t)?

o the empirical distribution of particles ﬁ > ovev, Ox,(t)7

Observation: G, = G(n, p,) is Erdés-Rényi, np, ~ average degree — o0,
the graphs are dense.

Our focus: The sparse regime, where degrees do not diverge.
How does the n — oo limit reflect the graph structure?

Example: Erdés-Rényi G(n, p,) with np, — p € (0, c0).
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Beyond mean field limits

Key questions

Given a sequence of graphs G, = (V,, E,) with |V,| — oo, how can we
describe the limiting behavior of...

@ a “typical” or fixed particle X,(t)?
o the empirical distribution of particles ﬁ > ovev, Ox,(t)7

Observation: G, = G(n, p,) is Erdés-Rényi, np, ~ average degree — o0,
the graphs are dense.

Our focus: The sparse regime, where degrees do not diverge.
How does the n — oo limit reflect the graph structure?

Example: Erdés-Rényi G(n, p,) with np, — p € (0, c0).
Questions: (Q1) Does the whole system admit a scaling limit?
(Q2) Is there a nice autonomous description of the limiting dynamics?

Example: Detering-Fouque-Ichiba '18 treats directed cycle graph.

10 /49



Beyond mean field limits: Key ingredients

Sequence of sparse graphs G, = (V),, E,) with |V,| — oo,

Xo(t+1) = ( Xo(t), (Xu(t))unv, & (t+ 1)), t=0,1,...,
Zb t))dt + dW,(t), t>0,

ur~v

11/49



Beyond mean field limits: Key ingredients

Sequence of sparse graphs G, = (V),, E,) with |V,| — oo,

X(t+1) = ( Xo(8), (Xu(t))umv, &(t + 1)), £=0,1,...,

Zb (t))dt + dW, (t), t>0,

ur~v

(Q1) Does the whole system admit a scaling limit?
(A1) Yes, using generalized notion of local (weak) convergence
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Beyond mean field limits: Key ingredients

Sequence of sparse graphs G, = (V),, E,) with |V,| — oo,

X(t+1) = ( Xo(8), (Xu(t))umv, &(t + 1)), £=0,1,...,

Zb (t))dt + dW,(t), t>0,

ur~v
(Q1) Does the whole system admit a scaling limit?
(A1) Yes, using generalized notion of local (weak) convergence
(Q2) Is there a nice autonomous description of the limiting dynamics?
(A2) For regular trees or Galton-Watson trees, Yes: due to a certain
space-time Markov random-field property

11/49



© Local convergence
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Local convergence of graphs

Idea: Encode sparsity via local convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '04)
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Local convergence of graphs

Idea: Encode sparsity via local convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '04)

Definition: A graph G = (V/, E, @) is assumed to be rooted, finite or
countable, locally finite, and connected.
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Local convergence of graphs

Idea: Encode sparsity via local convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele '04)

Definition: A graph G = (V/, E, @) is assumed to be rooted, finite or
countable, locally finite, and connected.

Definition: Rooted graphs G, converge locally to G if:
Vk,3N s.t. Bx(G) = Bk(G,) forall n > N,

where By(-) is ball of radius k at root (with respect to the graph
distance), and = means isomorphism.

13 /49



Examples of local convergence

1. Cycle graph converges to infinite line
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Examples of local convergence

2. Line graph converges to infinite line
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Examples of local convergence

3. Line graph rooted at end converges to semi-infinite line
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Examples of local convergence

4. Finite to infinite d-regular trees
(A graph is d-regular if every vertex has degree d.)

17/49



Examples of local convergence

5. Uniformly random regular graph to infinite regular tree

Fix d. Among all d-regular
graphs on n vertices, se-
lect one uniformly at random.
Place the root at a (uniformly)
random vertex. When n — —
oo, this converges (in law)

to the infinite d-regular tree.
(Bollobas '80)

18 /49



Examples of local convergence

6. Erd6s-Rényi to Galton-Watson(Poisson)

If G, = G(n, pp) with np, — p € (0,00), then G, converges in law to the
Galton-Watson tree with offspring distribution Poisson(p).

AL ¢
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Examples of local convergence

7. Configuration model to unimodular Galton-Watson

If G, is drawn from the configuration model on n vertices with degree
distribution p € P(N), then G, converges in law to the unimodular
Galton-Watson tree UGW(p).

e Construct UGW(p) by letting root have p-many children, and each
child thereafter has p-many children, where

. (n+1)p(n+1)
p(n) = .
) = kel
e Example 1: p = Poisson(p) = p = Poisson(p).

e Example 2: p =4 = p=04-1, so UGW(dy) is the
(deterministic) infinite d-regular tree.

