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Networks of interacting stochastic processes

Given a finite connected graph G = (V ,E ), write
dv = degree of vertex v , and u ∼ v if (u, v) ∈ E .

Each node v ∈ V has a particle whose stochastic evolution depends only
on its own state and that of nearest neighbors

For example, as a discrete-time Markov chain:

Xv (t + 1) = F
(
Xv (t), (Xu(t))u∼v , ξv (t + 1)

)
.

State space S

Continuous transition function F

Independent noises ξv (t), v ∈ V , t = 0, 1, . . .

Arise in: probabilistic cellular automaton, synchronous Markov chain,
simultaneous updating
Examples: Voter model, contact process, exclusion processes
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Example: Contact process

State space S = {0, 1} = {off/healthy, on/infected}. Parameters
p, q ∈ [0, 1].

Transition rule: At time t, if particle v is at...

state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,

state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

∑
u∼v

Xu(t).
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Networks of interacting diffusions

Given a finite connected graph G = (V ,E ), write
dv = degree of vertex v , and u ∼ v if (u, v) ∈ E .

Or as a diffusion:

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t),

where (Wv )v∈V are independent Brownian motions.

For concreteness, assume b is Lipschitz throughout, and initial states
(Xv (0))v∈V are i.i.d. and square-integrable.
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Networks of interacting stochastic processes

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can we
describe the limiting behavior of...

the dynamics of a “typical” or fixed particle Xv (t), t ∈ [0,T ]?

the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δXv (t)?

Mean field as a special case

If Gn is the complete graph on n vertices, we are in the mean field
(McKean-Vlasov) setting.
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The mean field case (McKean-Vlasov 1966)

Particles i = 1, . . . , n interact according to

dX i
t =

1

n

n∑
k=1

b(X i
t ,X

k
t )dt + dW i

t ,

where W 1, . . . ,W n are independent Brownian, (X 1
0 , . . . ,X

n
0 ) i.i.d.

This can be reformulated as

dX i
t = B(X i

t , µ̄
n
t )dt + dW i

t , µ̄nt =
1

n

n∑
k=1

δX k
t
,

where

B(x ,m) =

∫
Rd

b(x , y)m(dy).

Also referred to as weakly interacting diffusions.
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The mean field case, law of large numbers

Theorem (Sznitman ’91, etc.)

(µ̄nt )t∈[0,T ] converges in probability to the unique solution (µt)t∈[0,T ] of
the McKean-Vlasov equation

dXt = B(Xt , µt) dt + dWt , µt = Law(Xt).

Moreover, the particles become asymptotically independent (propagation
of chaos). Precisely, for fixed k,

(X 1, . . . ,X k)⇒ µ⊗k , as n→∞.
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Mean field limits for sequences of dense graphs

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can we
describe the limiting behavior of...

a “typical” or fixed particle Xv (t)?

the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δXv (t)?

Theorem (Bhamidi-Budhiraja-W. ’16)

Suppose Gn = G (n, pn) is Erdős-Rényi, with npn →∞. Then everything
behaves like in the mean field case.

See also: Delattre-Giacomin-Luçon ’16, Coppini-Dietert-Giacomin ’18.

Theorem (Budhiraja-Mukherjee-W. ’17)

Suppose Gn = G (n, pn) is Erdős-Rényi, with npn →∞. For the
supermarket model (i.e. the power-of-d load balancing scheme), everything
behaves like in the mean field case.
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Beyond mean field limits

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can we
describe the limiting behavior of...

a “typical” or fixed particle Xv (t)?

the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δXv (t)?

Observation: Gn = G (n, pn) is Erdős-Rényi, npn ≈ average degree →∞,
the graphs are dense.

Our focus: The sparse regime, where degrees do not diverge.
How does the n→∞ limit reflect the graph structure?

Example: Erdős-Rényi G (n, pn) with npn → p ∈ (0,∞).

Questions: (Q1) Does the whole system admit a scaling limit?
(Q2) Is there a nice autonomous description of the limiting dynamics?

