MATH 126

FINAL EXAM

Last (Family) Name:	First Name:	
USC ID:	Signature:	

Circle the lecture section you are registered for:

Montgomery at 10 Lin at 10 Lin at 11 Mancera at 11 Lin at 12 Montgomery at 1

INSTRUCTIONS

Show your work to obtain full credit: points may be deducted if you do not justify your answer. You may leave your final answers containing e, π , fractions or $\sqrt{2}$, $\sqrt{3}$, etc., without further simplication. Please indicate clearly whenever you continue your work on the back of the page.

NOT allowed: calculators and other electronic devices, books and lecture notes. Turn off your cell phones.

ALLOWED: one self-prepared handwritten formula sheet, letter size paper, both sides.

Problem	Value	Score
1	20	
2	25	
3	20	
4	15	
5	15	
6	20	
7	20	
8	15	
9	20	
10	25	
Total	200	

1. Find the limits:

(a)
$$\lim_{x \to 0} \frac{\cos(x) - \cos(5x)}{x^2}$$

(b) $\lim_{x\to 0^+} (1 + \tan(2x))^{(3/\sin x)}$

(c)
$$\lim_{n \to \infty} \frac{(-3)^n}{n!}$$

2. Evaluate the integrals.

(a)
$$\int_0^1 \ln x \, dx$$

(b)
$$\int \frac{1}{x^4 \sqrt{x^2 - 4}} \, dx$$

(c)
$$\int \frac{x^2 + 2}{(x^2 + x + 1)(x - 1)} dx$$

3. Let \mathcal{R} be the region bounded by the curve $y^2 = 4 - x$ and the line x + y = 2. (a) Sketch the region and find its area.

(b) Write an integral for the volume V of the solid obtained by rotating the region \mathcal{R} as in (a) about the line y = -1 using the method of cylindrical shells. Do not evaluate the integral.

(c) Write an integral for the volume V of the solid obtained by rotating the region \mathcal{R} as in (a) about the y-axis using the slicing method (disks). Do not evaluate the integral.

4. Let $f(x) = \ln(\cos x)$, for $0 \le x \le \pi/3$.

(a) Write an integral for the length of the curve f(x) on the given interval. Do not evaluate.

(b) Evaluate your integral in (a).

5. Find the solution of the differential equation

$$\frac{dy}{dx} = \frac{1+x}{xy}$$

for x > 0, which satisfies the initial condition y(1) = -4.

6. A water tank has the shape of a paraboloid of revolution: its shape is obtained by rotating the parabola $y = x^2/4$, for $0 \le x \le 4$, around the *y*-axis. Assume that the water in the tank is 3 ft deep.

Find the work required to pump water out of the top of the tank, to lower the water level to 2 ft.

(the weight of water is 62.5 lbs/ft^3)

. In (a), (b), and (c), determine whether each series is conditionally convergent, absolutely convergent, or divergent. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^4 - 1}}$$

(c)
$$\sum_{n=1}^{\infty} ne^{-n}$$

8. Find the sum of the series

$$\sum_{n=2}^{\infty} \left[\frac{2}{n^2 - 1} + \left(\frac{2}{3}\right)^n \right].$$

9. Find the radius of convergence and the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}} (x+1)^{n+1}.$$

10. In part(a), (b) and (c), you should give the first four non-zero terms in the series explicitly, as well as an expression for the general term.

(a) Find the Maclaurin series for $\frac{1}{1+x^2}$. What is the radius of convergence?

(b) Using (a), find the Maclaurin series for $\tan^{-1} x$.

(c) Using (b), find the Maclaurin series for $f(x) = x \tan^{-1}(x^2)$.

(d) Find $f^{(15)}(0)$.

(if you were unable to find the series for part (c), you may do part (d) by assuming that $f(x) = \sum_{n} b_n x^n$.)

(e) Evaluate $\int_0^1 x \tan^{-1}(x^2) dx$ using a series, with an error of at most $\frac{1}{150}$. You may leave your answer as a sum of fractions.