20/49



Local convergence of marked graphs

Recall: G, = (V,, E,, 8,) converges locally to G = (V, E, ) if

Vk,3N s.t. Bx(G) = Bi(G,) forall n > N.
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Local convergence of marked graphs

Recall: G, = (V,, E,, 8,) converges locally to G = (V, E, ) if
Vk,3N s.t. Bx(G) = Bi(G,) forall n > N.

Definition: With G,, G as above: Given a metric space (S, ds) and a
sequence x" = (x7),eq, € S, say that (G,, x") converges locally to
(G,x) if

Vk,e >0 3N s.t. Yn> N Jp : Be(Gp) — Bk(G) isomorphism
s.t. maX,ep,(G,) ds(X‘f,Xw(v)) < €.

Lemma

The set G.[S] of (isomorphism classes of) (G, x) admits a Polish topology
compatible with the above convergence.

21 /49



Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V, E, ¢):
Xo(t+1) = F(X(t), (Xu(t))umv, Ev(t+ 1)), t=0,1,...,
1
dX8(t) = - D OB(XZ (1), XE(1))dt + dW, (1), t=>0.

ur~v

Theorem

If G, — G locally, then (G,, X®) converges in law to (G, X®) in
G« [C(Ry; R (or G.[(RY)>®] for Markov chains). Valid for random
graphs too.
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V, E, ¢):
Xo(t+1) = F(X(t), (Xu(t))umv, Ev(t+ 1)), t=0,1,...,

dXS(t) = ;\/Zb(XVG(t),XUG(t))dt +dW,(t), t>0.

ur~v

Theorem

If G, — G locally, then (G,, X®) converges in law to (G, X®) in
G« [C(Ry; R (or G.[(RY)>®] for Markov chains). Valid for random
graphs too.

In particular, the root particles converge: X¢Gn" = XC in C(Ry;RY).
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V, E, ¢):
X (t+1) = F(Xo(t), (Xu(t))umv, Ev(t+ 1)), t=0,1,...,

dXS(t) = di SOB(XS (1), XS (1)) dt + dW, (1), t>0.
Theorem

If G, — G locally, then (G,, X®) converges in law to (G, X®) in
G[C(Ry; R (or G.[(RY)>®] for Markov chains). Valid for random
graphs too.

Empirical measure convergence is harder. If G, ~ G(n, pp),
np, — p € (0,00), then

1 Ty d
Gl Y Oxe = Law(X)), in P(C(Ry;RY)),
VEGn
where T ~ GW/(Poisson(p)).
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V, E, ¢):
Xo(t+1) = F(X(t), (Xu(t))umv, (b + 1)), t=0,1,...,

dXS(t) = ;\/Zb(XVG(t),XUG(t))dt +dW,(t), t>0.

un~~v

(Q1): Does the whole system admit a scaling limit?

Theorem (Answer)

If G, — G locally, then (G,, X®n) converges in law to (G, X®) in
G« [C(R4; R (or G.[(RY)>] for Markov chains). Valid for random
graphs too.
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V, E, ¢):
Xo(t+1) = F(X(t), (Xu(t))umv, (b + 1)), t=0,1,...,
1
dX8(t) = - D ObB(XZ(1), XE(1))dt + dW, (1), t=>0.

un~~v

(Q1): Does the whole system admit a scaling limit?

Theorem (Answer)

If G, — G locally, then (G,, X®n) converges in law to (G, X®) in
G« [C(R4; R (or G.[(RY)>] for Markov chains). Valid for random
graphs too.

Recall (Q2) Is there a nice autonomous description of the limiting
dynamics for regular trees or Galton-Watson trees?
Goal: For unimodular Galton-Watson trees, find autonomous dynamics for

the root neighborhood particles.
24 /49



© Conditional independence
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Markov random field

Notation: For a set A of vertices in a graph G = (V, E), define
Boundary: 0A={ue VNA:Jue As.t. u~v}.

Definition: A family of random variables (Y, ),cy is a Markov random
field (MRF) if
(Yvea L (Yo)ves | (Yv)veoa,

for all finite sets A, B C V with BN (AU JA) = (.

Example: A 0A B

BEEEE
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Searching conditional independence property

X (t+1)= ( v(t), (Xu(t))u~v, Ev(t+ 1)), t=0,1,...
Xo(t) = Zb t))dt + dW,(t), t>0.

u~v

I

Assume the initial states (X, (0))yev are i.i.d.