Example: Detering-Fouque-Ichiba ’18 treats directed cycle graph.
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Beyond mean field limits: Key ingredients

Sequence of sparse graphs Gn = (Vn,En) with |Vn| → ∞,

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t), t ≥ 0,

(Q1) Does the whole system admit a scaling limit?
(A1) Yes, using generalized notion of local (weak) convergence

(Q2) Is there a nice autonomous description of the limiting dynamics?
(A2) For regular trees or Galton-Watson trees, Yes: due to a certain
space-time Markov random-field property
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Local convergence of graphs

Idea: Encode sparsity via local convergence of graphs.
(a.k.a. Benjamini-Schramm convergence, see Aldous-Steele ’04)

Definition: A graph G = (V ,E , ø) is assumed to be rooted, finite or
countable, locally finite, and connected.

Definition: Rooted graphs Gn converge locally to G if:

∀k,∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N,

where Bk(·) is ball of radius k at root (with respect to the graph
distance), and ∼= means isomorphism.
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Examples of local convergence

1. Cycle graph converges to infinite line

ø −→

...

ø

...
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Examples of local convergence

2. Line graph converges to infinite line

ø −→

...

ø

...
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Examples of local convergence

3. Line graph rooted at end converges to semi-infinite line

ø

−→

...

ø
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Examples of local convergence

4. Finite to infinite d-regular trees

(A graph is d-regular if every vertex has degree d .)

ø −→
ø
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Examples of local convergence

5. Uniformly random regular graph to infinite regular tree

Fix d . Among all d-regular
graphs on n vertices, se-
lect one uniformly at random.
Place the root at a (uniformly)
random vertex. When n →
∞, this converges (in law)
to the infinite d-regular tree.
(Bollobás ’80)

−→
ø
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Examples of local convergence

6. Erdős-Rényi to Galton-Watson(Poisson)

If Gn = G (n, pn) with npn → p ∈ (0,∞), then Gn converges in law to the
Galton-Watson tree with offspring distribution Poisson(p).

ø −→

root

ø

...
...
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Examples of local convergence

7. Configuration model to unimodular Galton-Watson

If Gn is drawn from the configuration model on n vertices with degree
distribution ρ ∈ P(N), then Gn converges in law to the unimodular
Galton-Watson tree UGW(ρ).

Construct UGW(ρ) by letting root have ρ-many children, and each
child thereafter has ρ̂-many children, where

ρ̂(n) =
(n + 1)ρ(n + 1)∑

k kρ(k)
.

Example 1: ρ = Poisson(p) =⇒ ρ̂ = Poisson(p).

Example 2: ρ = δd =⇒ ρ̂ = δd−1, so UGW(δd) is the
(deterministic) infinite d-regular tree.
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Local convergence of marked graphs

Recall: Gn = (Vn,En, øn) converges locally to G = (V ,E , ø) if

∀k, ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N.

Definition: With Gn,G as above: Given a metric space (S , dS) and a
sequence xn = (xnv )v∈Gn ∈ SGn , say that (Gn, x

n) converges locally to
(G , x) if

∀k , ε > 0 ∃N s.t. ∀n ≥ N ∃ϕ : Bk(Gn)→ Bk(G ) isomorphism
s.t. maxv∈Bk (Gn) dS(xnv , xϕ(v)) < ε.

Lemma

The set G∗[S ] of (isomorphism classes of) (G , x) admits a Polish topology
compatible with the above convergence.
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V ,E , ø):

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXG
v (t) =

1

dv

∑
u∼v

b(XG
v (t),XG

u (t))dt + dWv (t), t ≥ 0.

Theorem

If Gn → G locally, then (Gn,X
Gn) converges in law to (G ,XG ) in

G∗[C (R+;Rd)] (or G∗[(Rd)∞] for Markov chains). Valid for random
graphs too.

In particular, the root particles converge: XGn
øn ⇒ XG

ø in C (R+;Rd).

22 / 49



Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V ,E , ø):

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXG
v (t) =

1

dv

∑
u∼v

b(XG
v (t),XG

u (t))dt + dWv (t), t ≥ 0.

Theorem

If Gn → G locally, then (Gn,X
Gn) converges in law to (G ,XG ) in

G∗[C (R+;Rd)] (or G∗[(Rd)∞] for Markov chains). Valid for random
graphs too.

