MATH 126 FINAL EXAM SPRING 2011

1) (15 points) Find $\int \sqrt{1-x^{2}} d x$
2) (15 points) Find $\int \frac{\arcsin (\sqrt{x})}{\sqrt{x}} d x$
3) (20 points) Argue that $\int_{2}^{\infty} \frac{x^{2}-4 x-1}{\left(x^{2}-1\right)\left(x^{2}+1\right)} d x$ diverges, or find its value.
4) (15 points) Argue that $\int_{0}^{\pi} \frac{e^{-x^{2}}}{x} d x$ diverges, or find its value.
5) (20 points) This problem has three parts.
A) Let R be the bounded region of the plane enclosed by the x-axis and graph of $y=3 x-x^{2}-2$. For each part below find an integral that gives the required answer: DO NOT EVALUATE THE INTEGRALS.
i) The volume of the solid obtained by rotating R about the x-axis.
ii) The volume of the solid obtained by rotating R about the line $x=-3$.
B) A plate in the shape of a symmetric trapezoid three meters wide at the bottom, five meters wide at the top and two meters high (a rectangle with congruent triangles on each side:

is submerged vertically with its top at the surface of a liquid of density ρ. Find an integral that gives the hydrostatic force on one side of the plate: DO NOT EVALUATE THE INTEGRAL. Use g for the acceleration due to gravity.
6) (20 points) In each case below, the n-th term of a sequence is given. Give reasons why the sequence diverges, or why it converges and then find its limit.
i) $a_{n}=\left(\frac{4 n-3}{n}-\frac{3 n}{n+1}\right)^{n^{2}+n}$
ii) $b_{n}=(3+\sin (n))^{1 / n}$
iii) $c_{n}=(-1)^{n}(1-(1 / n))$
7) (20 points) In each case give reasons why the series converges or why it diverges. Each series begins at $n=1$.
i) $\sum\left(\frac{3}{5}\right)^{n+1}\left(\frac{7}{5}\right)^{n}$
ii) $\sum \frac{\sin (1 / n)}{\tan (1 / n)}$
iii) $\sum \frac{e^{1 / n}-1}{n}$ (compare to $1 / n^{2}$)
8) (20 points) Find the radius of convergence and the interval of convergence of $\sum_{1}^{\infty} \frac{(-1)^{n}(x+1)^{n}}{n 5^{n}}$. Give reasons for your answers.
9) (15 points) Find $T_{3}(x)$, the third Taylor polynomial of $g(x)=x^{4 / 3}$ about 8 .

Use $T_{3}(x)$ to approximate $7^{4 / 3}$ as a sum of fractions.
Using the Taylor remainder R_{3}, what substitution in it gives the best estimate for the error in the approximation above.
10) (15 points) Find the Taylor series about 0 (the Maclaurin series) for $g(x)=x e^{-x^{2}}$, then find $g^{[17]}(0)$ and $g^{[20]}(0)$.
11) (25 points)
i) (10 points) What integral gives the length of the graph of $r=1 / \theta$ from $\theta=\pi$ to $\theta=2 \pi$.
ii) (15 points) Integrate the function that appears in this definite integral, OR (not both) (10 points) Find $\int \frac{x^{5}}{\sqrt{1+x^{2}}} d x$