Question #1: (Spatial MRF)

For each time t, do the particle positions (X, (t)),cv form a Markov
random field?
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Searching conditional independence property

X, (t+1) = ( L), (Xu(t))uer, E(E+ 1)), t=0,1,...,
Xo(t) = Zb t))dt + dW,(t), t>0.

Assume the initial states (X, (0))yev are i.i.d.

Question #1: (Spatial MRF)

For each time t, do the particle positions (X, (t)),cv form a Markov
random field?

Answer #1:
NO
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Searching conditional independence property

Xo(t+1) = ( v(8), (Xu(t))umv, Eu(t+1)), £=0,1,...,

X,(t) = Zb (t))dt + dW,(t), t>0.

u~v
Assume the initial states (X, (0))yev are i.i.d.

Question #2: (Space-time MRF)

For each time t, do the particle trajectories (X,[t])yev form a Markov
random field? Here x[t] = (x(s),s € [0, t]). Namely for any finite A C V
and t >0, is XA[t] 1 XV\(AU@A)[t] ’ XaA[t]?
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Searching conditional independence property

Xo(t+1) = ( v(£), (Xu(t))umvs &u(t+1)), t=0,1,...,
X,(t) = Zb t))dt + dW,(t), t>0.

u~v
Assume the initial states (X, (0))yev are i.i.d.

Question #2: (Space-time MRF)

For each time t, do the particle trajectories (X,[t])yev form a Markov
random field? Here x[t] = (x(s),s € [0, t]). Namely for any finite A C V
and t >0, is XA[t] 1 XV\(AU@A)[t] ’ XaA[t]?

Answer #2:
NO
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Searching conditional independence property

Counter-example: Consider three real-valued interacting Markov chains
X(k) = (Xi(k) : i=1,2,3) on a line:

X(k+1) = BX(k)+&(k), X(0)=¢(0),

] |

11
where &;(k) is i.i.d. N(0,1) and B = [ 11
01

=)

Then one can get

(X(1),X:(0)) ~N |0,

_ =N W
=N AN
= W N =
= =R

Var(Xy (1), X3(1) | Xa(1), Xx(0)) = [ _51/}%3 —51//33]

So Xi(1) is not independent of X3(1) given (X2(1), X2(0)).
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Second-order Markov random field

Notation: For a set A of vertices in a graph G = (V, E), define
Double-boundary: §?A = dAU (A U DA).

Definition: A family of random variables (Y, ),cy is a 2nd-order Markov
random field if

(Yovea L (Yo)ver | (Yo)vera,
for all finite sets A, B C V with BN (AU 9%A) = 0.

Example: A 0?A B

30/49



Searching conditional independence property

X (t+1)= F(Xv(t),(Xu( Nu~vs E(t+1)), t=0,1,..

Zb (t))dt + dW,(t), t>0.

ur~v

*

Assume the initial states (X, (0))yev are i.i.d.

Question #3: (Spatial second-order MRF)

For each time t, do the particle positions (X, (t)),cy form a second-order
Markov random field? Namely for any finite AC V and t >0, is

Xa(t) L Xy (avoea)(t) | Xoea(t)?
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Searching conditional independence property

X (t+1)= F(Xv(t),(Xu( Nu~vs E(t+1)), t=0,1,..

Zb t))dt + dW,(t), t>D0.

ur~v

*

Assume the initial states (X, (0))yev are i.i.d.

Question #3: (Spatial second-order MRF)

For each time t, do the particle positions (X, (t)),cy form a second-order
Markov random field? Namely for any finite AC V and t >0, is

Xa(t) L Xy (avoea)(t) | Xoea(t)?

Answer #3:
NO
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Searching conditional independence property

Counter-example: Consider four real-valued interacting Markov chains
X (k) = (Xi(k):i=1,2,3,4) on a line:

X(k+1) = BX(K) 1+ £(K),  X(0) = £(0),
1
where &;(k) is i.i.d. N(0,1) and B =

O O

O R B =
= == O
= = O O

Then one can get

12 14 10 4
14 22 18 10
10 18 22 14 ’
4 10 14 12

Var(X1(2), Xa(2) | X2(2), X3(2)) = [ ilé//55 If//s ] :

So X1(2) is not independent of X4(2) given (X2(2), X3(2)).

X(2)~N |o,
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Searching conditional independence property

Xy (t + 1) = F(Xv(t)v (XU( ))u~vva(t + 1))7 t=0,1,.

Zb (t))dt + dW, (t), t>0.

ur~v

Assume the initial states (X, (0))yev are i.i.d.