In particular, the root particles converge: XGn
øn ⇒ XG

ø in C (R+;Rd).

22 / 49



Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V ,E , ø):

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXG
v (t) =

1

dv

∑
u∼v

b(XG
v (t),XG

u (t))dt + dWv (t), t ≥ 0.

Theorem

If Gn → G locally, then (Gn,X
Gn) converges in law to (G ,XG ) in

G∗[C (R+;Rd)] (or G∗[(Rd)∞] for Markov chains). Valid for random
graphs too.

Empirical measure convergence is harder. If Gn ∼ G (n, pn),
npn → p ∈ (0,∞), then

1

|Gn|
∑
v∈Gn

δ
XGn
v
⇒ Law(XT

ø ), in P(C (R+;Rd)),

where T ∼ GW(Poisson(p)).
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Local convergence of marked graphs

Recall: Particle system on a rooted locally finite graph G = (V ,E , ø):

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXG
v (t) =

1

dv

∑
u∼v

b(XG
v (t),XG

u (t))dt + dWv (t), t ≥ 0.

(Q1): Does the whole system admit a scaling limit?

Theorem (Answer)

If Gn → G locally, then (Gn,X
Gn) converges in law to (G ,XG ) in

G∗[C (R+;Rd)] (or G∗[(Rd)∞] for Markov chains). Valid for random
graphs too.

Recall (Q2) Is there a nice autonomous description of the limiting
dynamics for regular trees or Galton-Watson trees?
Goal: For unimodular Galton-Watson trees, find autonomous dynamics for
the root neighborhood particles.
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Markov random field

Notation: For a set A of vertices in a graph G = (V ,E ), define

Boundary: ∂A = {u ∈ V \A : ∃u ∈ A s.t. u ∼ v}.

Definition: A family of random variables (Yv )v∈V is a Markov random
field (MRF) if

(Yv )v∈A ⊥ (Yv )v∈B | (Yv )v∈∂A,

for all finite sets A,B ⊂ V with B ∩ (A ∪ ∂A) = ∅.

Example: A ∂A B
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Searching conditional independence property

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t), t ≥ 0.

Assume the initial states (Xv (0))v∈V are i.i.d.

Question #1: (Spatial MRF)

For each time t, do the particle positions (Xv (t))v∈V form a Markov
random field?

Answer #1:

NO
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Searching conditional independence property

Counter-example: Consider three real-valued interacting Markov chains
X (k) = (Xi (k) : i = 1, 2, 3) on a line:

X (k + 1) = BX (k) + ξ(k), X (0) = ξ(0),

where ξi (k) is i.i.d. N (0, 1) and B =

 1 1 0
1 1 1
0 1 1

.

Then one can get

(X (1),X2(0)) ∼ N

0,


3 2 1 1
2 4 2 1
1 2 3 1
1 1 1 1


 ,

Var(X1(1),X3(1) | X2(1),X2(0)) =

[
5/3 −1/3
−1/3 5/3

]
.

So X1(1) is not independent of X3(1) given (X2(1),X2(0)).
29 / 49



Second-order Markov random field

Notation: For a set A of vertices in a graph G = (V ,E ), define

Double-boundary: ∂2A = ∂A ∪ ∂(A ∪ ∂A).

Definition: A family of random variables (Yv )v∈V is a 2nd-order Markov
random field if

(Yv )v∈A ⊥ (Yv )v∈B | (Yv )v∈∂2A,

for all finite sets A,B ⊂ V with B ∩ (A ∪ ∂2A) = ∅.

Example: A ∂2A B
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Searching conditional independence property

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t), t ≥ 0.

Assume the initial states (Xv (0))v∈V are i.i.d.

Question #3: (Spatial second-order MRF)

For each time t, do the particle positions (Xv (t))v∈V form a second-order
Markov random field? Namely for any finite A ⊂ V and t > 0, is

XA(t) ⊥ XV \(A∪∂2A)(t) | X ∂2A(t)?

Answer #3:

NO
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Searching conditional independence property

Counter-example: Consider four real-valued interacting Markov chains
X (k) = (Xi (k) : i = 1, 2, 3, 4) on a line:

X (k + 1) = BX (k) + ξ(k), X (0) = ξ(0),

where ξi (k) is i.i.d. N (0, 1) and B =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

.

