Last (Family) Name: \qquad First Name: \qquad

USC ID: \qquad Signature:

Circle the lecture section you are registered for:
Montgomery at 10 Lin at 10 Lin at 11 Mancera at 11 Lin at 12 Montgomery at 1

INSTRUCTIONS

Show your work to obtain full credit: points may be deducted if you do not justify your answer. You may leave your final answers containing e, π, fractions or $\sqrt{2}, \sqrt{3}$, etc., without further simplication. Please indicate clearly whenever you continue your work on the back of the page.

NOT allowed: calculators and other electronic devices, books and lecture notes. Turn off your cell phones.

ALLOWED: one self-prepared handwritten formula sheet, letter size paper, both sides.

Problem	Value	Score
1	20	
2	25	
3	20	
4	15	
5	15	
6	20	
7	20	
8	15	
9	20	
10	25	
Total	200	

1. Find the limits:
(a) $\lim _{x \rightarrow 0} \frac{\cos (x)-\cos (5 x)}{x^{2}}$
(b) $\lim _{x \rightarrow 0^{+}}(1+\tan (2 x))^{(3 / \sin x)}$
(c) $\lim _{n \rightarrow \infty} \frac{(-3)^{n}}{n!}$
2. Evaluate the integrals.
(a) $\int_{0}^{1} \ln x d x$
(b) $\int \frac{1}{x^{4} \sqrt{x^{2}-4}} d x$
(c) $\int \frac{x^{2}+2}{\left(x^{2}+x+1\right)(x-1)} d x$
3. Let \mathcal{R} be the region bounded by the curve $y^{2}=4-x$ and the line $x+y=2$.
(a) Sketch the region and find its area.
(b) Write an integral for the volume V of the solid obtained by rotating the region \mathcal{R} as in (a) about the line $y=-1$ using the method of cylindrical shells. Do not evaluate the integral.
(c) Write an integral for the volume V of the solid obtained by rotating the region \mathcal{R} as in (a) about the y-axis using the slicing method (disks). Do not evaluate the integral.
4. Let $f(x)=\ln (\cos x)$, for $0 \leq x \leq \pi / 3$.
(a) Write an integral for the length of the curve $f(x)$ on the given interval. Do not evaluate.
(b) Evaluate your integral in (a).
5. Find the solution of the differential equation

$$
\frac{d y}{d x}=\frac{1+x}{x y}
$$

for $x>0$, which satisfies the initial condition $y(1)=-4$.
6. A water tank has the shape of a paraboloid of revolution: its shape is obtained by rotating the parabola $y=x^{2} / 4$, for $0 \leq x \leq 4$, around the y-axis. Assume that the water in the tank is 3 ft deep.

Find the work required to pump water out of the top of the tank, to lower the water level to 2 ft .
(the weight of water is $62.5 \mathrm{lbs} / \mathrm{ft}^{3}$)
7. In (a), (b), and (c), determine whether each series is conditionally convergent, absolutely convergent, or divergent. Justify your answers.
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n^{2}+1}$
(b) $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^{4}-1}}$
(c) $\sum_{n=1}^{\infty} n e^{-n}$
8. Find the sum of the series $\sum_{n=2}^{\infty}\left[\frac{2}{n^{2}-1}+\left(\frac{2}{3}\right)^{n}\right]$.
9. Find the radius of convergence and the interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n}}(x+1)^{n+1}
$$

10. In part(a), (b) and (c), you should give the first four non-zero terms in the series explicitly, as well as an expression for the general term.
(a) Find the Maclaurin series for $\frac{1}{1+x^{2}}$. What is the radius of convergence?
(b) Using (a), find the Maclaurin series for $\tan ^{-1} x$.
(c) Using (b), find the Maclaurin series for $f(x)=x \tan ^{-1}\left(x^{2}\right)$.
(d) Find $f^{(15)}(0)$.
(if you were unable to find the series for part (c), you may do part (d) by assuming that $\left.f(x)=\sum_{n} b_{n} x^{n}.\right)$
(e) Evaluate $\int_{0}^{1} x \tan ^{-1}\left(x^{2}\right) d x$ using a series, with an error of at most $\frac{1}{150}$. You may leave your answer as a sum of fractions.