EERY

Question #4: (Space-time second order MRF)

For each time t, do the particle trajectories (X,[t])yeyv form a
second-order Markov random field? Here x[t] = (x(s), s € [0, t]).
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Searching conditional independence property

X (t+1)= F(Xv(t),(Xu( Nu~v, E(t+1)), t=0,1,...,
Zb (t))dt + dW, (t), t>0.

ur~v

Assume the initial states (X, (0))yev are i.i.d.

Question #4: (Space-time second order MRF)

For each time t, do the particle trajectories (X,[t])yeyv form a
second-order Markov random field? Here x[t] = (x(s), s € [0, t]).

Answer #4: YES
Theorem: (Lacker, Ramanan, W. ’18)

Xalt] L X\ (auaeaylt] | Xo2alt]

for all finite AC V and t > 0.
In fact, suffices for (X,(0)),cv to form a second-order MRF.
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Searching conditional independence property

Intuition:
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Searching conditional independence property

Intuition:
A 9?A B

BEEEEE!

Markov chain: Use induction and properties of conditional independence.

Proof idea:
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Searching conditional independence property

Intuition:
A 9?A B

BEEEEE!

Markov chain: Use induction and properties of conditional independence.

Proof idea:

Diffusion: Use Girsanov to identify the density of (X,[t]),cv w.r.t. Wiener
measure, and study how it factorizes. Use Hammersley-Clifford theorem.

34 /49



@ Local dynamics on infinite regular trees
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Infinite line graph: Markov chain

0 1
. —O0—0 @ @ @

o
Ok

Particle system on infinite line graph, i € Z:
Xi(t + 1) = F(X(0), Xi-1(), Xis1 (1), &(t + 1))

Assume:

e F is symmetric in neighbors: F(x,y,z,£) = F(x,z,y,§).

Goal: Find an autonomous stochastic process (Y_1, Yo, Y1) which agrees
in law with (X_1, Xp, X1).
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Local dynamics for line graph: Markov chain

0
. —O0—O0—0—@

o
Ok

1
@

o Start with (Y_l, Yo, Yl)(O) = (X_l,Xo,Xl)(O).
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Local dynamics for line graph: Markov chain

0
. —O0—O0—0—@

o
Ok

1
@

@ Start with (Y_l, Yo, Yl)(O) = (X_l,Xo,Xl)(O).
e Given (Y_1, Yo, Y1)[t] at time t, let

Y- 1yolt] yalt]) = Law (Y-1(8) | Yolt] = yoltl, Yale] = wle]).
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Local dynamics for line graph: Markov chain

-3 -2 -1 0 1 2 3
. —O0—0 @ @ @ O O

@ Start with (Y_l, Yo, Yl)(O) = (X_l,Xo,Xl)(O).
e Given (Y_1, Yo, Y1)[t] at time t, let

Y- 1yolt] yalt]) = Law (Y-1(8) | Yolt] = yoltl, Yale] = wle]).

@ Independently sample ghost particles Y_5(t) and Y2(t) so that

Law (Y-2() | Yoalt], Yolt], valel) = (- | Y-alt], Yolt))

Here the conditional independence is used.

37/49



Local dynamics for line graph: Markov chain

0
. —O0—O0—0—@

o
Ok

1
@

@ Start with (Y_l, Yo, Yl)(O) = (X_l,XO,Xl)(O).
e Given (Y_1, Yo, Y1)[t] at time t, let

Y- 1yolt] yalt]) = Law (Y-1(8) | Yolt] = yoltl, Yale] = wle]).
@ Independently sample ghost particles Y_5(t) and Y2(t) so that
Law (Y-2(£) | Y-ale], Yolel, Vale]) = e(: | Y-alt], Yolt])

Here the conditional independence is used.
@ Sample new noises (£_1,&o,&1)(t + 1) independently, and update:

Yi(t+1) = F(Y,-(t), Yioa(t), Yiea (b), &(t + 1)), i=-1,0,1
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Infinite d-regular trees: Markov chain

Autonomous dynamics for root parti-
cle and its neighbors,

Xo(t), (Xu(t))vmps

involving conditional law of d —1 chil-
dren given root and one other child u:

LaW((XV)VNp, v#u | Xp7 Xu)

38/
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Infinite d-regular trees: Markov chain

Autonomous dynamics for root parti-
cle and its neighbors,

Xp(£), (X(t))v~ps

involving conditional law of d —1 chil-
dren given root and one other child u:

]'_JaVV(()<v)vr\zp7 v#u ‘ XP? XU)
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Infinite d-regular trees: Markov

Autonomous dynamics for root parti-
cle and its neighbors,

Xo(t), (Xu(t))vmp;

involving conditional law of d —1 chil-
dren given root and one other child u:

Law((Xv)va, vF#u | Xp7 Xu)

40/
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Unimodular Galton-Watson trees: Markov chain

Autonomous dynamics for p
root & first generation in-

volving conditional law of

1st-generation given root and

one child.