Then one can get

X (2) ∼ N

0,


12 14 10 4
14 22 18 10
10 18 22 14
4 10 14 12


 ,

Var(X1(2),X4(2) | X2(2),X3(2)) =

[
14/5 −6/5
−6/5 14/5

]
.

So X1(2) is not independent of X4(2) given (X2(2),X3(2)).
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Searching conditional independence property

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t), t ≥ 0.

Assume the initial states (Xv (0))v∈V are i.i.d.

Question #4: (Space-time second order MRF)

For each time t, do the particle trajectories (Xv [t])v∈V form a
second-order Markov random field? Here x [t] = (x(s), s ∈ [0, t]).

Answer #4: YES

Theorem: (Lacker, Ramanan, W. ’18)

XA[t] ⊥ XV \(A∪∂2A)[t] | X ∂2A[t]

for all finite A ⊂ V and t > 0.
In fact, suffices for (Xv (0))v∈V to form a second-order MRF.

33 / 49



Searching conditional independence property

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)), t = 0, 1, . . . ,

dXv (t) =
1

dv

∑
u∼v

b(Xv (t),Xu(t))dt + dWv (t), t ≥ 0.

Assume the initial states (Xv (0))v∈V are i.i.d.

Question #4: (Space-time second order MRF)

For each time t, do the particle trajectories (Xv [t])v∈V form a
second-order Markov random field? Here x [t] = (x(s), s ∈ [0, t]).

Answer #4: YES

Theorem: (Lacker, Ramanan, W. ’18)

XA[t] ⊥ XV \(A∪∂2A)[t] | X ∂2A[t]

for all finite A ⊂ V and t > 0.
In fact, suffices for (Xv (0))v∈V to form a second-order MRF.

33 / 49



Searching conditional independence property

Intuition:
A ∂2A B

Proof idea:

Markov chain: Use induction and properties of conditional independence.

Diffusion: Use Girsanov to identify the density of (Xv [t])v∈V w.r.t. Wiener
measure, and study how it factorizes. Use Hammersley-Clifford theorem.
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3 Conditional independence

4 Local dynamics on infinite regular trees
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Infinite line graph: Markov chain

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

Particle system on infinite line graph, i ∈ Z:

Xi (t + 1) = F
(
Xi (t),Xi−1(t),Xi+1(t), ξi (t + 1)

)
Assume:

F is symmetric in neighbors: F (x , y , z , ξ) = F (x , z , y , ξ).

Goal: Find an autonomous stochastic process (Y−1,Y0,Y1) which agrees
in law with (X−1,X0,X1).
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Local dynamics for line graph: Markov chain

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

Start with (Y−1,Y0,Y1)(0) = (X−1,X0,X1)(0).

Given (Y−1,Y0,Y1)[t] at time t, let

γt(· | y0[t], y1[t]) = Law
(
Y−1(t) |Y0[t] = y0[t],Y1[t] = y1[t]

)
.

Independently sample ghost particles Y−2(t) and Y2(t) so that

Law
(
Y−2(t) |Y−1[t],Y0[t],Y1[t]

)
= γt(· |Y−1[t],Y0[t])

Here the conditional independence is used.

Sample new noises (ξ−1, ξ0, ξ1)(t + 1) independently, and update:

Yi (t + 1) = F
(
Yi (t),Yi−1(t),Yi+1(t), ξi (t + 1)

)
, i = −1, 0, 1
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Infinite d-regular trees: Markov chain

Autonomous dynamics for root parti-
cle and its neighbors,

Xρ(t), (Xv (t))v∼ρ,

involving conditional law of d−1 chil-
dren given root and one other child u:

Law((Xv )v∼ρ, v 6=u |Xρ, Xu)

ρ

u

d = 3
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Autonomous dynamics for root parti-
cle and its neighbors,

Xρ(t), (Xv (t))v∼ρ,

involving conditional law of d−1 chil-
dren given root and one other child u:

Law((Xv )v∼ρ, v 6=u |Xρ, Xu)

ρ

u

d = 4
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Infinite d-regular trees: Markov chain

Autonomous dynamics for root parti-
cle and its neighbors,

Xρ(t), (Xv (t))v∼ρ,

involving conditional law of d−1 chil-
dren given root and one other child u:

Law((Xv )v∼ρ, v 6=u |Xρ, Xu)

ρ

u

d = 5
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Unimodular Galton-Watson trees: Markov chain

Autonomous dynamics for
root & first generation in-
volving conditional law of
1st-generation given root and
one child.

Condition on tree struc-
ture as well!

root

ø

...
...
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Example: Linear Gaussian dynamics

State space R, noises ξv (t) are independent standard Gaussian.

Xv (t + 1) = aXv (t) + b
∑
u∼v

Xu(t) + c + ξv (t + 1)

Xv (0) = ξv (0), a, b, c ∈ R

 conditional laws are all Gaussian

Proposition

Suppose the graph G is an infinite d-regular tree, d > 2. Simulating local
dynamics for one particle up to time t is O(t2d2).

Compare: Simulation using infinite tree is O((d − 1)t+1).
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Example: Contact process

Each particle is either 1 or 0. Parameters p, q ∈ [0, 1].

Transition rule: At time t, if particle v ...

is at state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,

is at state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

∑
u∼v

Xu(t),

where dv = degree of vertex v .

How well do local approximation and mean field approximation do?
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Example: Contact process

Figure: Infinite 2-regular tree (line), p = 2/3, q = 0.1

Credit: Ankan Ganguly & Mitchell Wortsman, Brown University
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Local dynamics for diffusions

An additional ingredient: A projection/mimicking lemma
(Brunick-Shreve ’13; Gyongy ’86)

On some (Ω,F ,F,P), let W be F-Brownian. Let (b(t)) be F-adapted and
square-integrable, with

dX (t) = b(t)dt + dW (t).

Define (by optional projection)

B(t, x) = E[b(t) |X [t] = x [t]].

Then there is a weak solution Y of

dY (t) = B(t,Y )dt + dW̃ (t)

such that Y
d
= X .
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Local dynamics for line graph: diffusions

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

Particle system on infinite line graph, i ∈ Z:

dX i
t = 1

2

(
b(X i

t ,X
i−1
t ) + b(X i

t ,X
i+1
t )

)
dt + dW i

t

Local dynamics:

dY 1
t = 1

2

(
b(Y 1

t ,Y
0
t ) + 〈γt(Y 1,Y 0), b(Y 1

t , ·)〉
)
dt + dW 1

t

dY 0
t = 1

2

(
b(Y 0

t ,Y
−1
t ) + b(Y 0

t ,Y
1
t )
)
dt + dW 0

t

dY−1
t = 1

2

(
〈γt(Y−1,Y 0), b(Y−1

t , ·)〉+ b(Y−1
t ,Y 0

t )
)
dt + dW−1

t

γt(y
0, y−1) = Law

(
Y 1
t |Y 0

·∧t = y0
·∧t , Y

−1
·∧t = y−1

·∧t
)

Thm: Uniqueness in law & (Y−1,Y 0,Y 1)
d
= (X−1,X 0,X 1).

Analogous local dynamics hold for infinite d-regular trees and unimodular
Galton-Watson trees
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Summary

Theorem 1

If finite graph sequence converges locally to infinite graph, then particle
systems converge locally as well.

Theorem 2

Root neighborhood particles in a unimodular Galton-Watson tree admit
well-posed local dynamics.

Corollary: If finite graph sequence converges locally to a unimodular
Galton-Watson tree, then root neighborhood particles converge to unique
solution of local dynamics.

47 / 49



Thank you!
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[3] S. Delattre, G. Giacomin, and E. Luçon. A note on dynamical models on random
graphs and Fokker–Planck equations. Journal of Statistical Physics,
165(4):785–798, 2016.

[4] D. Lacker, K. Ramanan, and R. Wu. Local dynamics for large sparse networks of
interacting Markov chains / diffusions. Near completion, 2018.

[5] A-S. Sznitman. Topics in propagation of chaos. Ecole d’Eté de Probabilités de
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