Condition on tree struc-
ture as well!
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Example: Linear Gaussian dynamics

State space R, noises &,(t) are independent standard Gaussian.

X (t+1)=aX,(t) + b Y Xu(t)+c+&(t+1)

ur~v

X,(0) =¢&.(0),  a,bceR

~ conditional laws are all Gaussian
Proposition

Suppose the graph G is an infinite d-regular tree, d > 2. Simulating local
dynamics for one particle up to time t is O(t>d?).

Compare: Simulation using infinite tree is O((d — 1)t+1).
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Example: Contact process

Each particle is either 1 or 0. Parameters p, g € [0,1].

Transition rule: At time t, if particle v...
e is at state X, (t) = 1, it switches to X, (t+ 1) = 0 w.p. g,
@ is at state X, (t) = 0, it switches to X, (t+ 1) =1 w.p.

p
d, ZXu(t),

ur~v

where d, = degree of vertex v.

How well do local approximation and mean field approximation do?
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Example: Contact process

Contact Process P(X=0)

— Full Ring
050} — Local Approximation
—— Mean Field Approximation

e o e e
N w w =
&) o [l =)

Probability Typical Particle in state O

e
9
=)

0.15 - - -
1] 10 20 30 40 50
Time

Figure: Infinite 2-regular tree (line), p =2/3, ¢ =0.1

Credit: Ankan Ganguly & Mitchell Wortsman, Brown University
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Local dynamics for diffusions

An additional ingredient: A projection/mimicking lemma
(Brunick-Shreve '13; Gyongy '86)

On some (Q, F,F,P), let W be F-Brownian. Let (b(t)) be F-adapted and
square-integrable, with

dX(t) = b(t)dt + dW(t).
Define (by optional projection)
B(t,x) = E[b(t) | X[t] = x[t]]-
Then there is a weak solution Y of
dy(t) = B(t, Y)dt + dW(t)

such that Y 4 X.
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Local dynamics for line graph: diffusions

0
) ) o o

Ok
Qe

1
@
Particle system on infinite line graph, i € Z:

dX{ =3 (b(X, X{T) + b(XE, X)) dt + dW,
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Local dynamics for line graph: diffusions

-3 2 -1 0 1 2 3
O—6C—0— 0 0 S —C

Particle system on infinite line graph, i € Z:
dX{ =3 (b(X{, X[ + b(X[, X[TT)) dt + dW]
Local dynamics:
dYt =1 (b(YE YD)+ (v (YL YO, b(YE ) dt +dW}
dyy = % (b(Y2, Y1) + b(YP, Y?)) dt +dWy
dY;t =3 ((re(Y YO (Y )+ bV YY) dt + dW
(P y ) = LaW(Ytl Y =¥% Yar=vynr)

Thm: Uniqueness in law & (Y1, Y°, Yl) (X1 X0 x1h).
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Local dynamics for line graph: diffusions

-3 2 -1 0 1 2 3
O—6C—0— 0 0 S —C

Particle system on infinite line graph, i € Z:

dX{ =3 (b(X, X{T) + b(XE, X)) dt + dW,

Local dynamics:

dy}l =
dy? =

dy; ! =
Y%y ™)

L (b(YE YO + (re(YL YO b(YE ) bt + dW]
%(b(Yt‘% *1)+b(Yt°,YS) dt + AW
(YL YO (YL ) + b(YE YY) dt + dW

b
= LaW(Ytl | Y/\t = y-(}\ta YA t% _.y/\t)

Thm: Uniqueness in law & (Y1, Y°, Yl) (X1 X0 x1h).

Analogous local dynamics hold for infinite d-regular trees and unimodular
Galton-Watson trees
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Theorem 1

If finite graph sequence converges locally to infinite graph, then particle
systems converge locally as well.

Theorem 2

Root neighborhood particles in a unimodular Galton-Watson tree admit
well-posed local dynamics.

Corollary: If finite graph sequence converges locally to a unimodular
Galton-Watson tree, then root neighborhood particles converge to unique
solution of local dynamics.
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Thank you!
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